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ABSTRACT Ensuring sustainable and profitable agriculture is critical for addressing global food security
challenges. This has resulted in the need for automation in plant health identification. However, this objective
is hampered by the lack of efficient image-processing methods and the need for extensive datasets for training
deep learning models for plant disease diagnosis. To overcome the need for extensive training data, the
proposed Localized Normalized Difference Vegetation Index (LNDVI) uses zero-shot plant detection models
such as Grounded Dino and state-of-the-art methods for image segmentation such as Segment Anything
Model (SAM) are leveraged. This also expands the capabilities of the system to diagnose plant health
beyond known plant species available as part of training set. The proposed system uses synthetic Normalized
Difference Vegetation Index (NDVI) to estimate the chlorophyll content of the plant through RGB images
alone instead of using the combination of RGB and near Infra-red (nIR) bands used in contemporary
works. Since NDVI value is greatly affected by the amount of light present while the image is captured,
we also present an irradiation estimation metric that uses CIE XYZ (Tristimulus values), Hue, Saturation
and Value (HSV) and CIE LAB color spaces as well as correlated color temperatures, which automatically
normalizes the NDVI threshold for health classification of the image, enabling a more precise analysis of
plant health. Using the Grounding Dino provided an accuracy of 99.994% in terms of detecting plants from
the phenotyping dataset. The segmentation of plant region in images is reported using Intersection over Union
(IoU). While using the Segment Anything Model (SAM), an average accuracy of 95.884% was obtained for
clustered plants while the average accuracy was even better at 97.031% for individual plants. Significant
differences were observed for plant health classification while using Localized Normalized Difference
Vegetation Index (LNDVI) approach when compared to NDVL.

INDEX TERMS Agriculture, computer vision, Grounded Dino, NDVI, plant health, SAM.

I. INTRODUCTION

The 2022 Revision of World Population Prospects by
the United Nations Secretariat estimates that the world
population will cross 9 billion by 2037 [3]. With more
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people to feed, ensuring everyone has access to enough
food is of utmost importance. This concept is known as
food security [4], which aims to bridge the gap between
the demand and supply of food. But despite the grow-
ing population, global food security has not improved.
The Global Food Security Index for 2022 [5] reveals that
overall food security in the world has remained stagnant

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

VOLUME 12, 2024

For more information, see https://creativecommons.org/licenses/by/4.0/ 75907


https://orcid.org/0000-0001-9746-6357
https://orcid.org/0009-0004-5004-3970
https://orcid.org/0009-0006-5834-4668
https://orcid.org/0000-0002-9804-8031
https://orcid.org/0000-0002-1676-561X
https://orcid.org/0000-0002-8201-0864

IEEE Access

A. Balasundaram et al.: Improved NDVI Estimation Using Grounded Dino and Segment Anything Model

Pesticides (total) + (Total) - Agricultural Use (%)

1990 - 2021

3M o—o"
.

.....

-e- World

FIGURE 1. Visualization of world Pesticides and Insecticide usage from
1990-2020 [41].

compared to the 6% increase observed between 2012
and 2018.

Complex issues firmly rooted in the environment are to
blame for the global challenge of feeding the expanding
population and ensuring food security. To overcome this,
governments need to invest in research and development
(R&D) to ensure sustainability in the long term. By focusing
on innovations that benefit farmers, we can not only increase
productivity but also improve overall well-being, such as by
reducing poverty.

Climate change and excessive farming practices contribute
to crop failures. According to FAO [6], in 2021 alone,
approximately 3.5 million metric tons of pesticides and
750 thousand metric tons of insecticides were used glob-
ally to combat diseases and pests. This excessive use of
chemicals has also led to lower soil fertility. Figure 1 shows
the year-wise trend observed in usage of pesticides and
insecticides. By addressing these environmental challenges
and promoting sustainable agriculture, we can work towards
ensuring a stable food supply, protecting the environment,
and improving the livelihoods of farmers and communities
worldwide.

There are several shortcomings in the present system for
addressing issues of agricultural productivity and disease
detection. One major problem is the lack of funding and
expertise needed to put effective solutions into practice. This
hinders the adoption of helpful technologies in agriculture.
Another issue is that existing classification models need to be
trained separately for each plant type. This means that creat-
ing a large-scale dataset with accurate annotations for all plant
types becomes a time-consuming and resource-intensive task.
It would be more efficient to develop compute-effective
deep learning solutions that can handle different plant types
effectively, eliminating the need for separate training for
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each type. To overcome this, the development of large-scale,
cost-effective solutions that can handle various plant types
effectively is required.

Precision Agriculture is the application of advanced tech-
nologies that use a data-analytics-based approach to increase
agricultural productivity. An important aspect of precision
agriculture is the estimation of chlorophyll content in plants
to determine their health status. Chlorophyll is a plant pig-
ment that plays an essential role in photosynthesis, the
process by which plants convert sunlight into energy. Vari-
ous non-destructive methods, such as chlorophyll meters and
hyper spectral imaging, are utilized to estimate chlorophyll
content in leaves. These techniques analyze the absorption
and reflection of light at specific wavelengths to derive
chlorophyll levels. By measuring the chlorophyll content,
farmers and scientists can understand the health status of a
plant for timely intervention in cases of pests and diseases.
Plant health estimation in precision agriculture not only helps
optimize resource utilization but also promotes sustainable
farming practices, reduces chemical inputs, and increases
overall crop productivity.

The acquired data from specialised sensors, such as mul-
tispectral or hyperspectral cameras, is also used in remote
sensing to evaluate the health and density of vegetation. These
sensors are intended to measure the vegetation’s reflectance
in the near-infrared (NIR) and red (visible) regions of the
electromagnetic spectrum. The Normalised Difference Veg-
etation Index (NDVI), also known as the ““greenness index”’,
is an indicator of chlorophyll content present in the plant.
There are several spectral vegetation indices like NDVI, such
as Normalised Difference Red Edge (NDRE), Green Nor-
malised Difference Vegetation (GNDVI), etc. NDVI makes
use of the near-infrared (NIR) and red bands of the electro-
magnetic spectrum, while GNDVI uses the NIR and green
bands. NDRE detects changes in chlorophyll content and is
used in later stages of the crop compared to NDVI.

Plant diseases and pests are one of the biggest obstacles
to improving agricultural productivity. And hence the need
for technological solutions that can automate plant health
surveillance effectively. But such surveillance using visual
features is challenging, not only due to morphological fea-
tures but also lighting conditions. And given the lack of
diverse datasets to train deep learning models effectively. Our
work is focused on developing a farmer-centric system that
does not require expensive sensors and can practically be
applied for surveying any type of crop.

The primary objective of our system is to identify various
plants in an image and accurately delineate their boundaries.
Subsequently, we aim to apply brightness and contrast nor-
malizations to the image, followed by the computation of a
synthetic NDVI (Normalized Difference Vegetation Index).
This process will generate color maps specifically tailored
to the identified plant area within the image. Our system
will then compare this Localized NDVI estimate with the
RGB-based NDVI estimate (Synthetic NDVI) to validate this
method. The final step involves classifying plant health by
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comparing the mean NDVI values of plant areas to predefined
thresholds. We aim to address these concerns by employing
zero-shot detection and segmentation methods to evaluate
their health status. For the purpose of this paper, our pro-
posed system will henceforth be referred to as the Localized
Normalized Difference Vegetation Index (LNDVI).

This research seeks to address several key questions related
to plant detection, segmentation, and health classification
using advanced techniques. The questions include the uti-
lization of zero-shot techniques for plant detection and
segmentation, enhancement of synthetic NDVI for accurate
estimates without the use of nIR images, establishment of
an irradiation estimation metric by combining various color
spaces with correlated color temperatures, development of a
Localized NDVI (LNDVI) to move away from data-driven
approaches, and improvement of plant health classification
using the LNDVI approach compared to traditional NDVI
methods without the need for specialized nIR sensors. The
scope of this research includes the following key deliverables
and advancements:

« Utilization of zero-shot techniques for plant detection

and segmentation to enable localisation.

o Enhancement of synthetic NDVI to get accurate NDVI
estimates without utilizing nIR images.

« Establishment of an irradiation estimation metric com-
bining CIE XYZ, HSV, and CIE LAB colour spaces
with correlated colour temperatures to account for image
brightness while normalizing NDVI thresholds.

o Development of LNDVI to move on from data-driven
approaches for plant health identification.

o Significant improvement in plant health classifica-
tion using the LNDVI approach compared to tradi-
tional NDVI methods without utilizing specialised nIR
Sensors.

Il. RELATED WORKS

This section discusses the contemporary work done over the
past decade or so related to the research’s scope. Active
research has been conducted on the application of Image Pro-
cessing Techniques (IPT) and Machine Learning Algorithms
(MLA) to extend the applications of Computer Vision in
plant health detection [42]. Ngugi et al. [7], have provided
a comprehensive review of recent plant disease recognition
research utilizing image processing techniques. Harakan-
nanavar et al. [8] proposed an approach that uses computer
vision techniques like Histogram Equalization to improve
image quality, segmenting the leaf samples using contour
tracing, and different feature extractors such as wavelet
transformations, principal component analysis, etc. These
were then classified using SVM, K-NN, and CNN mod-
els, achieving high accuracy in identifying tomato disorders.
Such shallow classifiers make the captured image go through
processing and segmentation before feature extraction to
eventually classify them. According to reports, deep learn-
ing techniques outperform shallow classifiers trained with
manually extracted features.
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In approaches that include deep learning, researchers focus
on deep neural networks for classification, detection, and
segmentation purposes. After evaluating ten cutting-edge
CNN models [43], it was determined that DenseNet201,
ResNet-101, and Inceptionv3 CNN architectures are the most
appropriate models for desktop computers, whereas Shuf-
fleNet and SqueezeNet are the most appropriate architectures
for mobile and embedded applications. Liu et al. [9] out-
lined the works on disease detection using deep learning
in recent years. Since they are limited to controlled envi-
ronments and specific plant disease images, their results
may not be applicable to different conditions or other plant
diseases. Hence, it is important to note that a high recog-
nition rate in one trial is not universal. A major challenge
in training deep neural network-based systems for plant dis-
ease recognition is the scarcity of exhaustive, well-annotated
datasets that cover a wide range of variations. Currently, the
Plant Village Dataset [10], the Sunflower Dataset [11], and
the Plant Phenotyping Dataset [12] are some of the widely
used datasets. The plant village dataset has 61,486 images
spanning 39 different classes of plant leaves. The sunflower
dataset contains RGB, NIR images and ground truth segmen-
tation of plants/weeds taken using a 4-channel multi-spectral
camera. The Plant Phenotyping dataset has plants of tobacco
or Arabidopsis with ground truth segmentations and further
annotations and metadata.

To overcome the limitations of data availability, transfer
learning is an effective approach. Transfer learning involves
using pre-trained models and adapting them to new tasks,
such as plant disease recognition. This technique leverages
the knowledge learned from large-scale datasets and helps in
training convolutional neural network (CNN) classifiers for
other use cases easily. Chen et al. [13], proposed a novel deep
learning architecture called INC-VGGN to identify plant dis-
ease images. They combined a pre-trained network called
VGGNet with special modules called Inception modules.
This system achieved an accuracy of 91.83% in identify-
ing plant diseases using a public dataset. Even when the
images had complex backgrounds, their approach had an
average accuracy of 92.00% for identifying diseases in rice
plants. In another study, Binnar et al. [14], evaluated four
deep learning models, AlexNet, simple sequential model,
MobileNet, and Inception-v3 to detect disease in leaves
using the Plant Village dataset for training and testing. They
concluded that the MobileNet model worked well with the
dataset, achieving high training and validation accuracy of
99.07% and 97.52%, respectively. Eunice et al. [15], had
concentrated on tweaking the hyperparameters of pre-trained
models, such as DenseNet-121, ResNet-50, VGG-16, and
Inception-v4 and training them on the popular Plant Village
dataset. Their experiments showed that DenseNet-121 was
particularly effective when there was a need to include a new
plant disease in the model. This model had fewer parameters
to train, making it easier to update with new information.
The model achieved an impressive classification accuracy of
99.81% and an F1 score of 99.8%.
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In [16], the performance of the EfficientNet architecture
is compared with other popular deep learning models such
as AlexNet, ResNet50, VGG16 and Inception V3. All the
models were trained using transfer learning on both original
and augmented versions of the Plant Village dataset. The
results were evaluated using a separate test dataset, and it
was found that the BS and B4 models of EfficientNet had
the highest validation scores compared to the other models.
Whereas Gehlot et al. [17], proposed the EffiNet-TS, a model
that not only classifies the plant disease but also a visualiza-
tion of important symptoms by displaying the key features for
categorizing that specific disease. The architecture based on
EfficientNetV2 comprises the EffiNet-Teacher and EffiNet-
Student classifiers and Decoder trained on the Plant Village
dataset. By modifying the architecture of Teacher and student
blocks with EfficientNetV2S and adding a DscDF (Dual skip
connection deconv fusion) block in the decoder network they
were able to solve overfitting concerns seen by ResTS with
an F1 score of 0.989, Accuracy of 0.990 and Validation Loss
of 0.045.

Segmentation of images has also shown improvements
in accuracy for plant disease detection. Sharma et al. [18],
had used segmented data to train the models. By using the
S-CNN model trained on segmented images, they were able
to improve performance by more than twofold. The proposed
system by Haridasan et al. [19], utilised pre-processing and
segmentation techniques along with support vector machine
(SVM) classifiers and CNNs to recognize and classify spe-
cific types of paddy diseases. Their system achieved a high
validation accuracy. While Kaya et al. [20], proposed a
deep-learning solution for plant disease detection by incor-
porating RGB and segmented images. The DenseNet-based
architecture was evaluated on the PlantVillage dataset and
achieved an average accuracy of 98.17%.

Making spectral imaging systems more accessible, afford-
able, and user-friendly, benefits precision agriculture greatly.
Stamford et al. [21] developed a low-cost NDVI imag-
ing system based on Raspberry Pi and compared it to a
costly camera, the Micasense RedEdge. They found that the
low-cost system produced comparable NDVI values, showing
that it’s possible to achieve good results at a fraction of the
cost. There has also been works that have trained machine
learning models on such multispectral image datasets such
as, Puteh et al. [22], who captured images of chili plants
using two types of cameras (IR and No IR) to create their
dataset. They used the NDVI index to extract features and
trained models like Neural Networks, Naive Bayes, and
Logistic Regression to classify the plants. The Neural Net-
work model had the highest accuracy in classifying plant
health. Sahin et al. [23], developed a model to detect weeds
and crops using a U-Net model with a ResNet50 architecture.
They calculated NDVI images from a dataset of multispectral
images and used a bilateral filter to obtain filtered Near-
Infrared (NIR) images. By combining Green, Filtered-NIR,
and NDVI channels as input to the model, they achieved good
results in detecting weeds and crops.
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FIGURE 2. Workflow of the proposed system.

Generating an NDVI (Normalized Difference Vegetation
Index) map typically requires a costly multispectral sen-
sor. However, most unmanned aerial vehicles (UAVs) are
equipped with affordable RGB cameras. To address this issue,
Costa et al. [24] developed a genetic algorithm that calculates
NDVI values from RGB maps from any RGB camera. The
predicted NDVI values matched up to the values measured by
multispectral cameras in different crops. It achieved a Mean
Percentage Error (MPE) of 6.89% and a Mean Absolute Error
(MAE) of 0.052. In [25], Yue et al. proposed a method to
assess chlorophyll content and fractional cover using a Polar
Coordinate Method (PCM) combined with the NDVI and Vis-
ible and Near-Infrared Angle Index (VNAI). This approach
helps understand the differences in vegetation canopy and
is referred to as VNAI-NDVI-space. Other indices include
NDSI (soil salinity index) and MSAVI indices which are
used for faster detection of problems with plant development,
whereas the NDVI and NDRE (indicating chlorophyll activity
in plants) are used at later stages of their development as
suggested by Voitil et al. [26]. They emphasised the impor-
tance of agronomic surveys and yield maps to fully assess
the feasibility of these indices. Plant-machine bio-interfaces
such as Lu et al. ’s research [27] and Wu et al. [28] help us
develop special tools for precision agriculture.

VOLUME 12, 2024



A. Balasundaram et al.: Improved NDVI Estimation Using Grounded Dino and Segment Anything Model

IEEE Access

Text Prompt = "Plant"

Image Preporcessing

- N
,
/ Contrast Brightness R
4 Correction Correction \
’
\
4 \

i
Resize Band Splitter i |

|

! {Temp\ate} [[r, gb+ NIR]] ﬁ""""a"mm"] |

\
\
N

|
GroundingDino SwinB

/
/
9 Array Tensor ’
N Transformation | | Transformation P 4

Segment Anythilng Model (vit_h)

Tensor Image I
Annotete Get
Frame Mask
Raw RGB Image
Sunlight / Irradiation\ Corrected RGB Image
Estimate Detected Plant
Fastie Swglt/eltic
<> ecloap) Calculation
NDVI
Threshold
Correction
Localized Colormap Localized NDVI Generated Mask
P Health
Classification Thrzashold
FIGURE 3. Components of the proposed Localised Normalised Difference Vegetation Index model for each image.
1Il. PROPOSED SYSTEM TABLE 1. Hyperparameter for grounded sam.
The purpose of this research is to develop an improved — —
. . . . . em alue
method'to 1dept1fy diseased pa:m of a plant using synthe?tlc Optimizer P
Normalised Difference Vegetation Index (NDVI) calculation
that enables the accurate categorization of individual plant Activation GELU
health status based on RGB images acquired by any cam-
. . . g 4 . y any Text Encoders (Dino) DINO, SAM
era under varying lighting conditions. Figure 2 shows the
workflow of the proposed research. It uses the Plant Phe- Image Embeddings 256 X 64 X 64
notyping dataset [12] to get NDVI values for both normal 1 X 1 Comvoluti 256 Channel
and segmented methods. Then, threshold corrections based onvetution anness
on the brightness of the image from the irradiation estimate 3 X 3 Convolution 256 Channels

are used to sort the values into healthy and unhealthy groups.
The outputs of this procedure are then subjected to stringent
comparisons to ensure the validity and effectiveness of the
proposed system.

Experiments using LNDVI (Localised Normalised Dif-
ference Vegetation Index) will utilise two types of image
datasets in this research, namely, Plant and Tray image
datasets, where Plant dataset contains images of single plants
and tray dataset contains multiple plants. These images are
subjected to Irradiation (sunlight) estimation, plant detection,
and segmentation. The images are then contrasted, and the
specific regions containing plants are masked out for NDVI
calculation as shown in Figure 3.
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Feature Dimension 2048 Layers

Hidden Feature Dimension 256 Layers
Encoders 6 Layers
Decoders 6 Layers

The proposed system consists of four blocks.

o Plant detection and segmentation
o NDVI estimation

« Brightness estimation

« Health Classification
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A. PLANT DETECTION AND SEGMENTATION

To achieve zero-shot detection and segmentation, we make
use of two SOTA technologies, namely the Grounded Dino
and Segment Anything Model. The architecture of this model
is shown in Figure 4 while using the hyperparameters of the
model are mentioned in Table 1.

1) GROUNDED DINO

Object detection is an elementary task in computer
vision. Traditional methods typically rely on classical
convolution-based object detection that generates anchors
(reference boxes) and applies non-maximum suppression to
select the best matches. In contrast, Transformer-based object
detection models, such as DETR (DEtection TRansformer)
[29], leverage the power of Transformers to understand the
contextual relationships between different image regions.
In continuation of DETR, Zhang et al. and others propose
DINO (DETR with Improved deNoising anchor box) [30].
DINO is a variant of DETR consisting of various components,
such as a backbone network, a Transformer encoder and
decoder, and prediction heads. DINO’s impressive scalability
can be traced to the contrastive denoising training to pre-
vent duplicate outputs, the dynamic anchor box formulation
of queries, and the look-forward twice scheme to cor-
rect the updated parameters with gradients from successive
layers.

The concept of zero-shot object detection revolves
around using text prompts to identify previously unseen
objects. These ‘‘open-set detectors” are developed by
extending pre-existing closed-set detectors with language
information. Since language models are also based on
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Transformers, using Transformer-based detectors, such as
DINO is more convenient. Therefore, to achieve zero-shot
detection, Liu et al. [1], propose Grounded DINO, which
combines DINO with grounded pre-training.

To detect plants in an image, the image and the prompt
“Plant” are provided as inputs to the model. Both inputs are
subjected to feature extraction before being forwarded to the
feature enhancer module for cross-modality feature fusion.
A language-guided query selection selects the appropriate
cross-modality queries from the image features, which are
then fed to a decoder, which extracts the relevant features and
updates itself. The output queries of the final decoder layer
help to predict object boxes and extract the respective phrases,
as shown in Figure 5. This deep fusion strategy is what
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FIGURE 6. Plant segmentation using SAM.

leads to Grounding Dino’s impressive zero-shot detection.
However, Grounding DINO is not applicable to segmentation
tasks, focusing primarily on object detection.

2) SEGMENT ANYTHING MODEL
Influenced by the advancements in zero-shot and few-
shot learning techniques that utilise “prompting” methods,
Kirillov et al. [2], introduce a promptable foundation model
called SAM (Segment Anything Model) that is pre-trained for
image segmentation. The model generates accurate segmen-
tation masks based on various text prompts given, as shown
in Figure 6 (For prompt “Plant”).

SAM consists of three key elements: an image encoder,
a flexible prompt encoder, and a rapid mask decoder. The
Image encoder uses a pre-trained Vision Transformer (ViT)
trained by MAE [31]. The prompt encoder utilizes an easily
accessible text encoder from CLIP [32]. The mask decoder
effectively maps the image embedding, the prompt embed-
dings, and an output token to generate the desired mask.
In addition, a modified Transformer decoder block and a
dynamic mask prediction head are incorporated into the
design. The design of the model prioritizes efficiency by
employing a modified Transformer decoder block and a
dynamic mask prediction head. In addition, the model’s run-
time performance is exceptional, with the prompt encoder
and mask decoder running locally on an Intel i7 CPU in
approximately 50 milliseconds, enabling real-time interactive
prompting of the SAM model.

B. NDVI ESTIMATION

A vegetation index (VI) is a spectral imaging technique that
combines different bands of the electromagnetic spectrum to
analyze and improve vegetation properties. For photosynthe-
sis, green plants absorb photosynthetically active radiation
(PAR) from the sun. This mechanism causes chlorophyll to
absorb visible light (from 400 to 700 nm) with great intensity.
However, they emit the same energy because the high photon
energy at wavelengths beyond 700 nanometers makes it diffi-
cult to synthesize organic molecules, causing them to strongly
reflect near-infrared light (from 700 to 1100 nm). This inverse
relationship between red and near-infrared reflectance in
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FIGURE 7. NDVI estimate of an image from Tray dataset.

healthy green vegetation is the foundation for numerous veg-
etation indices, allowing it to be used as a measure of a plant’s
photosynthetic capacity [33].

Normalized Difference Vegetation Index (NDVI) is a
commonly used index that is computed by dividing the dif-
ference between near-infrared (NIR) and red reflectance by
their sum. Applying a convolution operation with a kernel,
where image will be denoted as I, I;j represent pixel
at location (i, j) within the image matrix , Ig.qs and Iy
denoting the Red and NIR channels of image respectively,
we get (1).

INIR,'J‘ - IRed,-,j

NDVI;; = (1)

INIR; j + IRed; ;
Rouse et al. [34] demonstrated a strong correlation between
NDVI and grassland vegetation data, indicating its associa-
tion with photosynthetic capacity and energy absorption in
plant canopies. Gitelson et al. [35] proposed another index
called VIgreen (Synthetic NDVI), that focuses on the con-
trast between green and red reflectance for monitoring wheat
canopies. Applying a convolution operation over the Green
channel instead of NIR in (1) gives us (2).
IGreen,-qj - IRed,-J-

@)

Vigreen; j IGreem,j T IRedi,j

In addition to these indices, other combinations of
reflectance values in the blue, red, green, and red edge
bands are used to estimate vegetation fraction in different
crops. These indices have shown greater validity in certain
crops compared to the commonly used red/NIR indices.
They leverage the subtle differences among the reflectance
values in these bands to estimate vegetation health. By cal-
culating these vegetation indices from the reflectance values
of the corresponding bands in an RGB image, we assess
the health and condition of plants. These indices provide
valuable insights into the photosynthetic activity and energy
absorption capabilities of vegetation, allowing for effective
monitoring and analysis of vegetation health. Figure 7 and
Figure 8 show the brightened and color mapped NDVT esti-
mate respectively of the Image.
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FIGURE 8. Colour mapped NDVI of an image from Tray dataset.

C. BRIGHTNESS ESTIMATION

The intensity of sunlight can vary throughout the day, and this
variation impacts the reflectance properties of leaves, leading
to fluctuations in the NDVI. To address this, we propose
specific techniques to estimate the perceived brightness of an
image. In color spaces like CIE XYZ (CIE 1931 color space),
CIE LAB, and HSV (Hue, Saturation, Value), we can repre-
sent the full gamut of colors perceived by humans. In XYZ
space, Y represents luminance, Z is similar to blue, and X
is a mix of the three primary colors, red, green, and blue.
While in the LAB L represents perceptual lightness and A,
and B for the four primary colors red, green, blue and yellow.
The L component captures the human perception of lightness,
with 0 indicating black and 100 indicating white. On the other
hand, the HSV color space describes colors based on their
hue, saturation, and value (brightness) by arranging hues in a
circular pattern and ranging from darker to lighter tones from
bottom to top.

To estimate whether an image is predominantly dark or
light, we compute the Normalized arithmetic means of the
Y channel from XYZ space, the L channel from LAB space,
and the V channel (brightness) from HSV space. Sunlight has
a spectral distribution similar to that of a black-body radia-
tor. Hence it has a correlated color temperature of 6500 K
corresponding to the average daylight known as D65 [36].
This D65 illuminant represents the average midday light in
Western and Northern Europe. As per CIE 1931 color space,
the coordinates for this average daylight are x =0.31272 and
y =0.32903 [37]. The point on the Planckian locus closest
to the white point of the light source is calculated using
MacAdam’s (u,v) diagram [38], where u and v are calculated
as shown below in (3) and (4).

4x 3)
U= ————
12y —2x+3
6
N @
12y —2x+3

The chromaticity coordinates (x, y) are calculated from the
XYZ color space using (5) and (6).

X

-2 5
*TXyv+z ©)
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By comparing this white point of an image to that of
the daylight illuminant, we can estimate its brightness level.
Let the Image be denoted by I and its LAB, XYZ, HSV
representations as Ir4p, Ixyz, Igsy respectively. The channels
L, Y, V channels can be represented as /1. , Iy, I'y respectively.
If there are N number of pixels in the image, we get the
normalized mean of L, Y, V in (7).

1 N
ML Y, V)= i Iy 1) ™

After getting the normalized mean for L, Y and V i.e.,
My, My and My respectively, these values are compared to a
threshold of 0.7. The result of that comparison is assigned to a
respective Boolean flag. For UV, this flag is set based on D65
chromaticity coordinates represented in (8). Conjunction of
these flags determines if the image is bright or not as depicted
in (9).

y

flagyy = (u,v) =~ (0.31272, 0.32903) (8)
isBright = flagy, A flagy A flagy A flaguy )

D. HEALTH CLASSIFICATION

The values for NDVI range from —1 to 1. Negative values
indicate water and non-vegetated objects, while vegetation
falls between O to 1. Bare soil typically has values around 0.1.
Plants have positive values ranging from 0.11 to 0.72 [39],
the peak values for plants being 0.8 to 0.9 [21]. Considering
this, NDVI values above 0.66 correspond to healthy plants,
and values below 0.33 are classified as unhealthy. In dimly lit
images, these values are adjusted to 0.45 and 0.15, accounting
for the reduced brightness of green pixels. These adjustments
help accommodate the varying illumination conditions and
ensure an accurate interpretation of the NDVI values in the
image.

IV. EXPERIMENTAL RESULTS

Our study utilizes a plant phenotyping dataset [12] consisting
of 2 sets of images. The first set contains individual plant
images [Plant] which has 165 RGB images captured using
both Canon and RPi cameras along with a mask for plants.
The second one contains Multiple plants in 1 image [Tray]
which has 27 RGB images. Running the model on each image
provided NDVI image, Mean NDVI value, brightness status,
health status, Color Mapped NDVI image, Boxed plant detec-
tion image, Segmented image, LNDVI image, Color Mapped
LNDVI image, mean LNDVI, brightness status and health
status of each plant for every image in datasets. We evaluated
the performance of each sub models through experiments
performed in a python interface hosted on a Google Colab
notebook powered by an L4 GPU [40]. These results are
presented as follows:

A. OBJECT DETECTION
The results of our experiments demonstrate the effective-
ness of the proposed methodology. In the analysis of both
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FIGURE 9. Comparison of values returned by Grounded Dino with the
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FIGURE 10. The percentage of area segmented by SAM matching the
original image segments provided in Tray dataset with average mean
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FIGURE 11. The percentage of area segmented by SAM matching the
original image segments provided in Plant dataset with average mean
accuracy of — 97.031%.

Segmented NDVI Comparison [Plant] - Canon vs RPI

FIGURE 12. The LNDVI values of each plant in the Plant dataset for both
Canon and RPi images are represented in different colors.

the Canon and RPi camera images for both the subsets
showing an accuracy of 99.989% [Tray_canon], 99.992%
[Tray_RPI], 99.994% [Plant_canon] and 100% [Plant_rpi]
giving an average accuracy of 99.994% for plant detection
using the GroundingDino python library as shown in Figure 9
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Segmented NDVI of Tray [Canon]
ge Name.

FIGURE 13. LNDVI pf each plant in the Tray dataset images taken with
Canon camera. Circles in the same segment having same color represent
planta from the same image.

(plotted using matplotlib). This accuracy was calculated by
dividing the number of detected plants by the original number
of plants.

B. PLANT SEGMENTATION

To evaluate the segmentation accuracy, we compared the
image segments of plants generated by SAM (using segment
anything python library) with the ground truth masks pro-
vided in the dataset [12] by using Intersection over Union
(IoU) metric also known as Jaccard Index. The results
revealed an impressive accuracy of up to 97.18%, with a
lower limit of 94.7% for Tray and up to 100% with a
lower limit of 84.89% for the Plant dataset, as shown in
Figure 10 and 11 respectively. This suggests that SAM is
capable of accurately delineating the boundaries of individ-
ual plants, thereby enabling precise analysis of plant-related
characteristics.

These findings demonstrate the potential of combining
SAM and Grounding Dino for accurate plant phenotyping
and vegetation analysis. The integration of advanced com-
puter vision techniques, such as SAM, allows for efficient
and automated plant segmentation, saving significant time
and effort in manual annotation.

C. COMPARISON BETWEEN SYNTHETIC NDVI AND LNDVI
VALUES

To further investigate the performance of our approach,
we compared the NDVI values of the segmented plants with
the normal NDVI values of the entire image. The result-
ing charts, as seen in Figure 12, 13 and 14 (plotted in
tableau), provide valuable insights into the vegetation health
of the individual plants where each dot represents a plant.
By analyzing the NDVI values, researchers can gain a deeper
understanding of plant growth patterns, stress levels, and
overall health.

When coupling LNDVI values with original values, a sig-
nificant difference can be observed in Figure 15 and 16.
This difference is subjected to various factors, such as the
small size of plants, the lower density of vegetation, and the
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FIGURE 14. LNDVI pf each plant in the Tray dataset images taken with RPi
camera. Circles in the same segment having the same color represent
plants from the same image.
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FIGURE 15. Synthetic NDVI values of RGB images from Plant dataset.
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FIGURE 16. Synthetic NDVI values of RGB images from Tray dataset.

lighting conditions in the images. The variation of these val-
ues depending on the camera is also observed to be reduced.

D. HEALTH CLASSIFICATION

It is worth noting that the high accuracy achieved in our
experiments is attributed to the quality of the dataset and the
robustness of the applied methodologies. However, certain
challenges and limitations may arise in real-world scenarios,
such as varying lighting conditions, occlusions, or com-
plex background elements. To account for lighting-based
issues, inferences were extracted from LNDVI values using
predefined threshold values [21] and corrected threshold
values after checking for image brightness, as shown in
Figure 17, 18, 19 and 20.
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FIGURE 17. Results of plant health classification by using synthetic NDVI
on Tray images.
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FIGURE 18. Results of plant health classification by using synthetic NDVI
on individual Plant images
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V. EXPERIMENTAL RESULTS DISCUSSION

This discussion section aims to interpret the experimen-
tal results and provide insights into the metrics used and
their implications for the proposed system. In this research,
we developed the LNDVI (Localized Normalized Difference
Vegetation Index) method, which leverages advanced com-
puter vision techniques for plant detection and segmentation
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FIGURE 20. Results of plant health classification by using NDVI on
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TABLE 2. Average accuracies of different models for health classification.

Average
Model Dataset Accuracy in
percentage
INC-VGGN (VGGNet + Public Dataset 91.83

Inception modules) [13]

AlexNet, Simple Sequential
Model, MobileNet,
Inception-v3 [14]

Plant Village Dataset ~ 97.52

DenseNet-121, ResNet-50,
VGG-16, Inception-v4 [15]

Plant Village Dataset ~ 99.81

EffiNet-TS (EffiNet-
Teacher, EffiNet-Student,
Decoder) [17]

Plant Village Dataset ~ 99.0

Normalized Difference
Vegetation Index (NDVI)

Plant Phenotyping 45
Dataset

Localized Normalized
Difference Vegetation
Index (LNDVI)

Plant Phenotyping 99.7
Dataset

and combines it with brightness estimation to improve NDVI
calculations. LDNVI was successful in classifying the health
of individual plants, which NDVI has been observed to fail
in. The results are then used for the health classification of
individual plants based on their NDVI values. Further ground
truth in the plant phenotyping dataset is required to account
for the accuracy of LNDVIL

A. OBJECT DETECTION AND SEGMENTATION

The experimental results show that by combining Grounded
DINO and SAM we can achieve remarkable accuracy in
object detection and segmentation. Grounded DINO detects
plants in both Canon and RPi camera images, yielding an
average accuracy of 99.994%. SAM, on the other hand,
achieves impressive segmentation accuracy, accurately trac-
ing the boundaries of individual plants with a mean accuracy
of up to 97.18% for Tray images and up to 100% for Plant
images on Jaccard Index. This demonstrates the robustness
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of the proposed system in accurately identifying and seg-
menting plants, enabling precise analysis of plant-related
characteristics.

B. NDVI AND LNDVI ESTIMATION

The NDVI is a widely used vegetation index that quantifies
vegetation health. By comparing the NDVI values of the
entire images with the calculated values using the proposed
LNDVI method, we gain valuable insights into the health and
growth patterns of individual plants. The LNDVI values help
in mitigating issues related to varying lighting conditions.
The analysis of LNDVI values reveals a significant difference
between the values obtained using the proposed method and
the traditional NDVI values calculated for the entire image.
This difference is attributed to factors like vegetation den-
sity, and varying lighting conditions, which are effectively
addressed by the LNDVI approach.

C. HEALTH CLASSIFICATION

Based on the NDVI and LNDVI values obtained, a health
classification is performed for individual plants. The thresh-
old values used for health classification are adjusted based
on the brightness of the image, ensuring an accurate interpre-
tation of plant health under varying lighting conditions. The
health classification results indicate that the proposed LNDVI
method provides more accurate results (an average accuracy
of 99.7%) and robust assessment of plant health compared to
traditional NDVI calculations (average accuracy of 45%) at a
plant scale as shown in Table 2 alongside a comparison with
supervised learning models. The LNDVI method is observed
to reduce the variation in health classification results across
different cameras, enhancing the generalizability of the
proposed system.

VI. CONCLUSION

This research work successfully demonstrates the application
of SAM and Grounding Dino in accurately detecting and
segmenting individual plants from RGB images. The high
average accuracy of 99.994% achieved in plant detection and
average IoU of 96.457% achieved in segmentation, coupled
with the insightful analysis of NDVI values, displays the
capability of this methodology in classifying plant health
by normalizing the NDVI health threshold based on image
brightness. This has extended the application of NDVI from
assessing vegetation density at remote sensing levels to a
more grounded and generalized health metric for individual
green plants where an average shift of 99.25% was observed
due to localization on a plant level. This advancement elim-
inates the need for specialized near-infrared sensors, thereby
increasing the efficiency of synthetic NDVI in precision
agriculture and narrowing the gap between expensive multi-
spectral cameras, such as the Parrot Sequoia and MicaSense
Red Edge, and more accessible RGB cameras, including
those in smartphones. The findings of this study contribute to
the advancement of computer vision techniques in the field
of agriculture and hold promise for improving agricultural
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practices and environmental monitoring. LNDVI can set up
the basis for modern-day plant health classification systems
in precision farming to accurately identify affected plants
among many. This approach will provide an in-depth analysis
of a crop’s lifecycle, which researchers can utilize to identify
patterns in factors affecting plant growth and engineer ways to
increase crop productivity to keep up with the increasing food
demands of the ever-growing population of the world. Future
research can focus on extending the proposed system to han-
dle more challenging scenarios, such as partial occlusions and
dense vegetation. Improvements can be made to enhance the
robustness of the health classification process under varying
illumination conditions and address potential issues related to
noise and image artefacts.

ACKNOWLEDGMENT

The authors would like to thank VIT Chennai man-
agement for their support during this research work.
Agriculture technology-related suggestions were given by
Dr. Narender Kumar Sankhyan (HoD, Soil Science Depart-
ment) and Ashish Dhiman (Home Sciences Department) of
CSKHPKYV Palampur, Himachal Pradesh.

REFERENCES

[1] S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Li, J. Yang, H. Su,
J. Zhu, and L. Zhang, “Grounding DINO: Marrying DINO with grounded
pre-training for open-set object detection,” 2023, arXiv:2303.05499.

[2] A.Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao,
S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dolldr, and R. Girshick, “Segment
anything,” 2023, arXiv:2304.02643.

[3] United Nations. (2022). Population Division. Licensed Under Creative
Commons License CC BY 3.0 IGO. United Nations, DESA Popula-
tion Division, World Population Prospects 2022. [Online]. Available:
https://population.un.org/wpp/Graphs/DemographicProfiles/Line/900

[4] A.D. Tripathi, R. Mishra, K. K. Maurya, R. B. Singh, and D. W. Wilson,
“Estimates for world population and global food availability for global
health,” in The Role of Functional Food Security in Global Health. USA:
Academic, 2019, pp. 324, doi: 10.1016/B978-0-12-813148-0.00001-3.

[5]1 Global Food Securities Index 2022. Accessed: May 31, 2023. [Online].
Availabile: https://impact.economist.com/sustainability/project/food-
security-index/

[6] Food and Agriculture Organization of the United Nations. (2018).
FAOSTAT Pesticides and Insecticides Use Dataset. [Online]. Available:
http://www.fao.org/faostat/en/#data/RP

[71 L. C. Ngugi, M. Abelwahab, and M. Abo-Zahhad, “Recent advances in
image processing techniques for automated leaf pest and disease recogni-
tion—areview,” Inf. Process. Agricult., vol. 8, no. 1, pp. 27-51, Mar. 2021,
doi: 10.1016/j.inpa.2020.04.004.

[8] S. S. Harakannanavar, J. M. Rudagi, V. I. Puranikmath, A. Siddiqua, and
R. Pramodhini, “Plant leaf disease detection using computer vision and
machine learning algorithms,” Global Transitions Proc., vol. 3, no. 1,
pp. 305-310, Jun. 2022, doi: 10.1016/j.gltp.2022.03.016.

[9] J. Liu and X. Wang, “Plant diseases and pests detection based on deep
learning: A review,” Plant Methods, vol. 17, no. 1, p. 22, Dec. 2021, doi:
10.1186/s13007-021-00722-9.

[10] D. P. Hughes and M. Salathe, “An open access repository of images on
plant health to enable the development of mobile disease diagnostics,”
2015, arXiv:1511.08060.

[11] M. Fawakherji, C. Potena, A. Pretto, D. D. Bloisi, and D. Nardi,
“Multi-spectral image synthesis for crop/weed segmentation in precision
farming,” Robot. Auto. Syst., vol. 146, Dec. 2021, Art. no. 103861, doi:
10.1016/j.robot.2021.103861.

[12] M. Minervini, A. Fischbach, H. Scharr, and S. A. Tsaftaris, “Finely-
grained annotated datasets for image-based plant phenotyping,”
Pattern  Recognit. Lett., vol. 81, pp.80-89, Oct. 2016, doi:
10.1016/j.patrec.2015.10.013.

75918

(13]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

(29]

(30]

(31]

J. Chen, J. Chen, D. Zhang, Y. Sun, and Y. A. Nanehkaran, “Using
deep transfer learning for image-based plant disease identification,”
Comput. Electron. Agricult., vol. 173, Jun. 2020, Art. no. 105393, doi:
10.1016/j.compag.2020.105393.

V. Binnar and S. Sharma, “‘Plant leaf diseases detection using deep learning
algorithms,” in Machine Learning, Image Processing, Network Security
and Data Sciences (Lecture Notes in Electrical Engineering), vol. 946,
R. Doriya, B. Soni, A. Shukla, and X. Z. Gao, Eds. Singapore: Springer,
2023, pp. 217-228, doi: 10.1007/978-981-19-5868-7_17.

J. Andrew, J. Eunice, D. E. Popescu, M. K. Chowdary, and J. Hemanth,
“Deep learning-based leaf disease detection in crops using images for
agricultural applications,” Agronomy, vol. 12, no. 10, p. 2395, Oct. 2022,
doi: 10.3390/agronomy12102395.

U. Atila, M. Ucar, K. Akyol, and E. Ucar, “Plant leaf disease classification
using EfficientNet deep learning model,” Ecological Informat., vol. 61,
Mar. 2021, Art. no. 101182, doi: 10.1016/j.ecoinf.2020.101182.

M. Gehlot and G. C. Gandhi, ““EffiNet-TS’: A deep interpretable archi-
tecture using EfficientNet for plant disease detection and visualization,”
J. Plant Diseases Protection, vol. 130, no. 2, pp. 413-430, Apr. 2023, doi:
10.1007/541348-023-00707-x.

P. Sharma, Y. P. S. Berwal, and W. Ghai, “‘Performance analysis of deep
learning CNN models for disease detection in plants using image segmen-
tation,” Inf. Process. Agricult., vol. 7, no. 4, pp. 566-574, Dec. 2020, doi:
10.1016/j.inpa.2019.11.001.

A. Haridasan, J. Thomas, and E. D. Raj, “Deep learning system for paddy
plant disease detection and classification,” Environ. Monit. Assessment,
vol. 195, Jan. 2023, Art. no. 120, doi: 10.1007/s10661-022-10656-x.

Y. Kaya and E. Giirsoy, ‘“A novel multi-head CNN design to identify plant
diseases using the fusion of RGB images,” Ecological Informat., vol. 75,
Jul. 2023, Art. no. 101998, doi: 10.1016/j.ecoinf.2023.101998.

J. D. Stamford, S. Vialet-Chabrand, I. Cameron, and T. Lawson, “Devel-
opment of an accurate low cost NDVI imaging system for assessing
plant health,” Plant Methods, vol. 19, no. 1, Jan. 2023, Art. no. 9, doi:
10.1186/513007-023-00981-8.

S. Puteh, N. FE. M. Rodzali, A. P. P. A. Majeed, I. M. Khairuddin,
Z. Z. Tbrahim, and M. A. M. Razman, “Classification of Capsicum

frutescens health condition through features extraction from NDVI values

using image processing,” in RiTA 2020 (Lecture Notes in Mechanical
Engineering). Singapore: Springer, 2021, pp. 414-423, doi: 10.1007/978-
981-16-4803-8_41.

H. M. Sahin, T. Miftahushudur, B. Grieve, and H. Yin, “Segmentation of
weeds and crops using multispectral imaging and CRF-enhanced U-Net,”
Comput. Electron. Agricult., vol. 211, Aug. 2023, Art. no. 107956, doi:
10.1016/j.compag.2023.107956.

L. Costa, L. Nunes, and Y. Ampatzidis, “A new visible band
index (vNDVI) for estimating NDVI values on RGB images utilizing
genetic algorithms,” Comput. Electron. Agricult., vol. 172, May 2020,
Art. no. 105334, doi: 10.1016/j.compag.2020.105334.

J. Yue, J. Tian, W. Philpot, Q. Tian, H. Feng, and Y. Fu, “VNAI-NDVI-
space and polar coordinate method for assessing crop leaf chlorophyll
content and fractional cover,” Comput. Electron. Agricult., vol. 207,
Apr. 2023, Art. no. 107758, doi: 10.1016/j.compag.2023.107758.

A. Voitik, V. Kravchenko, O. Pushka, T. Kutkovetska, T. Shchur, and
S. Kocira, “Comparison of NDVI, NDRE, MSAVI and NDSI indices for
early diagnosis of crop problems,” Agricult. Eng.,vol. 27, no. 1, pp. 47-57,
Jan. 2023, doi: 10.2478/agriceng-2023-0004.

Y. Lu, K. Xu, L. Zhang, M. Deguchi, H. Shishido, T. Arie, R. Pan,
A. Hayashi, L. Shen, S. Akita, and K. Takei, “Multimodal plant healthcare
flexible sensor system,” ACS Nano, vol. 14, no. 9, pp. 10966-10975,
Sep. 2020, doi: 10.1021/acsnano.0c03757.

H. Wu, R. NiBler, V. Morris, N. Herrmann, P. Hu, S.-J. Jeon, S. Kruss,
and J. P. Giraldo, ““Monitoring plant health with near-infrared fluorescent
H,02 nanosensors,” Nano Lett., vol. 20, no. 4, pp. 2432-2442, Apr. 2020,
doi: 10.1021/acs.nanolett.9b05159.

N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” 2020,
2005.12872.

H. Zhang, F. Li, S. Liu, L. Zhang, H. Su, J. Zhu, L. M. Ni, and H.-Y. Shum,
“DINO: DETR with improved DeNoising anchor boxes for end-to-end
object detection,” 2022, arXiv:2203.03605.

K. He, X. Chen, S. Xie, Y. Li, P. Doll4r, and R. Girshick, ‘“Masked
autoencoders are scalable vision learners,” 2021, arXiv:2111.06377.

VOLUME 12, 2024


http://dx.doi.org/10.1016/B978-0-12-813148-0.00001-3
http://dx.doi.org/10.1016/j.inpa.2020.04.004
http://dx.doi.org/10.1016/j.gltp.2022.03.016
http://dx.doi.org/10.1186/s13007-021-00722-9
http://dx.doi.org/10.1016/j.robot.2021.103861
http://dx.doi.org/10.1016/j.patrec.2015.10.013
http://dx.doi.org/10.1016/j.compag.2020.105393
http://dx.doi.org/10.1007/978-981-19-5868-7_17
http://dx.doi.org/10.3390/agronomy12102395
http://dx.doi.org/10.1016/j.ecoinf.2020.101182
http://dx.doi.org/10.1007/s41348-023-00707-x
http://dx.doi.org/10.1016/j.inpa.2019.11.001
http://dx.doi.org/10.1007/s10661-022-10656-x
http://dx.doi.org/10.1016/j.ecoinf.2023.101998
http://dx.doi.org/10.1186/s13007-023-00981-8
http://dx.doi.org/10.1007/978-981-16-4803-8_41
http://dx.doi.org/10.1007/978-981-16-4803-8_41
http://dx.doi.org/10.1016/j.compag.2023.107956
http://dx.doi.org/10.1016/j.compag.2020.105334
http://dx.doi.org/10.1016/j.compag.2023.107758
http://dx.doi.org/10.2478/agriceng-2023-0004
http://dx.doi.org/10.1021/acsnano.0c03757
http://dx.doi.org/10.1021/acs.nanolett.9b05159

A. Balasundaram et al.: Improved NDVI Estimation Using Grounded Dino and Segment Anything Model

IEEE Access

[32] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever,
“Learning transferable visual models from natural language supervision,”
2021, arXiv:2103.00020.

[33] P. J. Sellers, “Canopy reflectance, photosynthesis, and transpiration, II.
The role of biophysics in the linearity of their interdependence,” Remote
Sens. Environ., vol. 21, no. 2, pp. 143-183, Mar. 1987, doi: 10.1016/0034-
4257(87)90051-4.

[34] J. W. Rouse Jr, R. H. Haas, J. A. Schell, and D. W. Deering.
(1973). Monitoring the Vernal Advancement and Retrogradation (green
Wave Effect) of Natural Vegetation. [Online]. Available: https://ntrs.
nasa.gov/api/citations/19750020419/downloads/19750020419.pdf

[35] A. A. Gitelson, Y. J. Kaufman, and D. Rundquist, “Novel algorithms for
remote estimation of vegetation fraction,” Remote Sens. Environ., vol. 80,
no. 1, pp. 76-87, 2002, doi: 10.1016/S0034-4257.

[36] N. Ohta and A. R. Robertson, “CIE standard colourimetric system,” in
Colorimetry: Fundamentals and Applications. USA: Wiley, 2005, doi:
10.1002/0470094745.ch3.

[37]1 J. Schanda, ““3 CIE colourimetry,” in Colorimetry: Understanding the CIE
System, J. Schanda, Ed. Hoboken, NJ, USA: Wiley, 2007, p. 74.

[38] K. L. Kelly, “Lines of constant correlated color temperature based on
MacAdam’s (u,v) uniform chromaticity transformation of the CIE dia-
gram,” J. Opt. Soc. Amer.,, vol. 53, no. 8, p.999, Aug. 1963, doi:
10.1364/josa.53.000999.

[39] A. K. Khaple, G. M. Devagiri, N. Veerabhadraswamy, S. Babu, and
S. B. Mishra, “Vegetation biomass and carbon stock assessment using
geospatial approach,” in Forest Resources Resilience and Conflicts. The
Netherlands: Elsevier, 2021, pp. 77-91, doi: 10.1016/B978-0-12-822931-
6.00006-X.

[40] LNDVI. Accessed: May 31, 2023. [Online]. Availabile: https://github.com/
codex-exe/LNDVI

[41] FAOSTAT. Accessed: May 31, 2023. [Online]. Availabile: https://www.fao.
org/faostat/en/#data/RP/visualize

[42] S.S. Chouhan, U. P. Singh, and S. Jain, “Applications of computer vision
in plant pathology: A survey,” Arch. Comput. Methods Eng., vol. 27, no. 2,
pp. 611-632, Apr. 2020.

[43] Y. A. Nanehkaran, D. Zhang, J. Chen, Y. Tian, and N. Al-Nabhan, “Recog-
nition of plant leaf diseases based on computer vision,” J. Ambient Intell.
Humanized Comput., vol. 2020, pp. 1-18, Sep. 2020.

ANANTHAKRISHNAN BALASUNDARAM
(Member, IEEE) received the master’s degree in
computer science and engineering from B. S.
Abdur Rahman University, Chennai, India, and the
Doctor of Philosophy (Ph.D.) degree in computer
science and engineering from Anna University,
India. He is currently an Associate Professor with
the School of Computer Science and Engineering
and also associated with the Research Center for
Cyber Physical Systems, Vellore Institute of Tech-
nology (VIT)—Chennai Campus. He has an overall experience of 14 years of
which he has over nine years of industrial experience working across MNCs
like Cognizant Technology Solutions (CTS), Tata Consultancy Services
(TCS), and iGATE Global Solutions and five years of academic experience.
His research interests include deep neural networks, computer vision, video
analytics, image and video processing, artificial intelligence, data ware-
housing, and data mining. His current research interests include healthcare
intelligence, medical image analysis, and smart agriculture. He has received
five best paper awards so far across international conferences. He has also
received the Star Performer Award at Cognizant Technology Solutions and
Quality and Delivery Excellence Award at iGATE Global Solutions. He is
also an active reviewer for reputed international SCIE journals of Elsevier,
IEEE, and Springer. He has also served as a guest editor for special issues in
a couple of SCI journals.

VOLUME 12, 2024

ALABHYA SHARMA was born in Himachal
Pradesh, India, in 2003. He is currently pursuing
the Bachelor of Technology degree in computer
science and engineering with specialization in arti-
ficial international and robotics with Vellore Insti-
tute of Technology (VIT), Chennai. In May 2023,
he did a research internship from the Center for
Cyber Physical Systems, VIT Chennai, wherein
his research interests include precision agriculture,
computer vision, artificial intelligence, robotics
perception, deep learning, and reinforcement learning.

SWAATHY KUMARAVELAN is currently pur-
suing the Graduate degree with Vellore Institute
of Technology, Chennai. Her research interests
include cloud technology, software development,
and artificial intelligence. She is passionate about
solving real world problems and building prod-
ucts. Outside academics and technology, she is
constantly striving to be a better classical dancer
(Bharatanatyam).

AYESHA SHAIK (Member, IEEE) received the
Doctor of Philosophy (Ph.D.) degree from IIITDM
Kanchipuram. She is currently a Senior Assistant
Professor with the School of Computer Science
and Engineering and also associated with the
Research Center for Cyber Physical Systems,
Vellore Institute of Technology (VIT)—Chennai
Campus. Her research interests include image pro-
cessing, digital image processing, watermarking,
and deep learning.

MUTHU SUBASH KAVITHA received the Ph.D.
degree in information engineering from Hiroshima
University, Japan, in 2012. Since then, she has held
various positions in academia. Since 2012, she has
been a Postdoctoral Fellow with Seoul National
University. Following that, she was a Research
Professor with Kyungpook National University,
South Korea, until 2018. She was honored as a
JSPS International Research Fellow and held the
position of a specially appointed Assistant Pro-
fessor with the Graduate School of Advanced Science and Engineering,
Hiroshima University, until 2021. Currently, she is an Assistant Professor
with the School of Information and Data Sciences, Nagasaki University. Her
research interests include image processing algorithms for image pattern
analysis, machine learning, artificial intelligence, pattern recognition, and
deep learning techniques.

75919


http://dx.doi.org/10.1016/0034-4257(87)90051-4
http://dx.doi.org/10.1016/0034-4257(87)90051-4
http://dx.doi.org/10.1016/S0034-4257
http://dx.doi.org/10.1002/0470094745.ch3
http://dx.doi.org/10.1364/josa.53.000999
http://dx.doi.org/10.1016/B978-0-12-822931-6.00006-X
http://dx.doi.org/10.1016/B978-0-12-822931-6.00006-X

