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ABSTRACT This paper addresses the training issues associated with neural network-based automatic speech
recognition (ASR) under noise conditions. In particular, conventional joint training approaches for a pipeline
comprising speech enhancement (SE) and end-to-end ASR model surfer from a conflicting problem and a
frame mismatched alignment problem because of different goals and different frame structures for ASR
and SE. To mitigate such problems, a knowledge distillation (KD)-based training approach is proposed by
interpreting the ASR and SE models in the pipeline as teacher and student models, respectively. In the
proposed KD-based training approach, the ASR model is first trained using a training dataset, and then,
acoustic tokens are generated via K-means clustering using the latent vectors of the ASR encoder. Thereafter,
KD-based training of the SE model is performed using the generated acoustic tokens. The performance of
the SE and ASR models is evaluated on two different databases, noisy LibriSpeech and CHiME-4, which
correspond to simulated and real-world noise conditions, respectively. The experimental results show that
the proposed KD-based training approach yields a lower character error rate (CER) and word error rate
(WER) on the two datasets than conventional joint training approaches, including multi-condition training.
The results also show that the speech quality scores of the SE model trained using the proposed training
approach are higher than those of SE models trained using conventional training approaches. Moreover, the
noise reduction scores of the proposed training approach are higher than those of conventional joint training
approaches but slightly lower than those of the standalone-SE training approach. Finally, an ablation study
is conducted to examine the contribution of different combinations of loss functions in the proposed training
approach to SE and ASR performance. The results show that the combination of all loss functions yields the
lowest CER and WER and that tokenizer loss contributes more to SE and ASR performance improvement
than ASR encoder loss.

INDEX TERMS Noise-robust automatic speech recognition, speech enhancement, knowledge distillation,
teacher-student model, acoustic tokenizer, K-means clustering.
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I. INTRODUCTION
Recent advancements in neural network architectures and
training approaches have demonstrated consistent progress,
enhancing capabilities in not only image and natural lan-
guage processing but also audio and speech signal processing.
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Speech processing encompasses the comprehensive analy-
sis, synthesis, and recognition of speech, including speaker
verification, speech separation, speech enhancement (SE),
speech synthesis, and automatic speech recognition (ASR)
[1], [2]. ASR has gained considerable attention, particularly
in voice-based information retrieval systems, chatbots, and
automated transcription systems [3]. Moreover, the inter-
est in ASR, specifically for real-world scenarios, such as
closed captioning in social media video content [4] and
real-time interaction between users in videoconferencing [5],
is increasing.

Conventional ASR systems have a modular structure com-
prising three distinct components: a feature extractor that
captures spoken signal characteristics, an acoustic model
that converts extracted features into linguistic units, and
a language model that incorporates grammar, lexicon, and
related linguistic information [6]. Compared with conven-
tional ASR systems, ASR systems based on end-to-end
(E2E) neural network architectures achieve state-of-the-art
performance by employing a sequence-to-sequence training
approach to transform speech signals into their corresponding
text sequences.

However, E2E-based ASR models typically face perfor-
mance degradation in distant microphone settings or under
low signal-to-noise ratio (SNR) conditions because of the
distortion of speech signals by real-world ambient noise [7],
[16]. To address this issue, many studies have integrated SE
models into ASR systems [17], [18], [19], [20], [21]. Con-
ventional SE models, designed primarily for voice communi-
cations, have improved ASR robustness against background
noise. Notably, deep learning-based SE models, particularly
U-Net-based architectures and their evolved versions, such as
convolutional recurrent neural networks (RNNs) with long
short-term memory layers and a deep complex convolu-
tional recurrent network (DCCRN) that processes complex
spectra [17], [19], have outperformed conventional statistical
approaches in enhancing speech quality in noisy environ-
ments.

Nevertheless, these SE models may introduce unintended
artifacts into the enhanced speech signals. These artifacts can
create mismatched conditions for ASR, thereby degrading
ASR performance [20]. This occurs because the SE model
is trained without regard to the ASR model. To address the
artifact issue when using an SEmodel as a preprocessor for an
ASR model, a multi-condition training (MCT) approach can
be employed to train the ASR model [20], [21]. This involves
including both noisy speech signals and the corresponding
enhanced speech signals in the training dataset, account-
ing for the artifacts in the enhanced speech. According to
research, this MCT approach improves ASR performance
better than training an ASR model solely on noisy speech
signals. However, the improvement achieved by the MCT
approach is limited because the artifacts in enhanced speech
are not predictable [22].

As an alternative, a pipeline integrating SE and ASR
models has been explored in a joint optimization frame-
work [22], [23]. In this approach, the SE and ASRmodels are
treated as front- and back-end modules, respectively. When
optimizing the entire pipeline, challenges arise because of
conflicting gradients, leading to a convergence issue, which is
called a conflicting problem [23], [24]. To solve this conflict-
ing problem, several training approaches have been studied,
such as the asynchronous subregion optimization (ASO)-
based approach [25], [26] and the gradient surgery-based
approach [24], [27]. Although these approaches yield promis-
ing results, they suffer from frame mismatching between SE
and ASR [28], which mainly stems from the different objec-
tives of SE and ASR. In other words, the SE model aims to
reconstruct a signal within a short frame length, whereas the
ASRmodel aims to predict a sequence of words or characters
that is considerably longer than the frame length used in
the SE model. Although the SE and ASR models operate
on different frame lengths, the joint loss for training the
combined model of SE and ASR can be computed according
to the length of the SE frame [17], [27].

Therefore, to mitigate this frame mismatched alignment
problem for a pipeline comprising SE and ASR models, this
paper proposes an approach based on the student–teacher
model. In other words, the ASR and SE models correspond
to the teacher and student models, respectively. Therefore,
the ASR model, which will serve as a teacher model for the
SE model, is first trained using a training dataset and then
frozen. Thereafter, a loss function is proposed to train the SE
model using the output of the teacher model. In particular,
as the ASR model is constructed with an encoder–decoder
structure, a frame output of the ASR encoder is clus-
tered via K-means clustering to obtain the pseudo-label
for the current frame. Next, using the proposed loss func-
tion, the SE model is trained via knowledge distillation (KD).
The main contributions of this paper can be summarized
as follows:

• A pipeline comprising SE and ASR models is inter-
preted as a teacher–student model, and the output of
the ASR model is used to train the SE model. To the
best of our knowledge, this is the first study to present a
teacher–student model with two models having different
objectives.

• A new loss function is proposed for training the student
SE model by introducing acoustic tokens via K-means
clustering.

• The proposed training approach improves the perfor-
mance of both the ASR and SE models compared with
conventional joint training approaches.

The remainder of this paper is organized as follows.
Section II briefly reviews E2E-based ASR architectures
and the methodologies of KD approaches applied to ASR.
Section III explains the neural architecture of the proposed
pipeline comprising the SE and ASR models, which is
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interpreted as a teacher–student model. Section IV proposes
an acoustic-tokenizer-based loss function for training the SE
model to improve the ASR performance. Section V eval-
uates the performance of the proposed KD-based training
approach on two datasets, noisy LibriSpeech and CHiME-
4, which include simulated and real-world noisy speeches,
respectively. In addition, the performance of the SE and
ASR models trained using the proposed training approach
is compared with those trained using conventional joint
training approaches. Moreover, an ablation study is con-
ducted to examine SE and ASR performance according
to different combinations of loss functions in the pro-
posed training approach. Finally, Section VI concludes this
paper.

II. RELATED WORKS ON KD-BASED APPROACH FOR ASR
The proposedKD-based training approach primarily explores
the leveraging of linguistic information from the E2E-based
ASR model to the SE model. Therefore, this section reviews
related works on E2E-based ASR model architectures and
KD-based approaches for ASR.

A. E2E-BASED ASR ARCHITECTURES
E2E-based ASR models typically adopt an encoder–decoder
structure: the encoder combines the feature extractor and
the acoustic model; the decoder corresponds to the language
model [7], [8]. The encoder and decoder are connected
through an attention mechanism and jointly trained, result-
ing in better performance than traditional modular-structured
ASR systems with individually trained components. To real-
ize an E2E-based ASR model, RNNs were used for both
the encoder and decoder [9]. However, the ability of this
RNN-based ASR model to handle long-term dependencies
and contextual alignments between speech and text was lim-
ited because of the global attention mechanism [10]. Thus,
instead of using RNNs in the encoder–decoder structure,
a transformer-based architecture was adopted to mitigate
long-term dependencies; however, it failed to capture local
speech contexts [11].
Consequently, cutting-edge ASR systems transitioned to

using conformers [12] or ContextNet [13] rather than con-
ventional transformers for the encoder–decoder structure.
In contrast, some ASR models were diversely designed
using distinct architectures for the decoder constructed
using either connectionist temporal classification (CTC)
[14] or neural transducers [15]. Among various decoder
structures, the neural transducer exhibited superior per-
formance because of its capacity to overcome the chal-
lenges inherent in the conditional independence assumption
in other decoders [12]. This performance was further
enhanced when the RNN was replaced with a con-
former, resulting in a conformer–transducer structure that
captured both global and local contextual information
well.

FIGURE 1. Block diagrams of a pipeline comprising SE and ASR models
for (a) joint training approach and (b) the proposed KD-based training
approach.

B. KD FOR E2E-BASED ASR MODEL
Conventional KD has been used to compress large models
into small models or to improve performance by leveraging
a teacher model [29], [30]. Moreover, KD has demonstrated
successful performance improvement in multitask learning
with different objective functions [31], [32]. When apply-
ing KD to classification tasks, the gradient landscape can
be smoothed because of the temperature parameter, which
can help different gradients converge to the global optimum.
To transfer knowledge, the distance between the latent vectors
of the teacher and student models should be minimized, and
the teacher model is guided to converge well through the
probability distribution for the target class. In a regression
task, KD is performed using only vector similarity, and a
successful result is less likely because it is difficult to transfer
the probability distribution [33], [34].

Several studies have leveraged linguistic and acoustic
information from pretrained ASR models to enhance ASR
performance [35], [36], [37]. The KD approach using pre-
trained ASR models can be categorized into decoder- and
encoder-side methods [36]. The decoder-side KD method,
which uses the output vector of the ASR decoder, transfers
the global context to the student model, because the decoder
output vector integrates the latent vectors from the ASR
encoder with a large context window to capture the lin-
guistic unit information. Thus, the decoder-side KD method
maximizes transition probabilities between linguistic units,
resulting in its inability to handle the frame-wise characteris-
tics inherent in the ASR encoder [36], [37]. Conversely, the
encoder-side KD method uses the output vector of the ASR
encoder optimized in a frame-wise fashion with a fixed-size
sliding window. Thus, it focuses on improving the relation-
ship between speech frames and their linguistic information
without considering contextual information [35], [36].

Therefore, this paper attempts to benefit from both
encoder-side and decoder-side KD methods. To this end, the
encoder-side KD method [35] is primarily used. In addition,
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an acoustic tokenizer is proposed and incorporated into the
encoder-side KD method so that frame-wise information is
converted into segment-wise information to capture a certain
degree of global information, as in the decoder-side KD
method.

III. INTERPRETATION OF PIPELINE COMPRISING SE AND
ASR AS TEACHER–STUDENT MODEL
Fig. 1(a) illustrates a conventional pipeline comprising SE
and ASR models for joint training [21], [22]. As mentioned
in Section I, conventional joint training approaches combine
speech quality loss,LSE , andASR loss,LASR, and then jointly
or asynchronously train the pipeline.

In contrast, this paper interprets the pipeline as a combi-
nation of a student (SE) model and a teacher (ASR encoder)
model, as depicted in Fig. 1(b). To align the different goals of
the SE and ASR models, i.e., predictions of clean speech and
text, respectively, the ASRmodel is first trained using a noisy
speech training dataset and then frozen. After the ASRmodel
is frozen, a teacher model is constructed by concatenating the
ASR encoder and an acoustic tokenizer, as shown in Fig. 1(b).
Because the output of the ASR encoder corresponds to an
acoustic token for a given input frame [26], [36], this acoustic
tokenizer serves as a surrogate model of the ASR decoder
to extract linguistic information at frame-wise granularity.
To train the acoustic tokenizer, the output vector of the ASR
encoder applied to a clean speech dataset is clustered using
K-means clustering to compute pseudo-labels. Compared
with conventional training approaches, an acoustic tokenizer
loss is proposed and combined with the ASR encoder loss in
the proposed training approach, which will be explained in
the next section.

In this paper, the DCCRN-based SE model and con-
former (encoder)–transducer (decoder)-basedASRmodel are
employed. For a fair comparison, the architecture and hyper-
parameters of the DCCRN-based SE model and conformer–
transducer(s)-based ASR model are set identically to those
in [12] and [19], respectively.

IV. PROPOSED KD-BASED SE MODEL TRAINING
APPROACH USING ACOUSTIC TOKENIZER
This section presents the procedure of the proposed
KD-based training approach for the SE model. As men-
tioned in Section III, the conformer–transducer-based ASR
model is already trained. Next, a teacher model is constructed
by adding an acoustic tokenizer, as depicted in Fig. 2(a).
This acoustic tokenizer is trained using clean speech sig-
nals from the training dataset used for ASR model training.
Thereafter, a pipeline is constructed, as shown in Fig. 2(b).
The DCCRN-based SE model is randomly initialized using
Xavier initialization [38]. For a given set of clean utterances
and their noisy versions, a noisy utterance is processed using
the SE model, followed by the ASR encoder and acous-
tic tokenizer, whereas a clean utterance is processed using
only the ASR encoder and acoustic tokenizer. During this

FIGURE 2. Block diagram of the proposed KD-based training procedure
for (a) the acoustic tokenizer and (b) the SE model.

process, three different losses are computed: negative SNR
loss, LNSNR; ASR encoder loss, LEnc; tokenizer loss, LToken.
Finally, the SE model is trained via backpropagation using
these losses.

A. ACOUSTIC TOKENIZER
A clean speech utterance sample, s, sampled at 16 kHz is
segmented into consecutive frames every 25 ms with an
overlap length of 16 ms, resulting in s = {s1, s2, · · · , sN } .

Here, sn ∈ RNs with Ns = 400, and N represents the
total number of frames in s. s is then inputted into the ASR
encoder, Enc (·) , yielding the output sequence v = Enc (s) =

{v1, v2, · · · , vM } , where vm(∈ RNv ) denotes the m-th latent
vector whose dimension is Nv = 144. To accelerate the
training and inference, subsampling layers are employed in
the ASR encoder to reduce the frame rate by a factor of four
so thatM =

⌊
N
/
4
⌋
.

Next, each vm is coded into a one-hot cluster vector,
cm ∈ {0, 1}Nc . Here, the number of clusters, Nc, is set
to 1.5k because the ASR model is trained to include 1k
linguistic units generated using the unigram language model
algorithm. In addition to these units, the training dataset con-
tains acoustic noise, such as short pauses, breathing, or cough
sounds. To obtain K-means clusters, the mini-batch K-means
algorithm in the scikit-learn [39] package is applied to a pool
of v, which is obtained from all clean speech utterances in
the training dataset after removing latent vectors correspond-
ing to silent frames. In this work, a voice activity detection
technique is applied to clean utterances with a 40-dB cutoff
amplitude level [40] to detect silent frames.
Finally, vm is tokenized into logits zm ∈ RNc such that

z = Tokenizer (v) = {z1, z2, · · · , zM } , where Tokenizer (·)

is constructed using a time-distributed layer and Nc denotes
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the number of clusters. To train the tokenizer, a tokenizer loss
function, LToken (z|c) , is proposed between the logit vectors,
{zm}, and cluster vectors, {cm}, and is expressed as follows:

LToken (z|c) =

M∑
m=1

log

(
ezm,i/τ∑Nc
j=1 e

zm,j/τ

)
(1)

where zm,i denotes the i-th element of zm at which cm,i = 1,
and τ (= 0.5) denotes the temperature parameter.

B. SE MODEL TRAINING
To train the SE model using information about the ASR
encoder via KD, noisy utterances are generated by mix-
ing s with a noise signal, d , such that x = s + d =

{x1, x2, · · · , xN } . As depicted in Fig. 2(b), x is inputted into
the SE model to predict the estimated clean utterances, s̃.
Subsequently, the clean and estimated clean utterances are
input into the ASR encoder to obtain two sequences of latent
vectors: v = Enc (s) and ṽ = Enc (s̃) . The latent vectors are
then encoded using the tokenizer, such as z = Tokenizer (v)
and z̃ = Tokenizer (ṽ) . Using the cluster vectors for v, a tok-
enizer loss function conditioned by c, LToken

(
z̃|c
)
, is defined

as follows:

LToken
(
z̃|c
)

=

M∑
m=1

log

 ez̃m,i
/
τ∑Nc

j=1 e
z̃m,j

/
τ

 (2)

where z̃m,i denotes the i-th element of z̃m with cm,i = 1,
as in (1).

In addition to (2), two different loss functions are used
to improve speech quality and ASR encoder performance.
Speech quality loss is defined as the negative SNR (NSNR)
loss by comparing the speech quality between the clean utter-
ance, s, and its estimated version, s̃, as follows:

LNSNR (s, s̃) = −

N∑
n=1

10 log10

(
∥sn∥2

∥sn − s̃n∥
2

)
. (3)

The ASR encoder loss is defined as the L2-norm between
two latent vector sequences from s and s̃andisexpressed as
follows:

LEnc (v, ṽ) =

M∑
m=1

∥vm − ṽm∥
2 . (4)

Finally, the joint loss function for training the SE model is
obtained by combining the loss functions in (2)–(4):

L = α · LNSNR (s, s̃) + β·LEnc (v, ṽ) + γ · LToken
(
z̃ | c

)
(5)

where α, β, and γ denote the weights of the NSNR, ASR
encoder, and tokenizer losses, respectively. Instead of con-
ducting an exhaustive search to determine the values of α,
β, and γ , we utilize a grid search-based approach. First,
we fix two out of the three weights at 1.0, adjusting the
remaining one from 0.1 to 1.0 in steps of 0.1, and measure the
word error rate (WER) for each variation. This procedure is

replicated for each of the weights, yielding a total of 30 differ-
ent combinations. Among these, the combination that results
in the lowest WER on the validation dataset is selected.
Since the selected combination includes two weights fixed
at 1.0, we conduct the grid search again to determine one
of the two previously undetermined weights. In this sec-
ond step, we select the weight that demonstrates the lowest
WER, leaving the other weight still to be determined. Finally,
we perform the grid search again by using the two previously
determined weights and varying the remaining weight from
0.1 to 1.0 in steps of 0.1. As a result, α, β, and γ are set to
0.3, 0.7, and 1.0, respectively. Then, the loss function in (5)
with these weights is used to train the SE model.

V. PERFORMANCE EVALUATION
In this section, we evaluate the performance of the pro-
posed KD-based training approach for noise-robust ASR and
compare it with the MCT and conventional joint training
approaches, including ASO-based joint optimization [25] and
gradient-remedy-based joint optimization [24]. The ASR and
SE performances were measured using two different datasets.

A. DATASETS
We conducted training and evaluation using two different
datasets. The first dataset comprised the artificially mixed
LibriSpeech speech corpus [41] with the deep noise suppres-
sion (DNS) challenge database [42], which includes various
types of acoustic noise. The second dataset was the computa-
tional hearing in the multisource environment-4 (CHiME-4)
database [43], which was curated for speech recognition in
real-world scenarios.

1) NOISY LIBRISPEECH DATASET
The ASR model and tokenizer were trained using the train-
960 set in the LibriSpeech database. To simulate various
noise conditions, the DNS database released in the third
DNS challenge was used, which comprises approximately
150 different noise types. The noisy speech utterances were
then obtained by mixing the clean speech utterances from the
LibriSpeech database with the noise signals from the DNS
database. The mixing ratio between the clean speech and
noise was controlled such that the SNR ranged from −5 to
5 dB to simulate different SNR conditions.

As a development dataset, the 10-h clean speech utterances
from the dev-clean and dev-other sets in the LibriSpeech
database were mixed with DNS noise. To evaluate the trained
models, the 10-h clean test utterances from the test-clean
and test-other sets in the LibriSpeech database were also
mixed with DNS noise. Note that the development and test
datasets, including dev-clean, dev-other, test-clean, and test-
other, were noisy.

2) CHIME-4 DATASET
The CHiME-4 database comprises both real and simu-
lated noisy speech utterances [43]. The real speech data
were obtained by recording clean speech data in real-world
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environments using a six-microphone array such as a bus,
cafe, pedestrian area, and street junction. Conversely, the sim-
ulated speech data were generated by convolving six-channel
room impulse responses with noisy utterances mixed with
clean speech data and real-world noise.

The CHiME-4 database was divided into three different
datasets: training, development, and test. The training dataset
comprised 1,600 recorded and 7,138 simulated speech utter-
ances, with 4 and 83 speakers for the real recordings and
simulated datasets, respectively. The development dataset
comprised 1,640 real and 1,640 simulated speech utterances
denoted as ‘‘dt05_real’’ and ‘‘dt05_simu,’’ respectively. Note
that the speakers in dt05_real and dt05_simu differed from
those in the training dataset. To evaluate the performance
of the proposed training approach, a test dataset was used,
comprising 1,320 real and 1,320 simulated speech utterances
denoted as ‘‘et05_real’’ and ‘‘et05_simu,’’ respectively. The
speakers in the test dataset were excluded from the training
and development datasets.

B. HYPERPARAMETERS
1) SE AND ASR MODEL ARCHITECTURES
The architecture and hyperparameters of the DCCRN-based
SE model were set identically to those in [19]. Specifically,
the input feature was a complex spectrum obtained by apply-
ing a 512-point short-time Fourier transform to each noisy
speech frame with a frame size of 25 ms and a frame hop size
of 16 ms. The number of complex convolutional blocks for
the encoder and decoder was set to six each, and these six
convolutional blocks had varying numbers of channels, such
as [32, 64, 128, 128, 256, 256], with a kernel size of 5×2 and
stride size of 2 × 1.

In addition, the architecture and hyperparameters of the
conformer–transducer-based ASR model were set identically
to those in the conformer(s) described in [12]. As the input
feature for the ASR model, an 80-dimensional log-mel spec-
trum was extracted. The ASR encoder was composed of
16 conformer blocks, each of which provided a latent vector
with a dimension of 144 (Nv). As a target feature, the linguis-
tic units for transcribing target texts comprised a special token
and 1k linguistic units generated using the unigram language
model algorithm [44].

2) PIPELINE TRAINING AND IMPLEMENTATION
As mentioned in the previous section, two different datasets
were used to evaluate the performance of the ASR and SE
models under simulated and real-world noise conditions.
For the simulated noise condition, the ASR and SE models
were trained using the noisy LibriSpeech dataset, whereas
the tokenizer was trained using a clean LibriSpeech training
dataset. In this paper, the Adam optimizer was applied to
all model training. To adjust the learning rate, the warmup
learning rate scheduler technique with 40,000 warmup
steps was used to train the conformer–transducer-based

ASR model, whereas a plateau learning rate scheduler
with patience of 5 and a factor of 0.5 was used for the
acoustic tokenizer and SE model training. In particular,
the SpecAugment technique was employed for ASR model
training.

Next, for the real-world noise condition, the ASR and SE
models were trained using the CHiME-4 dataset. Because of
the scarcity of training data in the CHiME-4 dataset, random
initialization of the ASR model parameters could not guar-
antee acceptable ASR performance. Thus, for training using
the CHiME-4 dataset, the ASR model was initialized using
the parameters from the ASR model trained on the noisy Lib-
riSpeech dataset. Except for the above training, all training
parameters for the ASR, SE, and acoustic tokenizer models
were identically set to those used for the noisy LibriSpeech
dataset.

All experiments were implemented in Python 3.8.10 using
TensorFlow 2.11.0 [45] and conducted on an Intel(R)
Xeon(R) Gold 6226R workstation with four sets of Nvidia
RTX 3090.

C. SPEECH RECOGNITION PERFORMANCE
ASR performance was evaluated by measuring the character
error rate (CER) and WER for both the development and test
datasets. The CERs and WERs of the ASR model trained
using the proposed training approach were compared with
those of models trained using six different approaches: (1) an
ASR model trained by MCT using clean and noisy training
datasets (denoted as MCT-noisy); (2) an SE model trained
using clean and noisy speech training datasets, where the
enhanced signal was subsequently fed into the MCT-noisy
ASR model (denoted as MCT-noisy+standalone-SE); (3) an
ASR model trained by MCT using clean and noisy speech,
with its enhanced version by the standalone-SE (denoted
as MCT-all); (4) a combination of the SE and ASR mod-
els trained using a conventional joint optimization approach
(denoted as Joint-Straight) [22]; (5) a joint pipeline trained
using ASO-based joint optimization (denoted as Joint-ASO)
[25]; (6) a joint pipeline trained using gradient-remedy-based
joint optimization (denoted as Joint-Grad) [24].

Table 1 compares the average CERs and WERs of the
ASR models trained using different training approaches. The
performance evaluation was performed using four different
noisy LibriSpeech datasets: dev-clean, dev-other, test-clean,
and test-other. First, the effect of the SE model on ASR per-
formancewas investigatedwhenMCTwas applied. As shown
in the first three rows of the table, the average CERs and
WERs of the MCT-noisy+standalone-SE model increased
because the standalone-SE unexpectedly distorted speech,
whereas it improved the speech quality, as discussed in the
next subsection. However, by adding enhanced speeches to
the training dataset, the CERs and WERs of the MCT-all
model were marginally reduced for all datasets compared
with those of the MCT-noisy model. This was because
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TABLE 1. Comparison of the average CERs and WERs of ASR models trained using different training approaches on the noisy LibriSpeech datasets.

TABLE 2. Comparison of the average CERs and WERs of ASR models trained using different training approaches on the CHiME-4 datasets.

the mismatch between the training and test conditions was
mitigated.

Next, the average CERs and WERs of the ASR models
were compared on the basis of the different joint training
approaches. Note that the training hyperparameters used for
Joint-Straight, Joint-ASO, and Joint-Grad were set identi-
cally to those in the corresponding papers. As shown in the
fourth to sixth rows of the table, the ASR model trained
using the Joint-Grad model exhibited the lowest CERs and
WERs among the three ASR models. An ASR model was
trained using the proposed approach. Compared with the
MCT-noisymodel, the ASRmodel trained using the proposed
training approach relatively reduced the average CER and
WER by 13.15% and 12.03%, respectively, compared with
the ASR models trained using the noisy LibriSpeech devel-
opment and test datasets. Furthermore, the model trained
using the proposed training approach achieved the lowest
CER and WER among the ASR models in Table 1. Specif-
ically, it relatively reduced the average CER and WER by
3.23% and 2.00%, respectively, compared with the ASR
model trained using Joint-Grad, which exhibited the best
performance among all models trained using the conventional
training approaches.

In addition to performance evaluation on the noisy Lib-
riSpeech datasets, we repeated the experiment using CHiME-
4 datasets to examine the effectiveness of the proposed
training approach on real-world speech recording. Simi-
lar to Table 1, Table 2 compares the average CERs and
WERs of the ASR models trained using different training
approaches. Compared with the CERs and WERs shown
in Table 1, the relative reduction in the average CERs and

WERs according to the different training approaches shown
in Table 2 showed a similar tendency even though the evalua-
tion was performed using real-world recording data. In other
words, the standalone-SE model negatively affected ASR
performance whenMCT training was used. In addition, Joint-
Grad was the best among the conventional joint training
approaches. As expected, the proposed training approach
also outperformed Joint-Grad. In particular, the ASR model
trained using the proposed training approach relatively
reduced the average CER and WER by 1.89% and 0.45%,
respectively, compared with the ASR model trained using
Joint-Grad.

D. SPEECH ENHANCEMENT PERFORMANCE
The speech quality and noise reduction performance of the
SE model trained using the proposed training approach were
compared with those of the SE models trained using the
conventional training approaches. In this regard, five different
speech quality metrics were measured: the perceptual eval-
uation of speech quality (PESQ) [46], short-time objective
intelligibility (STOI) [47], and three mean opinion scores,
namely, signal distortion (CSIG), background noise intru-
siveness (CBAK), and overall signal quality (COVL) [48].
In addition, to evaluate noise reduction quality, five met-
rics, signal-to-distortion ratio (SDR), signal-to-interference
ratio (SIR), signal-to-artifact ratio (SAR) [49], segmen-
tal SNR (SSNR), and scale-invariant SNR (SISNR), were
evaluated [48].

Table 3 compares the speech and noise reduction qual-
ity of the SE models trained using different training
approaches and evaluated on test-clean. As shown in the
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TABLE 3. Comparison of speech quality and noise reduction quality scores of SE models trained using different training approaches on Test-Clean in the
noisy LibriSpeech dataset.

TABLE 4. Comparison of speech quality and noise reduction quality scores of SE models trained using different training approaches on et05_simu in the
CHiME-4 test Dataset.

TABLE 5. Ablation Study on the Effectiveness of Different Loss Combinations in the Proposed Training Approach on ASR performance using Test-Clean in
the noisy LibriSpeech dataset (

√
= applied to the proposed training approach).

table, the standalone-SE model significantly improved both
the speech quality and noise reduction quality compared
with models trained on noisy speech data. Next, the SE
model was excerpted from the pipeline and trained using
different training approaches. As shown in the third to
fifth rows of the table, the SE models trained using the
conventional joint optimization approaches exhibited bet-
ter SE performance than the model trained using noisy
speech data but worse than the standalone-SE model. This
is because the conventional training approaches focus on
improving only ASR performance without considering SE
performance.

In contrast, the SE model trained using the proposed train-
ing approach achieved the highest speech quality scores for
all measures compared with the SE models trained using the
conventional joint training approaches, which is even better
than the standalone-SE model. This is because the proposed
training approach attempts to improve speech recognition,
which results in speech quality improvement. Specifically,
the SE model by the proposed training approach improved
the CSIG, CBAK, and COVL scores by 0.1533, 0.0202, and
0.1099, respectively, over standalone-SE. However, its noise
reduction quality scores were slightly lower than those of the

standalone-SE model. This result implies that ASR perfor-
mance may be more closely associated with speech quality
than noise reduction quality.

Next, the speech quality and noise reduction quality mea-
surements were repeated using a part of the CHiME-4 dataset,
et05_sumu. Note that simulation data were used in this exper-
iment because ground-truth speech signals for the real record-
ing data were not available. Table 4 compares the speech
quality and noise reduction quality scores of the SE models
trained using different training approaches. The speech qual-
ity and noise reduction quality shown in Table 4 have a similar
tendency to the results shown in Table 3. In other words,
the SE model trained using the proposed training approach
achieved the best scores for all metrics compared with those
trained using the conventional joint training approaches.
Furthermore, compared with the standalone-SE model, the
SE model trained using the proposed training approach
improved speech quality scores while maintaining compa-
rable noise reduction quality scores. Specifically, the SE
model trained using the proposed training approach increased
the CSIG, CBAK, and COVL scores by 0.1545, 0.0312,
and 0.0799, respectively, compared with the standalone-SE
model.
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TABLE 6. Ablation study on the effectiveness of various loss combinations in the proposed training approach on speech and noise reduction quality on
Test-Clean in the noisy LibriSpeech dataset (

√
= applied to the proposed training approach).

TABLE 7. Ablation study on the effectiveness of different loss combinations in the proposed training approach on ASR performance on Test-Clean in the
CHiME-4 dataset (

√
= applied to the proposed training approach).

TABLE 8. Ablation study on the effectiveness of various loss combinations in the proposed training approach on speech and noise reduction quality
using et05_simu in the CHiME-4 dataset (

√
= applied to the proposed training approach).

E. ABLATION STUDY
1) CONTRIBUTION OF DIFFERENT LOSS FUNCTIONS
This ablation study examines the effect of each loss function
in the proposed training approach on SE and ASR perfor-
mances. Table 5 compares the average CERs and WERs
of the ASR models trained with different combinations of
loss functions and the noisy LibriSpeech dataset. Note that
the ASR model in the first row of the table corresponds
to the ASR model trained using MCT and the clean and
noisy LibriSpeech training datasets. The second to last rows
of the table compare the average CERs and WERs for
different combinations of loss functions. The second row
presents the ASR performance when only the SE loss func-
tion is applied. The ASR performance degraded as though the
standalone-SE model was combined with MCT, as shown in
Tables 1 and 2.
Next, the ASR encoder loss was incorporated with the

SE loss in the proposed training approach. As shown in
the third row of the table, the incorporation of the ASR
encoder loss improved ASR performance compared with
MCT-noisy, but the improvement was marginal. Finally,
the loss function in (5) was used in the proposed training
approach. According to the results, the combination of all
loss functions yielded the lowest CER and WER among the
different loss combinations. Moreover, the contribution of
tokenizer loss to ASR performance was greater than that of

the ASR encoder, resulting in significant reductions in CER
and WER.

The contribution of each loss function to speech quality
and noise reduction quality was evaluated. Table 6 shows the
SE performance obtained using the test-clean set in the noisy
LibriSpeech dataset. Similar to ASR performance in Table 5,
the speech quality scores were best when all losses were
combined in the proposed training approach. In addition, the
tokenizer loss more contributed to improving all the speech
quality scores including CSIG, CBAK, and COVL, compared
to the ASR encoder loss. However, the noise reduction quality
scores did not increase, as discussed in Section V-D., imply-
ing that more attention should be paid to speech quality than
noise reduction quality for better speech recognition.

In addition to the noisy LibriSpeech datasets, we repeated
the ablation study using the CHiME-4 dataset to investi-
gate the effect of different combinations of loss functions
in the proposed training approach. Table 7 compares the
average CERs and WERs of the ASR models trained using
the CHiME-4 dataset. The relative reduction in the average
CERs and WERs according to different combinations of loss
functions exhibited a similar tendency on both simulated
and real recording data to the CERs and WERs shown in
Table 5. Table 8 shows the SE performance obtained on the
et05_simu set in the CHiME-4 dataset. Similar to the speech
quality results in Table 6, the speech quality scores were best
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TABLE 9. Comparison of the processing time per one epoch according to
four different training approaches.

TABLE 10. Distributions of conflicting gradients (%) of four different
training approaches on the noisy LibriSpeech dataset.

when all losses were used in the proposed training approach.
Furthermore, the speech quality and noise reduction quality
exhibited similar trend patterns, which were influenced by the
different combinations of loss functions. In other words, the
inclusion of tokenizer loss significantly contributed to ASR
and SE performance improvement on the CHiME-4 dataset,
surpassing the contributions of other loss functions.

2) COMPARISON OF CONVERGENCE AND PROCESSING
TIME
The investigate of a training loss curve provides an intuition
on how much the conflicting problem [24]. Fig. 3 shows
the training loss curves for Joint-Straight, Joint-ASO, Joint-
Grad, and the proposed training approach. Here, the loss
for the three conventional training approaches sums NSNR
and ASR losses, whereas the proposed training approach
computes the sum of NSNR, ASR encoder, and tokenizer
losses, resulting in different loss scales. Thus, the left y-axis
of the figure represents loss for the conventional training
approaches, and the right y-axis denotes loss for the pro-
posed training approach. Among the conventional training
approaches, Joint-Grad showed a lower training loss than
Joint-Straight and Joint-ASO. This implies that Joint-Grad
exhibits a slower convergence speed than Joint-Straight but
faster than Joint-ASO. In contrast, the proposed training
approach converges at around 10th epoch, demonstrating
a faster convergence speed than the conventional training
approaches.

In addition, Table 9 compares the time required per
epoch. The conventional training approaches require the
time to train whole ASR including encoder and decoder,
resulting in longer durations than the proposed train-
ing approach. The Joint-Grad approach involves gradi-
ent projection and rescaling, thereby requiring a longer
processing time than Joint-Straight. Similarly, Joint-ASO
requires two updates per epoch, requiring a longer pro-
cessing time than Joint-Straight. Consequently, the pro-
posed training approach showed the shortest processing
time per epoch among all training approaches, even though
it includes a tokenizer consisting of a time-distributed
layer.

FIGURE 3. Training loss curves on four different training approaches: the
left y-axis corresponds to the loss values for Joint, Joint-ASO, Joint-Grad,
while the right y-axis to the proposed training approach.

3) ANALYSIS OF ALIGNMENT MISMATCH
To examine the mitigation of the alignment mismatch prob-
lem between the SE and ASR losses, conflicting gradients
were measured between the SE-related gradient GSE and
ASR-related gradient GASR. A conflicting gradient can be
measured as cos θ = GSE · GASR

/
∥GSE∥ ∥GASR∥ [24], [51].

To calculate the gradients, each gradient was computed
from the final layer of the DCCRN, specifically a com-
plex two-dimensional transpose convolution layer, using the
noisy LibriSpeech training dataset. The GSE and GASR for
each of the three conventional training approaches, Joint-
Straight, Joint-ASO, and Joint-Grad, were calculated from
the NSNR and ASR loss, respectively. In contrast, the GASR
for the proposed training approach was calculated from both
the ASR encoder and tokenizer losses. Note that since the
SE-related gradient loss was calculated on a frame-wise basis,
the ASR-related gradient loss calculated on a segment-wise
basis in the conventional training approaches was converted
into a frame-wise basis.

Table 10 presents the distributions of conflicting gradi-
ents for the four different training approaches on non-silent
frames in the noisy LibriSpeech dataset. In this table, negative
conflicting gradients ranging [-0.01, -1.0] indicate several
conflicts [52]. As shown in the table, among the three
conventional training approaches, Joint-Grad achieved the
lowest percentage of severe conflicts. The proposed training
approach showed lower percentage of severe conflicts than
the three conventional training approaches. This result can be
interpreted that the proposed training approach contributes
to mitigating the alignment mismatch problem, resulting
in higher ASR performance than the conventional training
approaches.

4) EXPERIMENT WITH ANOTHER SE MODEL
To verify the effectiveness of the proposed training approach
on a pipeline comprising a different SE model, the
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TABLE 11. Comparison of average CERs and WERs of ASR models with FullSubNet+ trained using different training approaches on the noisy LibriSpeech
datasets.

TABLE 12. Comparison of average CERs and WERs of ASR models with FullSubNet+ trained using different training approaches on the CHiME-4 dataset.

TABLE 13. Comparison of speech quality and noise reduction quality scores of FullSubNet+-based SE Model trained using different training approaches
on Test-Clean in the noisy LibriSpeech dataset.

TABLE 14. Comparison of speech quality and noise reduction quality scores of SE models trained using different training approaches using FullSubNet+
on et05_simu in the CHiME-4 test dataset.

FullSubNet+ SE model [53], which exhibited state-of-the-
art SE performance, was replaced with DCCRN SE model.
In this work, the authors’ source code1 using the PyTorch
framework was transformed into the TensorFlow framework.

Tables 11 and 12 compare the average CERs and WERs
of the ASR models trained using four different training
approaches on the noisy LibriSpeech dataset and CHiME-
4 dataset, respectively, when FullSubNet+-based SE model
was employed. Compared with the ASR performance of the
DCCRN-based SE model shown in Tables 1 and 2, ASR
performances according to the training approach had similar
tendency for both datasets: the proposed training approach
exhibited the lowest CER and WER among all the training
approaches. As shown in Table 11, the ASR model with

1https://github.com/RookieJunChen/FullSubNet-plus

FullSubNet+ trained using the proposed training approach on
the noisy LibriSpeech dataset relatively reduced the average
CER and WER by 7.01% and 6.27%, respectively, com-
pared with that trained using Joint-Grad, which was the
best-performing conventional training approach. Similarly,
the ASR model trained using the proposed training approach
on CHiME-4 dataset showed relative reduction of CER and
WER by 3.75% and 3.07%, respectively, compared with that
using Joint-Grad.

Next, Tables 13 and 14 compare the speech quality and
noise reduction quality scores of FullSubNet+-based SE
model according to different training approaches, applied
to the test-clean set in the noisy LibriSpeech dataset as
et05_sumu in the CHiME-4 dataset, respectively. Compared
with the results in Tables 3 and 4, the performance trend of
FullSubNet+-based SE model according to different training
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approaches was similar. In other words, the conventional
training approaches yielded lower SE performance than
standalone-SE. In addition, the proposed training approach
also achieved increased speech quality scores including
CSIG, CBAK, and COVL, compared with standalone-SE.

Throughout these experiments on using the different SE
model, it could be concluded that the proposed training
approach did not limit to any specific SE model, and any
kind of SE model could be a component of a pipeline for
noise-robust speech recognition.

VI. CONCLUSION
This paper proposed a KD-based joint training approach
to address issues associated with a noise-robust E2E ASR
model. To this end, a pipeline comprising SE and ASR
models was constructed, where the ASR and SE models
were interpreted as teacher and student models, respectively.
In this pipeline, an acoustic tokenizer acted as an infor-
mation converter from the frame-wise information of the
SE output into the segment-wise information of the ASR
output to accommodate different goals of SE and ASR mod-
els, i.e., enhancing speech quality and extracting linguistic
information, respectively. To train the acoustic tokenizer,
a tokenizer loss function was proposed. Furthermore, this loss
was combined with SE loss and ASR encoder loss to perform
KD-based training of SE models.

The effectiveness of the proposed training approach was
evaluated through exhaustive experiments on noisy Lib-
riSpeech datasets. First, the CER and WER of the ASR
models trained using the proposed training approach, con-
ventional training approaches, including MCT and MCT-
noisy+standalone-SE, and three different joint training
approaches were compared. Consequently, the ASR model
trained using the proposed training approach yielded the
lowest CER and WER among all models on two differ-
ent datasets. Specifically, the proposed approach relatively
improved the CER andWER by 13.15% and 12.03%, respec-
tively, compared with the MCT-noisy training approach.
Compared with Joint-Grad, the best-performing conventional
joint training approach investigated in this paper, the pro-
posed training approach relatively reduced the CER andWER
by 3.24% and 2.00%, respectively.

The proposed training approach was applied to the
CHiME-4 dataset to investigate its effectiveness on a
real-world recorded speech dataset. According to the results,
the proposed training approach achieved lower CER and
WER than the conventional joint training approaches.

Next, the speech quality and noise reduction quality of
SE models trained using different training approaches were
compared. According to the results, the proposed training
approach yielded the highest speech quality scores among the
comparative approaches, whereas it did not improve the noise
reduction quality compared with the standalone-SE training
approach. These results imply that ASR performance is more
associated with speech quality scores than noise reduction
scores.

An ablation study was conducted to examine the contri-
bution of different combinations of loss functions to SE and
ASR performance. The combination of all loss functions,
such as SE, ASR encoder, and tokenizer losses, yielded the
lowest CER and WER. Furthermore, the contribution of tok-
enizer loss to both SE and ASR performance was greater than
that of ASR encoder loss. Then, to investigate the conflicting
problem on different goals, the proposed training approach
compared its training loss curve with those of conventional
training approaches. Additionally, the frame-wise conflicting
gradients according to each training approach were examined
to analysis the alignment mismatch issue. Finally, additional
SE model was applied to the pipeline of the proposed train-
ing approach to verify its effectiveness across different SE
architecture.

Nevertheless, this study has two limitations. First, we have
to determine whether the acoustic tokenizer trained with a
cross-entropy loss function using noisy labels from K-means
clustering can degrade performance because of overfitting on
difficult samples [54]. Furthermore, this study was conducted
using only one SE architecture and one ASR architecture,
which limits the generality of the results. To address these
issues, overfitting on difficult samples will be explored in
the future using metric learning, which is effective in feature
representation and uses pairwise distances [55]. Moreover,
experiments will be conducted using different ASR archi-
tectures, e.g., attention-based encoder–decoder-based and
CTC-based architectures.
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