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ABSTRACT Unexpected fault or failure in the power plant have caused high maintenance costs, the loss of
energy production, and even safety issues. Developments in sensor technologies and data analytics have aided
proper preventive maintenance actions for the system to improve asset availability and reduce repair costs.
Nevertheless, effective condition monitoring of a power plant experiences a considerable nuisance from
challenging issues such as inherent data characteristics such as high correlations between process variables,
irrelevant information from environmental noises, and system complexity. To resolve these problems, this
paper proposes an integrated monitoring scheme for performing efficient corrective actions by identifying
the variables related to anomalies in combined cycle power plants. The scheme includes a clustering-based
linear discriminant analysis to extract key variables for reducing dimensionality to efficiently handle the
data, followed by employing the Mahalanobis depth statistics for anomaly detection and causal analysis via
contribution scores. The proposed monitoring scheme is applied to condition monitoring data of a combined
cycle power plant in South Korea, which include two types of anomalous operations. The reliability and
robustness of the proposed condition monitoring scheme are validated by comparing other state-of-the-art
methods. The proposed method shows a potential in efficiently detecting anomalies during operation and
even early detecting the precursors of anomalies. It is expected to prevent imminent faults or failures by
taking proper actions to relevant key process parameters of combined cycle power plant in advance.

INDEX TERMS Anomaly detection, causal inference, condition-based maintenance, contribution scores,
health monitoring.

I. INTRODUCTION
Power plants are complex and expensive assets consisting of
various components with different functionalities. In such a
large-scale system, anomalies of a subsystem or a component
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may lead to unexpected malfunctions or even breakdown of
an equipment, which significantly affects the performance
of a power plant. If the equipment is not operated due to
anomalies and not recovered quickly through maintenance
actions, undesirable results such as high maintenance costs,
the loss of electricity production, and even safety issues may
be induced [17]. Therefore, it is crucial to maintain the power
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plant to a healthy status consistently to meet performance
standards through condition monitoring and resulting main-
tenance actions. From the maintenance perspective, an early
detection of potential anomalies during operation should be
preceded to prevent sudden breakdown of a power plant [3].
Along with the deployment of advanced sensing technolo-

gies (e.g., smart sensors, internet of things (IoT)), data-driven
maintenance has been recognized as an essential scheme
for not only improving asset availability but also reducing
the costs for repair or replacement [10]. Particularly for
the complex system like power plant, big data analytics
and artificial intelligence (AI) techniques for maintenance
activities have facilitated a paradigm shift from time-based
maintenance that cannot completely avoid unnecessary
shutdowns to predictive maintenance or condition-based
maintenance [15]. By integrating historical data into the
diagnosis of system state, it becomes feasible to improve
the performance of a power plant by sustaining it healthy
status [8]. Condition-based maintenance permits the operator
to understand current status of an equipment, effectively
indicating when the maintenance is required so that the oper-
ation would not be suspended accidentally. For condition-
based maintenance, condition monitoring has been widely
implemented across a diverse array of industries including
energy [33], manufacturing [27] and transportation [5].
In general, anomaly data have the patterns not conforming
to a well-defined notion of normal behavior. Based on how
much observations from equipment differ from in-control
characteristics, the condition monitoring of a system has been
meticulously devised.

This research mainly aims to develop a condition mon-
itoring scheme for a combined cycle power plant (CCPP).
CCPP is an electricity generating plant that utilizes co-
generation cycles, where the earlier cycle is conducted by a
combustion turbine generator and the latter cycle by a steam
turbine generator [14]. In a gas turbine, the exhaust with
temperature of 400◦C-600◦C is released, containing enough
thermal energy for subsequent use in the steam turbine
to regenerate electricity. Incorporating both gas turbines
and steam turbines, CCPP fulfills more efficient electricity
generation than a conventional single-cycle power plant [24].
It is reported that CCPP can improve the efficiency of power
generation by over 58%, compared to traditional power plant
with only 40% of generating efficiency [23].
CCPP has a relatively complex structure consisting of

various components to perform power generation. The
performance of CCPP depends highly on consistent operation
of its components that can affect the safety, availability,
and reliability of the whole system. Thus, real-time health
monitoring of the components is important to maintain the
integrity of CCPP [9]. To assess the status of components
online, various types of sensors are installed on critical parts
of equipments in CCPP. Based on the measured data, plant-
wide condition monitoring is established by individually
monitoring each component, to help the operator timely

detect system abnormality and accurately diagnose to take
relevant maintenance actions.

However, there are several bottlenecks to construct an
effective condition monitoring scheme for CCPP. Firstly,
operating data in power plants have inherent characteristics;
cross-variable association [33]. Some variables are highly
associated with others based on their working mecha-
nisms, where redundant information makes an interpretation
of condition monitoring results more difficult. Secondly,
an accurate anomaly detection or its positioning for a mon-
itoring system is generally difficult because of unavoidable
noises and measurement errors caused by the variation of
operational environments or the performance of sensors [11].
Lastly, the complexity of CCPP system hinders the operator
from easily identifying root causes for faults. In practice,
faults in a power plant tend to occur randomly and it is not
easy to secure sufficient representatives for all types of faults.

Addressing such issues, a number of studies based on
mechanical, statistical, and machine learning models have
been conducted to accurately detect anomalies by reducing
the correlation, uncertainty, and computational complexity
of power plant data, which is given in Table 1. To name
a few mechanical approaches, Peng et al. [22] proposed a
principal component analysis (PCA)-based model and a
multi-flow model to diagnose fault types in a nuclear power
plant, where mechanical simulations were implemented
to quantitatively ensure the accuracy of results from the
models. Bonilla-Alvarado et al. [3] introduced an empirical
transfer function for updating a pre-defined physical model,
wherein the dynamics of the model parameters were directly
reflected into condition monitoring. In case of statisti-
cal models, Tobar et al. [29] employed a hybrid approach
with similarity-based modeling, PCA, and Hotelling’s
T 2 test to statistically ensure an efficient and reliable
plant operation. Sabouhi et al. [24] developed a performance
model for CCPP using reliability block diagrams to illus-
trate inter-relationships between subsystems. For machine
learning-based condition monitoring, Chen et al. [4] used
correlation analysis and decision trees for feature selection,
along with support vector machine (SVM) for fault predic-
tion. Wang et al. [30] employed kernel PCA for fault detec-
tion and feature extraction, which was followed by SVM for
fault type identification and subsequent similarity clustering
to assess fault severity. Chen et al. [6] integrated generalized
regression neural network and B-Spline transformation to
reduce multicollinearity problems between sensors in CCPP.

In existing literature, various feature extraction or trans-
formation techniques have been used to strengthen the
precision of condition monitoring scheme. Kesgin and
Heperkan [13] showed that complex structure of correlations
and inter-dependencies between relevant input and output can
be efficiently resolved by providing performance estimates
with reduced dimensions. However, most of proposed
condition monitoring techniques for CCPP to date are
limited to either the systems with similar functionalities,
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TABLE 1. Related works with respect to CM for power plants.

such as typical steam configurations and gas turbine control
systems, or single-function plants. The interpretation of
underlying anomaly effects is crucial for the prevention of
failures in complex power systems. However, quantitative
assessments regarding key contributing factors to anomalies
and identification of their root causes have not been fully
explored yet.

In this paper, we propose an integrated condition monitor-
ing scheme of a CCPP for quantifying the influence of key
variables on detected anomalies and uncovering their root
causes to construct efficient maintenance strategy. To address
high correlations between the variables with similar patterns,
K -means clustering algorithm is employed. In a sequence,
linear discriminant analysis (LDA) is applied to reduce the
dimension of each cluster for emphasizing key features
and mitigating data disturbance by removing unnecessary
features. Based on selecting relevant variables from each
cluster, Mahalanobis depth is introduced as a control statistic
for condition monitoring, which enables anomaly detection
in multidimensional data and facilitates causal inference.
Through the integrated condition monitoring scheme, we aim
tomonitor the status of CCPP in real-time, and identify under-
lying factors of anomalies via contribution scores in case
of out-of-control status. The proposed scheme is tailored to
leverage critical information for anomaly detection, thereby
filtering out extraneous variables from operational data.
Consequently, it can efficiently take inherent correlation,
uncertainty, and complexity within CCPP data into account.

The remainder of this paper is organized as follows.
Section II illustrates K -means clustering-based LDA.
Section III introduces our proposed scheme for condition
monitoring and factor analysis contributing to anomalies
based on the Mahalanobis depth. In Section IV, operational
data of a CCPP in South Korea are analyzed to verify the
performance of our proposed scheme by comparing with
those of other existing methods. Finally, Section V concludes
and discusses the directions for future research.

II. CLUSTERING-BASED LINEAR DISCRIMINANT
ANALYSIS
To proactively perform anomaly detection in a large complex
system, it is essential to extract key variables contributing to

anomaly from a number of variables obtained from multiple
sensors. In this section, we endeavor to extract key factors
having critical impacts on system anomalies via a combined
framework of K -means clustering algorithm and LDA.
K -means clustering algorithm is executed to enhance the
effectiveness of variable selection procedure by grouping all
the variables into several clusters with similar characteristics.
Then, LDA is applied to select key variables contributing to
system anomalies from each cluster. Through the clustering-
based LDA, pre-processed data with reduced dimension
simplify computation and visualization, while removing
unnecessary information for condition monitoring. This
allows clustering the variables with similar characteristics
and transforming complex data into interpretable forms.

Critical issues frequently encountered at condition moni-
toring of CCPP can be defined in terms of three key terms:
high correlations between process variables, data disturbance
by noises, and modeling complexity. In this work, the
objective of introducing a K-means clustering algorithms is to
reduce the dimensions of multivariate variables with similar
characteristics to avoid multicollinearity problems between
variables for making condition monitoring actions much
simpler. After the clustering algorithm is employed to handle
high correlations between variables to resolve the cross-
variable problem, LDA is conducted to control unavoidable
noises from operational environments. Through clustering-
based LDA, high complexity caused by high correlations
and environmental noises can be significantly resolved. The
details of clustering-based LDA are given at the following.

A. K-MEANS ALGORITHM FOR VARIABLE CLUSTERING
Cluster analysis is a statistical method used to categorize a
number of variables into several groups with high internal
similarities by measuring the distance among individuals.
The fundamental logic of cluster analysis is to classify objects
in such a way that the variables within a same cluster exhibit
homogeneous characteristics, while those in different clusters
display heterogeneous characteristics. In this way, clustering
aims to discern both the similarity within each cluster and
the difference between objects in distinct clusters according
to similarity measure [2], [7]. Usually, in the absence of prior
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information about a population, cluster analysis has served as
a touchstone to better understand multivariate data.

As a method for minimizing the distance discrepancies,
K -means clustering is commonly regarded as one of robust
clustering techniques for handling highly correlated mul-
tivariate data, even if it is relatively simple and intuitive.
K -means clustering groups all the data based on the centroids
of each cluster, assigning each data point to the nearest
centroid. The most commonly used metric for K -means
clustering is the minimization of the sum of squared
differences from a cluster center to each data point [25], [32].
Given the N × M multivariate dataset X , the K -means
clustering algorithm proceeds through the following steps:

• Step 1: Identify the optimal number of clusters that is
represented by K and establish the maximum number of
iterations.

• Step 2: Initiate the algorithm by positioning K centroids
based on random initialization.

• Step 3: Associate each independent variable with the
closest cluster by employing distance measurement.

• Step 4: Re-categorize data points into several clusters
by comparing the distance between each data point and
the centroids of all the clusters. This re-assignment is
conducted based on the following membership function

zjk =

 1, if x·j satisfies min
1≤k≤K

∥x·j − ck∥2,

0, otherwise,
(1)

with respect to the jth set of variables, x·j =

[x1j, . . . , xNj]T , and kth centroid, ck = [c1k , . . . , cNk ]T ,
for j = 1, . . . ,M . If the x·j belongs to kth cluster, then
zjk = 1, otherwise zjk = 0.

• Step 5: Update the positions of cluster centroids
based on new data point assignments. In this context,
zjk signifies the membership value of x·j to the centroid
of cluster ck . The objective function for this method,
which considers both the distance and the membership
value of data points within each cluster, is defined as [19]

f =

M∑
j=1

K∑
k=1

zjk∥x·j − ck∥2. (2)

• Step 6: If the positions of cluster centroids have
shifted or the iteration has not reached pre-determined
maximum, return to Step 3. Otherwise, output final
cluster assignments.

The performance of K -means clustering algorithm is
significantly affected by the choice ofK value. To objectively
determine the optimal number of K , elbow method can be
employed [16], [28]. When clustering independent variables,
the elbow method computes the sum of squares within
clusters, which represents the total intra-cluster variation
based on the number of clusters formed. This method aims
to identify the elbow point as the optimal number of clusters,
where the rate of decrease in the sum of squares within

clusters starts to gradually diminish. The procedures for
implementing the elbow method are given as follows:

• Step 1: Identify a range of cluster numberK . If the range
is set to 1, 2, . . . , k , the clustering results with k cases
would be inspected and evaluated.

• Step 2: For each value of K , conduct K -means
clustering algorithm to partition all the variables into the
pre-determined number of clusters.

• Step 3: Calculate the sum of square errors (SSEs) for
each K . The SSE is defined as the sum of squared
distances between each variable and its cluster centroid
as

SSE =

K∑
k=1

∑
x·j∈Ck

∥x·j − ck∥22, (3)

for the kth cluster set, Ck .
• Step 4: Plot the calculated SSE on the y-axis over the
number of clusters on the x-axis to visualize the elbow
curve.

• Step 5: Find the elbow point where the slope in SSE
gradually decreases. Finally, the number of cluster
having elbow point is selected as the best choice of K .

B. LINEAR DISCRIMINANT ANALYSIS FOR VARIABLE
SELECTION
Through the K -means clustering algorithm and the elbow
method, the variables with similar characteristics are grouped
into the proper number of clusters. In a sequence, rep-
resentative variables in each cluster can be identified by
extracting significant variables contributing to anomalies.
As a statistical method for classifying data and reducing
its dimensionality, LDA has been widely employed across
diverse domains such as pattern recognition, category clas-
sification, and feature dimension reduction. The objective
of LDA is to discover a transformation matrix not only
maximizing the distance between different classes, but also
minimizing the internal variance of each class. By finding
the linear decision boundaries that best separate given data,
LDA can facilitate effective dimension reduction and removal
of irrelevant information [12]. LDA generally secures highly
reliable and robust results for labelled data by measuring
the difference in means between classes, increasing the
likelihood of clear separation, and establishing well-defined
decision boundaries.

To efficiently reduce data dimensions, significant variables
contributing to abnormal status should be defined a priori.
For evaluating the likelihood that a specific data point belongs
to a particular class, the conditional probability P(Wl |xi·) for
a given observation xi· belonging to a specific class Wl is
computed through the Bayes’ rule

P(Wl |xi·) =
P(xi·|Wl) · P(Wl)

P(xi·)
, (4)

where xi· =
[
xi1, . . . , xiMk

]
for the total number of

variables in kth cluster, Mk . Here, P(Wl) represents the
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prior probability of Wl that indicates the probability of an
observation included in the class Wl . P(xi·|Wl) denotes the
likelihood of ith observation xi· given that it belongs to
the class Wl , reflecting the distribution of the class Wl .
Analogously, P(xi·) is the probability of observed vector xi·
regardless of its class.

In LDA, by evaluating P(Wl |xi·) across various classes,
each data point is assigned to the class with the highest
probability. For anomaly detection, we consider two classes
W0 and W1 as normal and abnormal status of the system,
respectively. Then, a decision boundary between two classes
is established by maximizing the between-class scatter
(SB) and minimizing the within-class scatter (SW ). The
expressions for SB and SW are given as

SB = (µ0 − µ1)(µ0 − µ1)
T , (5)

SW =

∑
xi·∈W0

(xi· − µ0)(xi· − µ0)
T

+

∑
xi·∈W1

(xi· − µ1)(xi· − µ1)
T , (6)

respectively. In the above equations, µ0 and µ1 are the mean
vectors of normal and abnormal status, respectively [26].
Through the linear transformation G into lower dimensional
space, the optimal decision boundary can be obtained from
the following problem

max
G

GT SBG
GT SWG

, (7)

which maximizes SB and minimizes SW simultaneously [31].
After simplification, the optimization problem of Eq. (7) is
identical to the eigenvalue problem of SWG − λSBG = 0.
A single set of eigenvalue and eigenvector is calculated
because the decision boundary of LDA is determined by
two classes for anomaly detection. For more details on
eigenvalue-based linear equations, see the reference [20].

In the context of LDA, the dimension reductionwith signif-
icant variables for each cluster is conducted by examining the
eigenvector corresponding to the linear decision boundaries.
Firstly, the importance of variables is arranged in the order of
elements with high values within the computed eigenvector.
Subsequently, to determine the variable set exhibiting the
highest diagnostic accuracy, variables are combined in
descending order of importance. Then, the classification
results from the combination of the variables are compared.
By projecting the original data onto selected variable set with
the highest performance, features can be generated in the
reduced-dimensional space for each cluster. As one of the
performance evaluation metrics for classification problems,
F1-score is defined as

F1 =
2 × Recall × Precision
Recall + Precision

where the values of precision and recall are defined as
Precision = TP/(TP + FP) and Recall = TP/(TP + FN),
respectively. Table 2 shows the confusion matrix for
performance evaluation.

TABLE 2. Confusion matrix for performance evaluation.

III. CONDITION MONITORING AND ANOMALY
CONTRIBUTION ANALYSIS
In this section, we propose an integrated framework for
real-time condition monitoring and contribution analysis for
anomalies using the concept of multivariate control chart.
Utilizing the primary information extracted from original
operation data, control statistics over operational time are
defined to monitor and diagnose the current status of a
system. In case of any abnormal state, a quantitative analysis
of contributing factors to anomalies is conducted for clear
inference for following maintenance actions.

As one of control statistics, Mahalanobis depth offers
distinct advantages in terms of robustness and reliability,
particularly in the identification of outliers or anomalies
within complex datasets. Mahalanobis depth considers the
covariance structure that captures how variables are inter-
related each other. This approach allows the Mahalanobis
depth to precisely measure the deviation of observations
from usual patterns in multivariate space. Furthermore,
as a non-parametric approach, its capacity of adjusting to
overall dispersion of data enables reliable anomaly detection
without the need for stringent distributional assumption for
observed data. Through this metric, it becomes possible to
effectively inspect the current state based on complex data
and investigate abnormal causes for system improvement.

For monitoring purpose, we suggest the following proce-
dure consisting of three phases: (1) define control statistics
and their control limits (CLs), (2) monitor and detect anoma-
lies via the control chart, and (3) derive the contribution
score based on the Mahalanobis depth. We will explain the
procedure in details at the following.

A. PHASE I: DETERMINATION OF CONTROL STATISTICS
AND CONTROL LIMITS
Mahalanobis depth is a sophisticated metric for assessing
the similarity between a specific observation at a given
time point and overall distribution. By quantifying the
centrality of target observation xwithin a (multivariate) given
distribution F , Mahalanobis depth is defined as [21]

MD(xi·) =
1

1 + (xi· − x̄i·)T S−1(xi· − x̄i·)
, (8)

for the ith sample mean vector x̄i·, and sample covariance
matrix S. Through this equation, Mahalanobis depth sim-
plifies complex multivariate data into a single measure,
indicating how closely an observation aligns with the central
trend of the distribution.

73404 VOLUME 12, 2024



M. Lim et al.: Depth-Based Condition Monitoring and Contributing Factor Analysis

Because the Mahalanobis depth is a nonparametric mea-
sure, CLs are established without any assumptions about
a specific distribution of the data. Alternatively, reference
data should be used to determine appropriate CLs for
detecting out-of-control state. In general, reference data
is the baseline data when the system is in-control state,
implying typical behaviors of the system. Assuming that
all observations are in a normal state, CLs are calculated
based on a pre-defined significance level α. Also known
as ‘‘type I error’’, α represents the probability of false
alarm, that is, falsely declaring the probability that the
system is out-of-control even though it is actually in-control.
The consideration of type I error is particularly crucial
for complex and large-scale systems like CCPP, because a
substantial amount of costs is associated with false alarms.
The lower control limit (LCL) based on the Mahalanobis
depth statistic is set as

LCLMD = PMD(α), (9)

where PMD(α) is the 100αth percentile of the Mahalanobis
depth distribution. The distribution of Mahalanobis depth can
be empirically obtained using the density of Mahalanobis
depth statistics from reference data.

B. PHASE II: ONLINE MONITORING
After setting the Mahalanobis depth statistics and the
LCL based on reference data, condition monitoring can be
conducted to continuously assess the status of the system.
For newly acquired data, the Mahalanobis depth statistics are
re-calculated to evaluate sample mean vector and covariance
matrix obtained from the reference data. Using the real-time
Mahalanobis depth, we can quantitatively diagnose how
much new observations deviate from normal behaviors of the
system. The Mahalanobis depth values for new observations
are sequentially compared against pre-established LCL, and
if it falls below the LCL, the system is considered to
be out-of-control (or anomaly). By establishing such an
online monitoring scheme, system anomalies can be detected
quickly prior to the occurrence of impending failures.

Once an abnormal operation is detected, the system
operator needs to decide to either allow these anomalies
within the system’s tolerance or implement maintenance
actions immediately. In case that the control statistics are
consecutively under the LCL over an inspection period, the
online monitoring is interrupted and corrective measures
should be initiated to preserve the system’s integrity.
By recovering the system to its standard operating condition,
the efficiency and reliability of CCPP can be sustained.

C. PHASE III: ANOMALY CONTRIBUTION ANALYSIS
To conduct proper maintenance actions for anomalies, it is
necessary to investigate which factors have significantly
influenced the system’s abnormality. For this purpose, con-
tribution analysis is employed to pinpoint the variables that
are primarily responsible for the anomalies. The contribution
analysis decomposes the Mahalanobis depth statistic into

several components, where each element quantifies the
influence of extracted variables (or features) [1]. This
dissection helps the operator identify key variables that may
be root causes of system disturbances.

In contribution analysis for anomalies, Mahalanobis depth
statistic can be mathematically represented as the sum of
weighted squared deviations for each variable, using the
sample covariance matrix for its computation. Mahalanobis
depth is divided into individual contribution scores for each
variable and Eq. (8) is reformulated as

MD(xi·) =
1

1 +
∑

j1∈j
∑

j2∈j wj1j2 (xij1 − [x̄i·]j1 )(xij2 − [x̄i·]j2 )
,

(10)

where xijn and [x̄i·]jn are the jnth individual data of xi· and the
jnth element of x̄i· for n = 1, 2 and j = 1, . . . ,K , respectively.
Through the decomposition, the weighted squared deviation
for jth variable, wjj(xij − x̄ij)2 is then calculated, and the
importance for each variable is ranked based on their
contribution scores wjj for j = 1, . . . ,K . This allows
for identifying primary sources behind observed anomalies.
Once major contributed factors are identified, appropriate
corrective actions can be suggested.

Because a periodical re-calculation of mean vector and
covariance matrix is essential to conduct real-time condition
monitoring, the sample mean and covariance matrix at
phase III are continuously updated with respect to new
operating data. Accordingly, the CLs should be re-calculated
based on updated Mahalanobis depth statistics. By following
these steps, real-time condition monitoring can be effectively
performed, supporting the earlier detection of anomalies
and their root causes, then prompt actions for the system
maintenance.

IV. APPLICATION: COMBINED CYCLE POWER PLANT
In this section, monitoring data of a CCPP in South Korea
was analyzed to illustrate the proposed condition monitoring
scheme to early detect the anomalies caused by combustion
oscillations within the CCPP. The data was collected at
one-minute sampling intervals from a total of 1,106 sensors,
spanning a period of 3 days. During this data collection
period, the CCPP system experienced two types of anomalous
operations for approximately 1 hour and 44 minutes, and
2 hours and 27 minutes, respectively. For the sake of
convenience, each anomaly will be designated as Case A
and Case B. Each fault scenario involves the issues with
both the gas turbine and the steam turbine. Case A concerns
a failure linked to combustion dynamics pressure, which is
caused by the problems with the fuel supply, whereas Case B
involves a malfunction in the heat recovery steam generator
of the steam turbine. The details on the variables and the
interval of anomaly are confidential, thus we did not openly
list them in the analysis. Given that two distinct anomalies
were identified within the collected data, pre-processing and
K -means clustering were uniformly performed to the data
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set. Subsequent procedure of dimensionality reduction using
LDA and contribution analysis based on the Mahalanobis
depth requires divergent approaches tailored to each type of
anomaly. Consequently, the analyses for the two scenarios
were independently conducted to accommodate unique
characteristics of each anomaly.

A. DATA PRE-PROCESSING AND EXPLORATION
To facilitate anomaly detection process, data pre-processing
was performed by defining proper ranges of individual
variables. In practice, out of the 1,106 variables in the
dataset, 916 variables were used for this analysis, excluding
irrelevant variables to condition monitoring. In advance
of data reduction, a preliminary correlation analysis was
performed to assess the presence of high correlations between
variables. This step is essential because high correlation
between variables can affect the performance of anomaly
detection. As a standard technique for calculating the
relationship between variables x·j1 and x·j2 , the Pearson’s
correlation coefficient was employed as

ρj1,j2 =

∑N
i=1(xij1 − [x̄·j1 ]i)(xij2 − [x̄·j2 ]i)√∑N

i=1(xij1 − x̄·j1 )2
√∑N

i=1(xij2 − x̄·j2 )2
.

In the correlation analysis for the CCPP, a number of variables
were highly correlated with each other, as shown in Fig. 1.

FIGURE 1. Visualization of the correlation matrix of all independent
variables.

For example, the variables with similar patterns over oper-
ating time are shown in Fig. 2. Through these observations,
it was noted that clustering procedure should be conducted to
reduce the dimensionality of the data in advance.

B. DIMENSION REDUCTION VIA K-MEANS
CLUSTERING-BASED LDA
To facilitate condition monitoring scheme, clustering the
variables with similar patterns is required. For this purpose,
K -means clustering was conducted to group all the variables
into several clusters with similar characteristics. Because
K -means clustering is greatly affected by the number of
clustersK , the elbowmethod was introduced to determine the

FIGURE 2. Multiple similar patterns with high correlation coefficients.

best number of clusters. Based on SSEs for each cluster, the
elbow plot is given in Fig. 3. The elbowmethod shows that the
optimal number of clusters is 3, and the results of K -means
clustering with K = 3 are given in Fig. 4. The number of
variables in each cluster, C1, C2 and C3, are 537, 275 and
104, respectively.

After clustering independent variables into three groups,
LDA-based dimension reduction was executed to each group
separately to extract significant variables contributing to
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FIGURE 3. Elbow plot for CM data of CCP in south korea.

FIGURE 4. Visualization of K -means clustering results with K = 3.

detected anomalies. To enhance the accuracy of anomaly
detection, we identified key variables with the higher
eigenvector elements. The composition of each cluster was
determined by the F1-score such that improved classification
performance could be provided. For Case A and Case B,
corresponding features were individually given in Fig. 5 and
Fig. 6, respectively. In each cluster, important features with
the number of (23, 6, 46) for Case A, and (46, 43, 20)
for Case B were selected as key variables for the clusters
C1,C2, and C3, respectively. The significant variables from
each cluster were linearly combined by LDA, aiming to
distinguish normal and abnormal decision boundaries. As a
result, the variables were clustered into three dimensions, one
dimension per cluster for each anomalous operation case.

To evaluate the effectiveness of dimension reduction from
LDA, we compared classification results of cluster-based
LDA with cluster-based PCA and original data without
dimension reductionfor two types of anomalous operations.
PCA is one of representative methods for dimension reduc-
tion to generate reduced variables with a linear projection

FIGURE 5. The results of feature extraction for each cluster for Case A.

of interrelated variables [29]. Using PCA, the dimensions
were reduced to a small number of principal components
(PCs) explaining more than 80% of the total variance for each
cluster. As a result, 2, 35, and 11 PCs for both cases were
selected.

To objectively evaluate the performance of anomaly detec-
tion, three types of classifiers, SVM, random forest (RF), and
artificial neural network (ANN), were applied for classifica-
tion between two classes: normal and abnormal status. For
the details on the three classification methods, refer to [18].
Because monitoring data in CCPP was imbalanced with a
small amount of abnormal data, classification performance
was evaluated based on the F1-score, including Recall and
Precision. For each classifier, hyper-parameter tuning was
conducted to secure better classification performance and
10-fold cross-validation was carried out.
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FIGURE 6. The results of feature extraction for each cluster for Case B.

The comparison results for each cluster using original data,
PCA- and LDA-based reduced data are given in Table 3.
Table 3 shows that cluster-based LDA method explains the
total variability of original data using only three features.
Note that cluster-based LDA method is robust to the types
of classifiers and provides stable F1-scores compared to
the other methods. Moreover, the Recall metric serves as a
crucial indicator within the monitoring framework to assess
the promptness and accuracy in identifying actual anomalous
operations. From this standpoint, cluster-based LDA provides
an effective detection results compared to the other methods.
Although some of classifiers derived from original data and
PCA-based reduced data demonstrate enhanced precision,

FIGURE 7. Distribution of the MD statistics in normal status with LCL (red
line).

a significant proportion of observations are categorized
as False Negative (FN), consequently resulting in reduced
Recall accuracy.

C. MAHALANOBIS DEPTH-BASED CONDITION
MONITORING AND CONTRIBUTION ANALYSIS
After reducing dimensionality via LDA, monitoring stan-
dards were built to assess the status of the CCPP and identify
influential factors contributing to abnormal operation. In the
initial phase, Mahalanobis depth was used as the control
statistic for dimension-reduced data in the CCPP data set.
Subsequently, the LCL was determined at a pre-specified
significance level from reference data. In this application,
the significance level is conservatively set to α = 0.01 to
minimize false alarm rate. Based on observed data at normal
operating condition, the LCL for Case A and Case B was
set to be 0.0289 and 0.02270, respectively. Along with
Mahalanobis depth for the reduced data from LDA, the LCL
line was given in Fig. 7. As shown in Fig. 7, Mahalanobis
depth-based non-parametric condition monitoring scheme is
appropriate for CCPP operating data, where the Mahalanobis
depth statistics for both cases seem not to follow a specific
parametric distribution, e.g., normal distribution.

Upon configuring the control statistics and CLs, online
condition monitoring was conducted in Phase II. Our
monitoring scheme detected the system anomalies spanning
from the 2,732-2,836 time points (104 minutes)for Case A
and 745-892 time points (minutes) for Case B, where the
Mahalanobis depths lie under the LCL consecutively. The
period exactly coincides with the abnormal period about
that the operator gave information a priori. Notably, the
online monitoring scheme can also detect the precursors for
anomalies at least 5 minutes before an engineer actually
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TABLE 3. The results of dimension reduction and classification.

TABLE 4. The results of dimension reduction and classification.

detect them. Using our online monitoring scheme, it is
expected to prevent imminent fault or failure by giving
warning signs and taking proper actions in advance.

In a sequence, we endeavored to detect influential factors
that directly affect the anomalies. Contribution analysis for
anomalies was performed to identify key variables to the
anomalies in Phase III. For this purpose, contribution scores

were individually calculated for each variable, based on the
sum of weighted squared deviations. Along with variance-
covariance matrices, Table 4 presents contribution scores for
both normal and abnormal periods separately for comparison.
While all the classes evenly contribute to normal status,
it is clearly noted that the cluster 2 (C2) for Case A and
the cluster 1 for Case B from LDA mainly contribute to
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FIGURE 8. Visualization of the CM result based on MD with LCL (red line)
and abnormal period (blue dashed lines).

anomalies with almost 90% and 70% of contribution scores,
respectively. Based on the anomaly contribution analysis, it is
necessary to delve into the clusters with high contribution
scores more closely to identify main key variables.

To evaluate the accuracies of the contribution analyses,
we compared expert interpretation of fault causes for each
case against data-driven analysis results. Case A is classified
into a failure type related to combustion dynamics pressure in
gas turbine, attributed to fuel supply issues. The data-driven
analysis indicated that cluster 2, containing variables closely
associated with fuels, presented a high contribution score,
aligning with identified cause of the failure. Similarly, Case B
pertains to a fault in the heat recovery steam generator
of steam turbine. Here, the variables in Cluster 1, which
is related to temperature control, combustion flame, and
pressure, also scored high contribution. From these facts,
we could confirm that the contribution analysis via the

Mahalanobis depth has a potential in identifying key variables
that critically affect operational anomalies in CCPP.

V. CONCLUSION
In this study, we propose an efficient online condition
monitoring scheme tailored for CCPP. To address intricate
challenges inherent in sensing data within a complex system,
which are characterized by high correlation, data disturbance,
and limited interpretability, we introduce a comprehensive
condition monitoring scheme for a large-scale complex
system of CCPP. This scheme incorporates clustering-based
dimension reduction, data-depth analysis, and anomaly con-
tribution analysis sequentially. Through K -means clustering
and LDA, we extract a concise set of groups significantly
influencing system anomalies. Then, Mahalanobis depth
is employed as a measure of control statistics, enabling
precise diagnosis and evaluation of plant operation status.
Additionally, by calculating contribution scores, we endeavor
to identify key influential factors contributing to anomalies,
which can support proactive fault prevention by initiating
efficient maintenance actions. Empirical analysis of oper-
ational data from a CCPP demonstrates the potential of
our condition monitoring scheme in timely and preemptive
detection of operational anomalies. Notably, the integration
of nonparametric control charts based on Mahalanobis depth
statistics further enhances the capability of earlier anomaly
detection in a complex system with a large number of
monitoring variables that is not easy to apply parametric
control charts. By means of the proposed method, it is
expected to prevent imminent faults or failures by taking
proper actions to relevant factors in advance. The contribution
of this work can be briefly summarized as follows:

• The proposed method provides maintenance-efficient
condition monitoring by mainly focusing on key vari-
ables influencing the anomalies in a combined cycle
power plant.

• It is possible to quantify the degrees of variables having a
major impact on the anomalies when an abnormal status
is diagnosed.

• The proposed method help the operator find causal
inference for abnormal status, contributing to reliability
enhancement and maintenance improvement in a com-
bined cycle power plant.

Admittedly, the diagnosis of anomalies and inference of
their causes in a complex system still pose challenging prob-
lems for future research. The consideration of external factors
such as environmental changes, equipment degradation, and
variations in operating conditions is expected to enhance the
robustness of online condition monitoring scheme. Based
on the proposed condition monitoring scheme, optimal
time-based or condition-based maintenance policy can be
devised to improve the reliability of power generating
equipment and reduce operational costs. By determining
appropriate time points for repair or replacement of com-
ponents or subsystems, the integrity of power plants is
expected to be greatly improved. Finally, this approach can
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be easily extended to other similar complex systems such
as nuclear power plants, chemical plants, and semiconductor
manufacturing processes for condition monitoring.
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