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ABSTRACT Anomaly Detection (AD) in Pedestrian Walkways (PWs) is critical to urban security and
safety systems. It is widely used to detect abnormal or unusual behaviours, situations, or events in areas
dedicated to pedestrian traffic, namely crosswalks, sidewalks, or pedestrian bridges. The main objective is to
improve efficiency, safety, and security in the urban environment by identifying deviations and monitoring
pedestrian activities from established norms. This kind of AD typically includes surveillance cameras,
sensors, and advanced software algorithms. Using advanced machine learning (ML) and computer vision
(CV) approaches, this technique continuously monitors the pedestrian area to detect potential threats and
irregularities. Deep Learning Assisted AD in Pedestrian Walkways presents a novel and very efficient
method to enhance security and safety in urban environments. Therefore, this study designs an Intelligent
Multi-Group Marine Predator Algorithm with Deep Learning Assisted Anomaly Detection (MMPADL-
AD) in Pedestrian Walkways. The MMPADL-AD system aims to ensure security in PWs via the AD
process. The MMPADL-AD technique incorporates a NASNet feature extractor that proficiently extracts
high-level features from surveillance data, allowing a deep understanding of pedestrian behaviours. Besides,
the MMPADL-AD technique applies convolutional long short-term memory (ConvLSTM), inheriting the
benefits of convolutional neural networks) and LSTM for the AD process. Finally, the MMPA has been used
for the hyperparameter tuning mechanism, which optimizes the model’s performance, assuring accuracy and
adaptability. Benchmark data accompanied an extensive set of experiments to ensure the higher effectiveness
of the MMPADL-AD approach. The experimental values highlighted the supremacy of the MMPADL-AD
approach over other DL methods.

INDEX TERMS Data science, artificial intelligence, intelligent computing, anomaly detection, computer
vision.

I. INTRODUCTION
Yearly, 270,000 pedestrians nearly miss their lives on the
world’s highways. Responding to pedestrian security is
integral to the struggle to stop road traffic damage [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Jolanta Mizera-Pietraszko .

Pedestrian accidents, such as further road traffic smashes, will
not be as familiar as expected because they are avoidable and
predictable [2]. Present technologies, including surveillance
cameras (CCTV), computer vision (CV), and others, are
utilized to protect pedestrians and support security walking,
which requires understanding the risk factors for pedestrian
smashes. The main goal of this research is to ensure the

72662

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0003-3507-5363
https://orcid.org/0000-0003-1751-481X
https://orcid.org/0000-0003-0355-7835
https://orcid.org/0000-0003-1723-9977
https://orcid.org/0000-0002-3554-0061
https://orcid.org/0000-0003-0039-9018
https://orcid.org/0000-0001-6353-0285
https://orcid.org/0000-0002-2298-5037


S. R. Sree et al.: Intelligent Multi-Group Marine Predator Algorithm With DL Assisted AD

security and safety of PWS by utilizing computer vision
models [3]. The surveillance camera in public areas managed
the CV-centric technique to absorb the status of the CV study
team. The seized visual information comprises enhanced
facts that are more correct than the alternative data sources
such as radar signals, mobile communication, GPS, andmany
others [4], [5].

Anomaly detection (AD) is challenging for several rea-
sons; primarily, the description of an anomaly varies from
context to context [6]. Next, various options for what cre-
ates an anomaly may be unlimited. Then, strange data facts
with real-world information tend to lie carefully to what is
well-defined as usual. Finally, if anomalies rarely appear,
robustness features from the data should be extracted [7]. The
above-discussed list will only capture some of the probable
reasons that make the problem so hard, but researchers have
considered these points in past years while developing novel
solutions to the problem. Due to dimensionality swearing,
several conventional anomaly recognition models could bet-
ter demonstrate complex high-dimensional supplies [8]. With
the fast growth of Deep Learning (DL), numerous specialists
have designed new techniques to integrate themwith anomaly
recognition. The concept behind this is to accord with AD,
which means in the training stage, the method absorbs the
distribution features of average data [9]. Once the testing is
over, the method recognizes all information that does not fit
into the usual class as abnormal data [10].
This study designs an Intelligent Multi-Group Marine

Predator Algorithm with Deep Learning Assisted Anomaly
Detection (MMPADL-AD) in Pedestrian Walkways. The
MMPADL-AD system incorporates aNASNet feature extrac-
tor that proficiently extracts high-level features from surveil-
lance data, allowing a deep understanding of pedestrian
behaviours. Besides, the MMPADL-AD technique applies
convolutional long short-term memory (ConvLSTM), inher-
iting the benefits of convolutional neural network (CNN)
and LSTM for the AD procedure. Finally, the MMPA
has been used for the parameter tuning mechanism, which
optimizes the model’s performance, assuring accuracy and
adaptability. An extensive set of experiments were performed
on benchmark data to ensure the higher efficiency of the
MMPADL-AD technique.

• The MMPADL-AD model effectively extracts high-
level features from surveillance data, allowing for
deep comprehension of pedestrian behaviours and
improving the technique’s capacity for interpreting
convolutional scenarios.

• Incorporates the merits of CNN and LSTM models for
anomaly recognition processes, allowing the method to
comprehend spatial and temporal reliabilities in pedes-
trian movement patterns effectually

• Implement the MMPA technique for hyperparam-
eter optimization, and the model’s performance is
fine-tuned to ensure heightened accuracy and adapt-
ability, consequently boosting its effectiveness in
real-world settings.

II. LITERATURE REVIEW
In [11], an effective technique is proposed to detect abnormal
things automatically and focus anomalous things amongst
multi-pedestrian crowds through DL and conditional random
field (CRF). In the first stage, the pre-processing is executed
on removed frames, and then super-pixels are created by
utilizing an enhanced divide transform. Then, the objects are
separated by employing a CRF. The areas of interest are
restricted by applying conditional possibility, and the sequen-
tial connection is executed to trace the areas with pedestrian
groups and pedestrians with other items. Al Sulaie [12] devel-
oped a novel Golden Jackal Optimization with DL-based
AD in PWs (GJODL-ADPW) for road traffic security. This
study demoralized the Xception model for the real extraction
feature procedure. The GJO approach is often used in this
research to determine the optimal hyperparameter. At last,
the Bi-LSTM network is employed for anomaly recognition
reasons.

Pustokhina et al. [13] devised an automated DL-based AD
technique in PW (DLADT-PW) for exposed road consumer
security. In the first stage, the DLADT-PW method contains
pre-processing, which is then used to extract the noise and
increase image quality. The Mask-RCNN with the DenseNet
model was also mainly applied for the recognition procedure.
Ullah et al. [14] developed a new and effective Gaussian
kernel-based integration method (GKIM) for irregular object
recognition and localization in pedestrian movements. The
GKIM combines spatial-temporal features for effectual and
robust motion images to capture characteristic and significant
information regarding anomalous things. Next, the author
proposed a block-based recognition structure by testing a
recurrent CRF by employing the features of GKIM.

Sophia and Chitra [15] propose a Panoptic FPN-based AD
and Tracking (PFPN-ADT) technique for PWs. The main aim
is to distinguish and organize dissimilar variances in pedes-
trian footpaths, such as skaters, vehicles, etc. The method
includes a panoptic segmentation technique and a PFPN,
which are utilized for item detection. For object detection,
a Compact Bat Algorithm (CBA) with SAE was used for
the detection of familiar items. Alsolai et al. [16] project
a new SCA with DL-based AD in PW (SCADL-ADPW)
system. The developed SCADL-ADPWmodel recognizes the
occurrence of variances in the PW on RSIs. To achieve this,
the SCADL-ADPW model employs the VGG16 method for
the feature vector group. The SCA technique was also mainly
intended for the optimum parameter tuning procedure. The
LSTM method can be exploited for AD.

García-Aguilar et al. [17] developed advanced technology
using pre-trained super-resolution (SR) and CNN techniques.
This method is divided into two portions. Offline, the
pre-tested CNN method estimated a massive dataset of city
series to identify and start the common sites of interest parts.
Zeng et al. [18] designed a Hierarchical spatiotemporal graph
CNN (HSTGCNN) model. Chopra et al. [19] introduce an
effectual watermarking model employing a map-based secu-
rity key via exclusive-OR operation. In [20], an unsupervised
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FIGURE 1. The overall process of the MMPADL-AD algorithm.

DL and nearest neighbour classification model is presented,
which comprises deblurring with DeblurGAN-v2, semantic
segmentation with a hybrid CNN-VIT model, multiscale
feature aggregation with an attentional feature fusion mod-
ule, and K-nearest neighbour classification using pre-trained
features.

III. THE PROPOSED MODEL
This article has established an automated AD using
the MMPADL-AD method for security in PWs. The
MMPADL-AD technique analyses the surveillance videos
to ensure security in PWs via the AD process. The
MMPADL-AD technique incorporates a NASNet feature
extractor, ConvLSTM classifier, and MMPA-based hyperpa-
rameter optimizer. Fig. 1 depicts the entire procedure of the
MMPADL-AD methodology.

A. FEATURE EXTRACTOR: NASNET MODEL
At this stage, the NASNet approach extracts the features from
the surveillance video frames. There is considerable progress
in DL and computer vision [21]. It is well-known for its
capability to optimize and discover NN architecture automati-
cally for feature extraction, enabling it to capture complicated
representations and patterns in visual information effectively.
NASNet works based on a neural architecture search (NAS)
model that automates designing NNs, saving engineers and
researchers considerable effort and time. At the core of
NASNet’s power is its capability to select and search for
optimum NN cell architecture. This process includes explor-
ing different combinations of skip-connection, convolutional,

and pooling operations to create NN cells. NASNet detects
architecture that achieves better outcomes on a given task
through evolutionary or reinforcement learning algorithms.
Once these optimum cells are detected, they are stacked
to construct robust DNNs personalized for feature extrac-
tion. The feature extractor could effectively capture abstract
and hierarchical features from the images or other visual
information. NASNet has shown remarkable performance
on different CV tasks, including object detection and image
classification, which outperformmanually designed architec-
ture. This makes NASNet an invaluable mechanism for a DL
practitioner, as it streamlines the procedure of network design
and allows the extraction of discriminative and meaningful
features from images, benefiting applications such as AD,
image recognition, etc.

B. DETECTION MODULE: CONVLSTM
The ConvLSTM model is applied for classification, which
inherits the benefits of CNN and LSTM. LSTM network is
a kind of RNN commonly known for addressing drawbacks
of long-term memory and processing the data sequence of
typical RNN [22]. LSTM lengthens the RNN model using
a separate memory unit and gate module controlling the
network’s data flow. The gate mechanism includes input,
forgot, and output gates. This gate controls the data flow
throughout the network to enable which data will persist from
the memory cell. LSTM network can preserve essential data
and remove irrelevant data. Then, to differentiate independent
memory cells from hidden state ht in LSTM, it is signified
as ct . The forget gate ft attains input xt and ht−1 to decide that
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data should be maintained in ct−1. The activation function,
0t , and ft gates are sigmoid layers where all the values are
projected within [0,1], whereas ct−1 provides the data reten-
tion to define the scale. The abovementioned processes are
defined formally by using the following expression:

it = σ (Wxixt +Whiht−1 +Wcict−1 + bi) (1)

ft = σ
(
Wxf xt +Whf ht−1 +Wcf ct−1 + bf

)
(2)

Ot = σ (Wxoxt +Whoht−1 +Wcoct + bo) (3)

ct = ftct−1 + it∅ (Wxcxt +Whcht−1 + bc) (4)

ht = Ot∅ (ct) (5)

Wxi,Whi,Wci,Wxf ,Whf ,Wcf ,Wxo,Who,Wco,Wxc, and
Whc are the weight matrices for the gates and cell state
memory. The bias of gates is denoted as bi, bo, bf , and bc
while representing an entry-wise multiplication process. ct is
a cell state, and ht−1 is a prior hidden state. Likewise ∅,
it shows a hyperbolic tangent function, and σ represents the
logistic sigmoid function. Eqs. (6) & (7) shows the activation
functions:

σ (x) =
1

1 + e−x
(6)

∅ (x) =
ex − e−x

ex + e−x
(7)

Learning via the FC layer of LSTM has proved effective in
handling temporal relations, but a redundancy from spatial
information has made it increasingly difficult. The whole
connection LSTM has added an extension having convolu-
tion assembly in input-to-state transition and state-to-state
transition to address these challenges. By forecasting mech-
anisms and forming encoding, stacking multiple layers of
ConvLSTM has made the network incapable of spatiotem-
poral forecasting and precipitation new casting. Like the
classical full connection LSTM, ConvLSTM is essential for
dealing with more complicated sequences. This layer acts
as an encoder that encodes the input-refined series with a
definite size later transmitted to LSTM. ConvLSTM employs
convolution operations for hidden-hidden and input-hidden
connections.

Fig. 2 illustrates the architecture of ConvLSTM. The Con-
vLSTM layer with convolution operation is used to replace

FIGURE 2. Structure of ConvLSTM.

matrix multiplication operation in RNN, and this layer can
be used to know which data should be forgotten or retained
from the prior cell state. Likewise, ConvLSTMdecides which
data needs to be stored in the existing cells. The ConvLSTM
model can be defined in Eqs (12) to (16). After ConvLSTM,
other LSTM layers are plugged in to learn the feature
maps and provide the last prediction. This hybrid connec-
tion makes it more effective and efficient concerning image
classification:

it = σ
(
Wxi∗xt +Whi∗ht−1 +Wci

◦ct−1 + bi
)

(8)

ft = σ
(
Wxf ∗xt +Whf ∗ht−1 +Wcf ◦ct−1 + bf

)
(9)

Ot = σ (Wxo∗xt +Who∗ht−1 +Wco ◦ ct + bo) (10)

ct = ftct−1 + it∅ (Wxc ∗ xt +W ∗ h+ bc) (11)

ht = Ot ⊗ (ct) (12)

C. HYPERPARAMETER TUNING: MMPA
Lastly, the MMPA adjust the hyperparameter value of the
ConvLSTMmodel.MPA is a new optimization algorithm that
draws inspiration from predator and prey behaviours while
searching for food [23]. MPA is simple and easy to imple-
ment. It has good performance in optimization problems.
However, it prematurely converges due to an imbalance in its
exploitation and exploration abilities. The study proposes an
MMPA to optimize the MPA performance. The multi-group
process splits the original population into various groups.
This group creates an Elite matrix and top predator using
communication information and multiple strategies.

The multi-group mechanism splits the population into var-
ious groups, which produces the top predator using different
strategies. The proposed MMPA might achieve collabora-
tive work throughout groups and optimize the use of each
performance through a multi-group process and producing
approach.

Accordingly, the top predator is critical to the optimizer
technique. The top predator is used to construct an Elite
matrix as part of the optimizer algorithm to discover food.
This will recommend four producing approaches to create the
top predator and Elite matrix to enhance the performance of
MMA further.

1) GENERATION METHOD 1
The optimum outcomes of a group of people. During the opti-
mization procedure, if the parameters related to the outcomes
are autonomous, it is easy to generate the best solutions by
interchanging knowledge inside the identical group. Where
itr = oS iteration (0 = 1, 2, 3 . . .) , the optimum outcomes
ybest,h(u) of the similar group generates an Elite matrix in
strategy 1.

ybest,h (u) = Best
{
y1,h (u) , y2,h (u) , . . . , yo,h (u)

}
. (13)

In Eq. (13), y1,h(u), y2,h(u), . . . , yo,h(u) represent the hth

group’s o solutions.
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2) GENERATION METHOD 2
The average of a similar group’s solution. The control of
method 2 is identical to method 1. In strategy 2, when
itr = oS iteration (o = 1, 2, 3 . . .) , then average perfor-
mance yavg,h(u) is generated by averaging l suitable method
of the identical group for the diversity of the population. The
yavg,h(u) is used to make the Elite matrix,

yavg,h (u) =
y1,h (u) , y2,h (u) , . . . , yo,h (u)

l
. (14)

In Eq. (14), y1,h (u) , y2,h(u), . . . , yo,h(u) is the l appropri-
ate solution of hth groups.

3) GENERATION METHOD 3
The whole group’s optimum technique. During the optimiza-
tion process, if the parameter related to the solution is weakly
connected, it leads to the best solutions by interchanging data
among each group. Where itr = oS iteration (0 = 1, 2, 3 . . .)

is applied in method 3, the optimum option ymax(u) of com-
plete groups is utilized to generate the Elite matrix.

ymax (u) = Best {y1 (u) , y2 (u) , . . ., y0 (u)} , (15)

y1(u), y2(u), · · ·, y0 (u) is theO solution in the entire group.

4) GENERATION METHOD 4
The average of whole groups’ performances. The impact of
method 4 is similar to that of method 3. In strategy 4, when
itr = oS iteration (o = 1, 2, 3 . . .), the average solution
yavg(u) is calculated by summing the optimum solution of
all the groups for population diversity. ployyavg(u) is used to
make the Elite matrix.

yavg (u)

=
ymax,1 (u) , ymax,2 (u) , ymax,3 (u) , . . . , ymax,H (u)

H
. (16)

In Eq. (16), the letter H refers to the total number of
groups. ymax,1(u), ymax,2(u), ymax,3(u), . . . , ymax,H (u) is the
best outcome of all the groups.

The fitness choice is a primary factor in the MMPA tech-
nique. The encoded results have been exploited to assess the
goodness of the performance candidates. The accuracy values
are the primary condition used to design an FF.

Fitness = max (P) (17)

P =
TP

TP+ FP
(18)

Meanwhile, TP and FP are true positive and false positive
values.

IV. RESULTS AND DISCUSSION
The anomaly detection outcome of the MMPADL-AD sys-
tem is tested on three datasets: UCSDPed1, UCSDPed2, and
Avenue datasets, as represented in Table 1.

To computer the efficiency of theMMPADL-AD technique
on the UCSDPed1 dataset, we have created accuy curves for
training (TR) as well as testing (TS) stages, as illustrated in

TABLE 1. Details on database.

FIGURE 3. Accuy curve of MMPADL-AD algorithm on UCSDPed1 dataset.

Fig. 3. These curves deliver an appreciated understanding of
the technique’s learning growth and its capability to general-
ize. However, as the number of epochs rises, an observable
development in TR and TS accuy curves becomes apparent.
This improvement designates the model’s ability to improve
and identify designs in both datasets.

Fig. 4 also outlines the MMPADL-AD technique loss val-
ues under the TR procedure on the UCSDPed1 dataset. The
decreasing trend in TR loss with epochs specifies that the

FIGURE 4. Loss curve of MMPADL-AD algorithm on UCSDPed1 dataset.
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method repeatedly refines its weights to decrease prediction
errors on both databases. This loss curve replicates how well
the technique fits the TR data. Notably, the TR and TS loss
constantly drop, validating the method’s effectual learning
of designs obtainable in both TR and TTS data. In addi-
tion, it displays the model’s version in decreasing differences
among predictive and novel TR labels.

Table 2 and Fig. 5 represent the TPR outcomes of the
MMPADL-AD method on the UCSDPed1 dataset [24]. The
outcomes signify that the SF and MPPCA algorithms are
depicted as the lowest outcome. At the same time, the
EADN and AMDN models have managed to report mod-
erate performance. Meanwhile, the ADPW-FLHHO model
has tried to accomplish considerable outcomes. However,
the MMPADL-AD technique reaches maximum TPR perfor-
mance over varying FPR rates.

TABLE 2. TPR outcome of MMPADL-AD algorithm with other systems on
UCSDPed1 database.

Fig. 6 illustrates the comparative AUCscore results of
the MMPADL-AD technique. The obtained values of the

FIGURE 5. TPR outcome of MMPADL-AD algorithm on UCSDPed1 dataset.

FIGURE 6. AUCscore outcome of MMPADL-AD approach under UCSDPed1
dataset.

MMPADL-AD technique accomplish an enhanced AUCscore
of 99.57%. On the other hand, the ADPW-FLHHO, EADN,
binary SVM, MIL-C3D, TSN-Optical Flow, Spatiotemporal,
and TSN-RGB approaches obtain decreased AUCscore values
of 99.36%, 98.36%, 96.73%, 94.99%, 92.86%, 91.57%, and
90.49%, respectively.

For computing the effectiveness of the MMPADL-AD
approach on the UCSDPed2 dataset, we have produced accuy
curves for the TR and TS sets, as illustrated in Fig. 7. These
curves provide valuable perceptions into the model’s learning
development and its capacity to simplify. Since it increases
the epoch numbers, a perceptible development in TR and
TS accuy curves becomes evident. This growth shows the
model’s ability to improve and distinguish patterns from TR
and TS datasets.

Fig. 8 also summarises the MMPADL-AD methodology
loss values during the TR procedure on the UCSDPed2
dataset. The decreasing trend in TR loss over epochs shows
that the approach frequently improves weights to dimin-
ish prediction errors on both databases. This loss curve
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FIGURE 7. Accuy curve of MMPADL-AD system under UCSDPed2 dataset.

FIGURE 8. Loss curve of MMPADL-AD method on UCSDPed2 database.

reproduces how well the technique fits the TR data. Signif-
icantly, the TR and TS loss dependably decrease, validating
the model’s effective design learning in both data. Moreover,
it expresses the model’s version by diminishing differences
among predictive and new TR labels.

Table 3 and Fig. 9 represent the TPR outcomes of the
MMPADL-AD model on the UCSDPed2 database. The

FIGURE 9. TPR outcome of MMPADL-AD method on UCSDPed2 dataset.

TABLE 3. TPR outcome of MMPADL-AD algorithm with other
methodologies under UCSDPed2 database.

outcome implied that the SF and MPPCA techniques have
shown the least performance. Similarly, the EADN and
AMDN methods have achieved moderate performance.
Meanwhile, the ADPW-FLHHO technique has tried to
achieve significant outcomes. However, the MMPADL-AD
model reaches extreme TPR performance over varying FPR
rates.

Fig. 10 explains a comparative AUCscore outcome of
the MMPADL-AD model. The achieved values of the
MMPADL-AD method resulted in an improved AUCscore
of 99.36%. In addition, the ADPW-FLHHO, EADN, binary
SVM, MIL-C3D, TSN-Optical Flow, Spatiotemporal, and
TSN-RGB approaches attain diminished AUCscore values of
99.19%, 98.30%, 97.16%, 95.50%, 94.36%, 92.48%, and
90.44%, correspondingly.

To compute the efficiency of the MMPADL-AD approach
on the Avenue dataset, we have created accuy curves for
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FIGURE 10. AUCscore outcome of MMPADL-AD algorithm on UCSDPed2
dataset.

FIGURE 11. Accuy curve of MMPADL-AD algorithm on Avenue dataset.

FIGURE 12. Loss curve of MMPADL-AD algorithm on Avenue dataset.

the TR and TS sets, as illustrated in Fig. 11. These curves
provide an appreciated understanding of the model’s learning
growth and its capacity to simplify. However, it can increase
the number of epochs, and a clear development in TR and
TS accuy curves becomes evident. This development implies
the technique’s better ability to distinguish designs from both
datasets.

Fig. 12 also offers an overview of the MMPADL-AD tech-
nique loss values during the TR procedure on the Avenue
dataset. The lesser development in TR loss with epochs des-
ignates that the methodology frequently refines its weights
to decrease forecast errors on both databases. This loss curve
imitates howwell the method fits the TR data. Mainly, the TR
and TS losses are regularly lesser, specifying that the model
is productive patterns learning in both data. Additionally,
it displays the model’s variation in minimizing differences
between predictive and new TR labels.

Table 4 and Fig. 13 denote the TPR outcome of the
MMPADL-AD approach on the Avenue database. The per-
formance depicts that the SF and MPPCA techniques have
shown the most minor performance. At the same time, the
EADN and AMDN models have accomplished reported
moderate results. Meanwhile, the ADPW-FLHHO approach

TABLE 4. TPR outcome of MMPADL-AD algorithm with other systems on
Avenue database.
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FIGURE 13. TPR outcome of MMPADL-AD algorithm on Avenue dataset.

has tried to achieve considerable results. However, the
MMPADL-AD method attains determined TPR performance
over varying FPR rates.

Fig. 14 shows a comparative AUCscore outcome of
the MMPADL-AD model. The attained values of the
MMPADL-AD model accomplish a greater AUCscore of
99.05%. On the other hand, the ADPW-FLHHO, EADN,
binary SVM, MIL-C3D, TSN-Optical Flow, Spatiotemporal,
and TSN-RGB techniques acquire reduced AUCscore values
of 98.90%, 97.78%, 96.21%, 95.02%, 93.31%, 91.41%, and
89.47%, correspondingly.

FIGURE 14. AUCscore outcome of MMPADL-AD system on Avenue dataset.

These results show the practical ability of the
MMPADL-AD methodology in anomaly detection.

V. CONCLUSION
This article has established an automated AD using
the MMPADL-AD method for security in PWs. The
MMPADL-AD technique analyses the surveillance videos
to ensure security in PWs via the AD process. The
MMPADL-AD technique incorporates a NASNet feature

extractor, ConvLSTM classifier, and MMPA-based hyper-
parameter optimizer. The NASNet feature extractor enables
the derivation of high-level features from surveillance data,
allowing a deep understanding of pedestrian behaviours. The
ConvLSTMmodel is applied for classification, which inherits
the benefits of CNN and LSTM. Lastly, the MMPA is used
for the hyperparameter tuning mechanism, which optimizes
the model’s performance, assuring accuracy and adaptability.
Benchmark data accompanied an extensive set of experiments
to ensure the higher efficiency of the MMPADL-ADmethod.
The simulation values highlighted the supremacy of the
MMPADL-AD method with other DL methodologies. The
efficiency of the MMPADL-AD method may be restricted in
highly crowded or dynamic pedestrian environments. Future
studies may focus on improving the robustness of the model
to several environmental conditions.
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