
Received 8 April 2024, accepted 14 May 2024, date of publication 21 May 2024, date of current version 30 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3403858

Methodology for Code Synthesis Evaluation of
LLMs Presented by a Case Study of
ChatGPT and Copilot
ZOLTÁN SÁGODI 1,2, ISTVÁN SIKET1,2, AND RUDOLF FERENC 1
1Department of Software Engineering, University of Szeged, 6720 Szeged, Hungary
2FrontEndART Software Ltd., 6721 Szeged, Hungary

Corresponding author: Zoltán Ságodi (sagodiz@inf.u-szeged.hu)

This work was supported in part by European Union Project within the Framework of the Artificial Intelligence National Laboratory under
Grant RRF-2.3.1-21-2022-00004; in part by the Ministry of Culture and Innovation of Hungary from the National Research, Development
and Innovation Fund, financed under the TKP2021-NVA Funding Scheme under Project TKP2021-NVA-09; in part by European Union
under the Horizon Europe Programme (AI4CYBER) under Grant 101070450; and in part by the University of Szeged Open Access Fund
under Grant 6537.

ABSTRACT Large Language Models (LLMs) have grown in popularity in recent years and are now
employed in a variety of software engineering domains thanks to their Natural Language Processing
(NLP) capabilities, which include source code generation, understanding, and documentation. Selecting the
appropriate model for source code generation presents a problem to developers as more and more powerful
LLMs become available. While some studies have evaluated Copilot or ChatGPT, there is a lack of research
on how developers can choose from available LLMs, which is a key factor in the growing set of available
models and services. It is crucial to know if a model is capable of generating useful source code that meets the
quality requirements and if the developers will be able to use the generated code. Regarding these factors, one
has to decide whichmodel to utilize during everyday tasks. This paper shows amethodology to compare such
models by demonstrating an actual comparison of two models. Subsequently, we investigated the functional
and non-functional qualities of the code synthesized by the models on a program synthesis benchmark
containing 25 tasks. On average, the functional testing shows that ChatGPT generated 17 perfect solutions,
while Copilot could only solve 13. The non-functional analysis reflected that both models generated good
quality code, however, both have characteristic code smells. Our evaluation shows that ChatGPT performs
better using this methodology, which is supported by human reviewers who evaluated the generated code by
hand.

INDEX TERMS Artificial intelligence, copilot, ChatGPT, code-synthesis, code quality, large language
models, model selection.

I. INTRODUCTION
In everyday life, Large Language Models (LLMs) are
becoming increasingly popular and are used for various
purposes [1]. It is the same in software engineering as
developers leverage LLMs’ Natural Language Processing
(NLP) capabilities. LLMs are used for a variety of tasks such
as source code comprehension, documentation generation,
or various testing tasks, e.g. test case generation. In recent

The associate editor coordinating the review of this manuscript and

approving it for publication was Antonio Piccinno .

years, source code generation has emerged as a key
component of LLM utilization.

Source code generation is the process of automatically
producing code based on high-level abstractions defined in
domain-specific languages (DSLs) [2] or other declarative
languages. The objective of source code generation is to
reduce the amount of low-level, repetitive coding work that
developers need to do, enabling them to focus on higher-level
tasks and reducing the likelihood of errors and bugs. While
source code generation has a long history, from the 70’s [3]
even to the 2010s [4], recent advances in LLMs [5] allow

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 72303

https://orcid.org/0000-0001-5828-6265
https://orcid.org/0000-0001-8897-7403
https://orcid.org/0000-0003-1561-7073


Z. Ságodi et al.: Methodology for Code Synthesis Evaluation of LLMs

developers to express required program code using natural
language definitions.

While having more time for abstract tasks and generating
code with low cost is advantageous, in software development,
the quality of the source code is at least as important as
the time spent on development. There are multiple factors
affecting source code quality, and there are several ways to
measure it. One approach is using static code analysis [6],
which allows for the code to be analyzed without executing it,
without any tests, or even without a compiled binary file. The
results of the analysis can be coding rule violations, detected
code duplication, or code metrics. Although static analysis is
a powerful and widely used technique, it is not the only way
to measure source code quality. Code quality is often defined
from a human perspective, and metrics may not adequately
reflect this [7].

The previously mentioned aspects are the keys to suc-
cessfully using LLMs in software engineering, although it
is not shown how to choose the best LLM for a given task.
There are already studies that evaluated a chosen LLM [5],
[8] from various perspectives, but evaluating only one LLM
might mean missing out on a better model. Evaluating all the
possible models by the previously described methods takes
too much effort as they mostly require a lot of human actors
and effort during the evaluation.

In this paper, we investigate different aspects of the quality
of LLMgenerated source code. It is important to know how to
compare the generated source code; what are the main factors
in which they differ most; and what aspects a developer
should consider when choosing a development assist tool.

We do this by giving a simple methodology and showing
its usefulness through an actual evaluation of two LLMs
capable of source code generation: ChatGPT and Copilot.
We examine how these models work with natural language
task definitions, how the generated code (for C++ and Java)
behaves, and what the quality of the generated code is like
from multiple perspectives. We decide which model is better
in every phase of the evaluation and finally we support our
decisions by human reviewing, similar to other papers [8],
[9]. The research questions addressed in this paper are:

• RQ 1: How does LLM-generated source code score
in terms of source code quality?

• RQ 2: Is the generated source code accepted by
developers?

• RQ 3: What aspects should be considered when
choosing LLM-based generative tools?

The main goal of this paper is to highlight the importance
of proper comparisons, not to introduce optimized prompt-
ing or selecting up-to-date models as those are changing
dynamically. The latter might be decided using the provided
methodology with actualized data and models.

This topic relates to RQ3, in which we discuss the
main components of a decent comparison, but it cannot be
discussed without the previous two RQs. Our first RQ is in
the first place because humans will eventually operate with

source code, where quality still matters as people prefer to
work with good quality code. In our use case, we found
that there are models that are capable of generating code
with good quality. Our second RQ is still required in our
methodology, as various problems can be solved in various
ways and programming manners. Developers usually have
their favorable style and way of thinking. The use case
showed that developers tend to accept the generated code
conditionally, meaning that the generated code is not perfect
but can be used by developers and it helps their work.

The paper’s subsequent sections describe related works in
Section II. We present our methodology in Section III, and in
Section IV, we compare two models in an actual case study
and discuss the results. SectionV addresses threats to validity.
Finally, we summarize the paper in Section VI.

II. RELATED WORK
In this work, we compare LLMs based on the quality of their
generated source code from different aspects. Both LLMs
and quality assurance are already integral parts of software
engineering both in academic [10], [11] and industrial
fields [12].
There are various papers describing static analysis tech-

niques and tools [13], [14], articles that compare these
tools [15], and even papers that use machine learning for
static analysis tasks [16]. Static analysis is performed on
the source code (or the generated byte code in the case of
Java-based languages) thus it does not require running the
code. The code is mostly written by developers, but nowadays
source code generation and synthesis allow developers to
create code without any or with only a minimal amount
of human interaction. As source code synthesis has a long
history [17], those methods used to rely on mathematical
derivations and various rules. Nowadays, neural networks are
taking over these methods since LLMs are available such as
Codex [5], which supports GitHub’s Copilot, and the recently
introduced ChatGPT. Both models are based on GPT-3 [18].
There are also models based on Google’s LaMDA [19], such
as Bard. These models are generative models [20], meaning
they are capable of producing text from an input, usually
natural language text, and the output can be source code.

As quality assurance and static analysis can be performed
on the source code it is obvious that we must examine how
the generated code performs. There are works that evaluate
LLMs. Vaithilingam et al. [8] evaluate Codex via the Copilot
plugin and show the effects of such a tool on the development
itself. They included 24 developers and asked them to create
a program using Intellisense and Copilot. Sobania et al. [21]
did a comparative study on Copilot and Genetic program
synthesis. They used the same benchmark [22] we did;
however, they added extra prompting by defining a function’s
signature, thereby optimizing the prompt for Copilot. Their
main goal was to compare two methodologies for program
synthesis and did not measure the quality of the synthetized
code. In the work of Madi [9], the readability is measured by

72304 VOLUME 12, 2024



Z. Ságodi et al.: Methodology for Code Synthesis Evaluation of LLMs

FIGURE 1. Overview of the methodology with key elements.

static code analysis but they do not check further qualities
and they rely heavily on human annotators; 21 people to
be specific. These works show that LLMs are capable of
generating source code that is similar to human-written code
in terms of readability and maintainability. There are even
works [23] showing the performance of the generated code
matches human-written code. Although there are works that
evaluate not only one LLM [24], that highlight the drawbacks
of LLMs, they do not show a proper way to compare them,
therefore, they give no suggestion for how the better model
could be chosen. These works mostly rely on a larger number
of annotators or human reviewers, which is an expensive
resource both in the academic and especially in industrial
field.

LLMs are also used to fix vulnerabilities in source
code [25], which might suggest that these models are free
from vulnerabilities, however, there are multiple works that
show Copilot being prone to generate vulnerable code [26],
[27], [28]. ChatGPT is not free from vulnerabilities either
as it is shown in the work of Khoury et al. [29]. In their
work, it is shown that ChatGPT is capable of fixing the
vulnerabilities by further prompting, which leads us to the
problem of optimal prompting.

III. METHODOLOGY
In this section, we describe a methodology of how LLMs
can be compared and which are the main factors to consider.
We describe four phases: selecting the right prompt, checking
functional validity, checking technical quality, and human
evaluation. The main goal of this paper is to emphasize the
importance of each step. The main steps and key elements
are shown in Figure 1.

A. SELECTING THE RIGHT PROMPT
First of all, the prompt provided for the models must be
carefully selected, which presents a challenge as none of the
compared models should be favored by optimized prompting.

The difficulty and level of detail of the problems’ descriptions
are the main factors to consider when working with NLP-
based systems.

The difficulty of the problem greatly affects the quality
and usability of the generated source code. A simple ‘‘hello
world’’ program provides no meaningful information about
the models’ capabilities. When attempting to generate a
complete project with multiple files and perform complex
algorithms, the model may encounter difficulties that prevent
it from generating proper source code. This way the model’s
capabilities stay hidden. The input task must have the
appropriate level of difficulty to measure the difference
between models.

The level of detail in the problem description is also
a crucial factor. Providing too much information gives
no indication of whether the model can identify complex
connections between elements within the problem. Providing
too little information may result in the models not generating
a solution, or the solutions may be too different, which does
not provide any additional information for our comparison.
The detail of the description must be at a level that challenges
the models, but it should be clear from a description what the
solution should be.

Another crucial factor in selecting the right prompt is
prompt engineering. Although LLMs are designed to interact
with natural language, therefore, simple commands, such as
‘‘Generate’’, or ‘‘Write code’’ can lead to the desired results,
various prompting techniques could optimize these results.
Such techniques must be taken into consideration, paying
attention to the latest prompt engineering results relating to
the models; e.g., Github’s advice [30]. Denny et al. [31] show
that NL prompt changes affect the resulting source code.
It can be performed with prompt patterns such as the work
of White et al. [32].

B. CHECKING FUNCTIONAL VALIDITY
Secondly, after using the right prompts, the LLM-generated
source code has to be syntactically correct and fully
functional. To ensure this, functional testing has to be
performed which must include various test cases both for
selected edge cases and non-edge cases as this shows how
robust the solution is. To perform this testing, proper test
cases need to be available with input and required output
pairs. Handling the input and output may be different in
the code generated by different LLMs, so one might have
to modify the generated code for automated tests, and the
modifications must not have any effect on the functional code
parts.

C. CHECKING TECHNICAL QUALITY
Thirdly, the generated code has to pass some quality
requirements, which can be measured by static analysis. The
static analysis could include various techniques, rules, and
metrics. All of these elements depend on what context the
generated code is used in. An optimal solution would use the

VOLUME 12, 2024 72305



Z. Ságodi et al.: Methodology for Code Synthesis Evaluation of LLMs

same pipeline for static analysis as the actual development.
If no such configuration is available, static analyzers should
be configured according to best practices, e.g. by considering
the work of Kaner and Bond [7].

D. HUMAN EVALUATION
Finally, the most expensive part is human evaluation. This
phase is optional as human resources are expensive, however,
one can be fully confident in the results after human reviews.
In contrast to other works, we do not suggest that a large set of
developers should evaluate the generated source code as this
phase is just additional to the previous phases. During human
evaluation, reviewers must not know about the result of the
functional test phase and technical test phase. Reviewers
should be asked to evaluate the generated source code on an
even-numbered scale, forcing them into decision making.

Although the methodology steps seem trivial, many of the
related works lack this evaluation methodology. Vaithilingam
et al. [8] and Dominik et al. [21] did evaluate program
synthesis, but the results were conducted on functional
results and the experience of the users, while there were no
source code quality, security, or performance comparisons.
Although, in the work of Madi [9], they evaluate the static
properties of the source code, they lack the proper description
of functional properties and the way of prompting during
the iterative development. Related works lack the proper
evaluation steps on the very basic steps, therefore, an abstract
descriptionmust be given in order to properly compare source
code synthetization methods.

IV. CASE STUDY
In this section, we compare two LLMs, namely Copilot and
ChatGPT using the methodology presented in Section III.
This case study is a simplified version of an actual
comparison in order to show how to evaluate actual models.
An actual evaluation must be done on a benchmark that
fits the required programming qualities the best, such as
graphical pipeline programming, high-end servers, low-
latency requirements, etc. During an actual evaluation, it is
not the default SonarQube settings that should be used, but
rather the available unique rule sets, configurations or even
other, already-in-use static analyzers apart from SonarQube.

Selecting Copilot and ChatGPT was not based solely on
their popularity in software engineering tasks but on their
applicability. They have great availability through APIs and
UIs and, therefore, are likely to be used in actual projects.
Although there are other source code specific LLMs, such as
CodeT5- or BERT-basedmodels, which can be evaluatedwith
our methodology, due to their limited availability through
APIs they are less likely to be integrated. We provide in the
supplementary material the generated source code and the
applied diffs to them. We provide the scripts and random
numbers we used during our research to run the benchmark
evaluations. We also include the validated results for static
analysis and the raw numbers from the human evaluation

phase. To this case study we provide an online appendix
available on Zenodo: https://zenodo.org/record/8123647.

A. SETUP OF THE CASE STUDY
To present the usage of our methodology we had to consider
various factors such as which models to compare and what
programming language to evaluate these models on. In the
following sections, we describe which models were selected
and why. We also describe our programming language
selection.

1) UTILIZED LLMS
For our comparison, we utilized Copilot, a Visual Studio
Code extension1 and ChatGPT,2 which we accessed through
its online web interface. Both models were employed to
generate input data on the first week of January 2023.
As these models can interact with developers, there is no
definitive answer to any given problem. Copilot continuously
generates code snippets as the developer writes code, while
ChatGPT can modify the code if the developer provides
additional conditions or a more precise description of the
task. To ensure a fair comparison, we used the same problem
description for both models and did not interact further with
them. Thismeans that we accepted the first generated code for
a given input. Using Copilot we ensured that the workspace
is clean so the results were not altered. Using ChatGPT we
opened a new chat windows for every task in order to have a
clean context.

2) PROGRAMMING LANGUAGE SELECTION
In terms of programming languages, we had to choose
from multiple languages due to limited manpower during
the comparison evaluations. We selected languages that are
widely used in academic and industrial fields. Our first
language of choice was C++, as it is easy to program using
classes and an object-oriented programming (OOP) style or
using only functions in a non-OOP style. Additionally, C++

provides a wide range of tools that are easy to use but can also
be used in a complexmanner. Furthermore, C++ is notorious
for its memory management issues, making it a good choice
for our code quality tests.

To mitigate the potential effects of language selection on
our results, we decided to use another language that is a
managed language where memory management issues do
not arise and the language primarily supports OOP. Our
second language of choice was Java, which is a widely used
programming language, and it is well-known for having a lot
of boilerplate code. Asking for Java code requires the model
to generate every small detail to have a working solution,
making Java a good choice for our second language.

To note, C++ and Java are both compiled languages,
which is an additional condition against the generated sources
as the code must compile.

1https://marketplace.visualstudio.com/items?itemName=GitHub.copilot
2Version Dec 15 - https://chat.openai.com/.

72306 VOLUME 12, 2024



Z. Ságodi et al.: Methodology for Code Synthesis Evaluation of LLMs

LISTING 1. Example prompt for a C++ solution for the basement problem.

B. SELECTING THE RIGHT PROMPT
The first step in our methodology is selecting the right
prompts with right difficulty and level of detail. As this task
is very complicated we decided to use a program synthesis
benchmark [22], which includes 25 programming tasks from
various sources. We provided the task descriptions from this
benchmark as the prompts with a fixed prefix e.g. ‘‘Generate
a <LANGUAGE> code to solve the problem!’’, where
LANGUAGE is C++ or Java. A C++ prompt example is
shown in Listing 1, where the first sentence is the prefix
with the selected language and the remaining part is the text
extracted from the benchmark.

We decided to use simple prompts as the case study is just
a way of showing our methodology in action. The selected
prompts are likely to be used by a software developer who
does not have prompt engineering experience. The person
evaluating will not necessarily use these exact prompts but
instead use specific techniques that may not even exist yet.
They might be using a model that needs a special kind
of prompting (e.g. they have to provide elements in JSON
because that is how the model was trained). Therefore, since
we cannot provide for all current and future use cases,
optimizing the prompts was not something we were aiming
for.

C. CHECKING FUNCTIONAL VALIDITY
To evaluate the program’s functional validity, we used the
benchmark’s input and output values for each task. These
values were divided into two disjunct parts: edge cases, which
included various tests for each task that were considered
edge cases for the problem, and random cases. The number
of edge cases varied from 5 to 40 depending on the task.
We executed all available edge case tests. The random
test cases included one million input-output pairs per task.
We randomly3 selected 10,000 input-output pairs from the
pool of one million random cases for every task. The selected
input-output pairs were used as random cases for later
evaluations.

However, the generated source codewas not directly usable
for executing the tests because it might or might not read
inputs from the console or write results to the console.
Therefore, we had to further modify the code to unify the
inputs and outputs by using the same way of reading input
from the console and writing output to the console. It also
included that additional text answers were removed and only
the required parts were kept. Only the input and output lines

3See supplementary material referenced in Section IV -
https://zenodo.org/record/8123647.

were modified, not the functional code. All source code
differences are available.4

Java source code did not require additional modifications.
In the case of C++, ChatGPT generated solutions mostly
compiled with no error, but we had to subsequently correct
the generated programs for 3 benchmark tasks manually:

• leaders: include climits, algorithmweremissing.
• cut_vector: climits include was missing.
• vector_distance: limits include was missing.

All these errors are related to missing includes, which could
be solved by a simple added line. There were no problems
during the linking phase after the missing includes were
added.

Copilot also generated mostly compilable C++ code, but
there were also some problems that we had to handle:

• leaders: It generated a vector variable with the same
name as a previously declared function, thus resulting
in a compile error as the function call ended up being
a call-operator of the declared variable. Renaming the
variable solved the error.

• indices_of_substring: The generated source did not
contain a main method, but only a function containing
the solution, thus resulting in a linker fault. This problem
can be solved by using a dummy main method.

• twitter: The generated source did not contain a
main method. We used the same solution as for
indices_of_substring.

Once the programs were ready to run and the input
and output values were unified, we were able to compare
the desired and actual output values. We performed a
strict comparison, meaning we compared each character in
the output values. The benchmark also included floating-
point values with large precision as outputs, so numeric
errors could lead to different values even with correct
functional code. To address this issue we compared floating-
point values with an epsilon value, and differences smaller
than the given epsilon did not count as differing values.
The epsilon value for comparison was 0.00001, which
was determined by investigating the differences between
programmed computations and closed formula computations
for the tasks when it was possible. We use these results as
epsilon evaluation results.

Tables 1 and 2 present the performance results for C++

and Java, displaying the pass ratio for each model on
every task. The tables include edge case, random case tests
and provide results for exact matching, as well as epsilon
matching, which was included to accommodate comparisons
involving floating point numbers. Furthermore, the ‘‘Diff’’
columns in the tables provide the difference in pass ratio
between the two models on the exact and epsilon matching.
This difference value indicates whether Copilot or ChatGPT
performed better. Specifically, a negative difference value
indicates better performance from Copilot, while a positive
value suggests better performance from ChatGPT. The cells

4See supplementary material referenced in Section IV.

VOLUME 12, 2024 72307



Z. Ságodi et al.: Methodology for Code Synthesis Evaluation of LLMs

are colored, and the bluer a cell is, the better Copilot
performed; the more orange a cell is, the better ChatGPT
performed.

Later on, we use the epsilon results as they are not altered
by the floating point comparison error. Although, the results
are very similar in exact and random comparisons. There are
a few cases where epsilon comparison resulted in a larger
difference:

• C++ - bouncing_balls
• C++ - snow_day
• Java - bouncing_balls
• Java - vector_distance
• Java - snow_day

The tasks bouncing_balls and snow_day are tasks where
the generated source code contains iterative computation with
floating-point variables, therefore, the floating-point error
is not a surprise. The task vector_distance includes large
dimensional vectors with floating point values, therefore, the
floating-point error could cause differences in the outputs.

1) C++

During the edge case testing phase (see Table 1), a number
of solutions encountered runtime errors. Specifically, the
ChatGPT model faced runtime errors in 80% of the test
cases for the solve_boolean task. After conducting a thorough
investigation, we determined that an incorrect operator
ordering was the root cause of the issue, which subsequently
impacted the entire testing process whenever an operator
was encountered. On the other hand, the Copilot model only
experienced a single instance of runtime error during edge
case testing, which occurred with no input.

Despite these challenges, ChatGPT achieved pass rates of
100% with epsilon evaluation on 18 out of 25 tasks, while
Copilot achieved pass rates of 100% with epsilon evaluation
on 13 out of 25 tasks. Notably, the models obtained identical
pass-rates on 14 out of 25 tasks. However, on average, Copilot
outperformed ChatGPT with a pass-rate of 54% on three
tasks, with a standard deviation of 36.14, while ChatGPT
performed better with an average pass-rate of 58% on eight
tasks, with a standard deviation of 35.98.

Although edge cases are an integral part of software
testing, it is important to investigate how the generated
sources perform with a larger input size. On the random test
set (see Table 1), ChatGPT managed to achieve a 100% pass
ratio on 19 tasks, whereas Copilot achieved a 100% pass ratio
on 13 tasks.

Examining the epsilon differences, ChatGPT exhibited
superior performance with an average pass-rate of 72.88%
on eight tasks, with a standard deviation of 35.92. Likewise,
Copilot performed better on two tasks, with an average pass-
rate of 51% and a standard deviation of 69.3. Based on the
deviation, it is evident that ChatGPT outperforms Copilot in
a more consistent manner.

Upon closer examination of the data, it appears that
performing random tests instead of edge cases did not

unconditionally increase the pass ratio. In fact, it resulted in a
decrease in a few tasks. Solutions generated by ChatGPTwith
lower pass rate on random test cases were: bouncing_balls,
bowling, dice_game, solve_boolean, vector_distance.

Only on one of these tasks did the ChatGPT-generated
source code reach 100% during edge case testing. Since
tasks with a pass-rate of less than 100% could potentially
worsen by increasing the number of erroneous cases,
the task that originally reached the pass rate of 100%
(vector_distance) was of particular interest. Upon further
investigation, we discovered that the discrepancies in this
solution were caused by floating-point errors exceeding our
epsilon value.

Solutions generated by Copilot with lower pass rate on ran-
dom test cases were: bouncing_balls, bowling, dice_game,
find_pair, leaders, snow_day, vector_distance.

In the case of Copilot, vector_distance was the only task
that reached 100% pass rate previously and lowered in the
random case. This disparity can be attributed to discrepancies
in floating-point values that exceeded our epsilon value.
Notably, the values changed in unison for ChatGPT and
Copilot relating to this task, and the generated solutions were
nearly identical, save for the fact that Copilot lacked vector
dimension validation, which was not an explicit requirement
of the task.

We looked into how themodels performed in both edge and
random case testing, and also how the pass-rates decreased.
However, another important factor to consider in functional
testing is whether the results remain similar or get better
with random testing. If the results are similar during random
testing, it suggests that the edge cases do not negatively
impact the pass-rate, and thus the solution is generally more
robust.

We found that ChatGPT performed better on five tasks on
the random case than on edge case. The average difference
was 21.4% with a standard deviation of 8.44. Copilot
performed better on seven tasks, with an average of 39% on
the random case with a standard deviation of 21.56. Since
using random test cases mainly affected code that did not
achieve a 100% pass rate in the edge case scenario, and
using random tests has increased the pass rate especially for
Copilot, we conclude that ChatGPT is more robust.

Regarding C++, ChatGPT performs slightly better on
both edge case and random selected testing using epsilon-
matching.

2) JAVA
We evaluated both models using Java language as well and
the results are presented in Table 2, similarly to the C++

evaluation.
During edge case testing, the ChatGPT model encountered

runtime errors in 5 out of 10 tests for the task cut_vector,
and in 1 out of 10 tests for the task leaders. Meanwhile, the
Copilot model encountered runtime errors in 13 out of 21 tests
for the task bowling, and in 1 out of 10 tests for the task
leaders.

72308 VOLUME 12, 2024



Z. Ságodi et al.: Methodology for Code Synthesis Evaluation of LLMs

TABLE 1. C++ - Edge case and random generated test pass ratio with exact and epsilon matching.

The runtime errors encountered by ChatGPT on the task
cut_vector were due to improper handling of input where the
code was not prepared for an array with only one element.
On the other hand, the runtime error on task leaders was
caused by the code’s inability to handle an empty array input.

In the case of Copilot, the runtime errors encountered on
the task bowling were caused by improper handling of string
indices. The code was dereferencing characters based on an
assumption that there would be more characters. For the task
leaders, the code was not able to handle an empty array
input.

Despite these errors, ChatGPT achieved a 100% pass rate
with epsilon testing on 15 tasks, while Copilot achieved a
100%pass rate on 13 tasks during edge case testing. ChatGPT
performed better on 10 tasks with an average pass-rate of 55%
and a standard deviation of 31.77. In comparison, Copilot
performed better on 4 tasks with an average pass-rate of 58%
and a standard deviation of 40.4.

On random test cases, both ChatGPT and Copilot achieved
a 100% pass rate on 14 tasks. During random testing
ChatGPT performedworse on the following tasks than during
edge case testing: bouncing_balls bowling dice_game leaders
snow_day solve_boolean vector_distance. We conducted an
investigation on the only task that attained a 100% pass rate
on the edge case test, namely vector_distance. It was revealed
that the discrepancies were due to floating point errors
that exceeded the epsilon value employed in our matching
method. Compared to edge case testing, Copilot performed
worse on the bowling, coin_sums, leaders, mastermind,
shopping_list and snow_day tasks. Among Copilot generated
solutions there was no such task that reached 100% on the

edge case testing and reached lower pass-rate on random
testing.

Investigating the robustness of the generated code, using
non-edge case tests compared to edge case tests, we found
that ChatGPT’s pass-rates increased on 2 tasks by an average
of 22% with a standard deviation of 19.8, while Copilot’s
pass-rates increased by average of 9.67% with a standard
deviation of 6.5. We can conclude that the source code
generated by both models that reached 100% pass rate on the
edge case mostly did not have lower pass-rates on random
tests, and running non-edge test cases did not drastically
increase the pass-rates. Therefore, the working solutions are
robust. Regarding Java, ChatGPT performs slightly better, but
Copilot’s working examples seem to be more robust.

D. CHECKING TECHNICAL QUALITY
To perform a technical quality check, we employed static
analyzers as a straightforward comparison method. We uti-
lized SonarQube5 and SonarScanner6 to analyze the projects,
and extended SonarQube with the SourceMeter plug-in [33]
that offers additional metrics, coding rules, and language
support. As the community edition of SonarQube does not
support C++ analysis, we relied on SourceMeter for C++

analysis. This plug-in incorporates a variety of analyzers,
such as ClangTidy, which are capable of detecting coding
errors and bad programming practices of varying severity and
calculating different metrics.

5V.8.9, www.sonarsource.com/products/sonarqube/downloads/lts/8-9-
lts/.

6V.4.6.1.2450, binaries.sonarsource.com/Distribution/sonar-scanner-
cli/sonar-scanner-cli-4.6.1.2450-linux.zip.

VOLUME 12, 2024 72309



Z. Ságodi et al.: Methodology for Code Synthesis Evaluation of LLMs

TABLE 2. Java - Edge case and random generated test pass ratio with exact and epsilon matching.

The coding smells and bugs were validated by hand as
static analyzers are prone to false positive warnings and are
tedious to configure. The material referenced in Section IV
includes a list of reported warnings and the fact whether it
was a true or false positive warning.

Although C++ and Java are object-oriented, the solutions
were very simple and did not use anything from OOP,
therefore, there was no use of measuring OOP metrics like
inheritance, coupling, or cohesion, thus we selected size
and complexity metrics only. We used several metrics, such
as Logical Lines of Code (LLOC), Number of Statements
(NOS), McCabe Cyclomatic Complexity (McCC), and Nest-
ing Level (NLE), to evaluate the results of the static analysis.
(LLOC excludes lines containing comments or whitespace.
NLE counts multiple else if statements as only one
additional depth.) These metrics are considered the lower the
better.

On average, static analysis did not reveal any vulnerability
hidden in the generated code either in ChatGPT- or in
Copilot-generated solutions. The tasks were quite small and
did not require a large amount of library usage, this way, the
generated code appears to be vulnerability-free but cannot
be considered so due to the non-deterministic nature of the
models.

1) C++ RESULTS
The summarized results of the static analysis are presented
in Table 3. For C++, it is evident that the models are
comparable in terms of metrics. Therefore, we focused on
a few cases where one model differs from the other more
than the average. Additionally, aside from pure metrics, it is

crucial to consider the code smells that these models generate
since they may be prioritized.

The average ratio of the metrics is around 1.0 so we
discuss the tasks where one model scored 1.5 times more of a
metric than the other. These tasks are cut_vector, dice_game,
find_pair, fizz_buzz, indices_ofsubstring, spin_words, substi-
tution_cipher, twitter and cut_vector.

ChatGPT-generated sources are worse in twitter and
vector_distance. Investigating these source codes we found
that the higher McCC value in task vector_distance is due
to the way it reads the input and the input is validated.
The higher NOS value in task twitter is due to the fact
that ChatGPT generated a main method in order to test the
solution while Copilot did not.

Copilot scored worse metric values in the remaining tasks
as there was no such task where one metric was better
for one model and another metric was better for another
model. In task substitution_cipher the metric NLE is 3 times
higher for Copilot, which is due to embedded for-loops.
ChatGPT used an unordered_map while Copilot used for-
loops resulting in higher NLE and higher complexity. For
task spin_words two metrics, NOS and McCC were worse
in Copilot-generated source. In this case, both McCC and
NLE higher values were caused by the fact that Copilot
used for-loops to reverse a string while ChatGPT used
std::reverse calls. For task indices_of_substring, the
McCC and NLE metrics were twice as bad. Once again,
Copilot generated code that compares substring meanwhile
ChatGPT utilized the find method. For task fizz_buzz the
LLOC metric was worse, which was caused by the additional
curly-brace pairs in Copilot’s code. For task find_pair the

72310 VOLUME 12, 2024



Z. Ságodi et al.: Methodology for Code Synthesis Evaluation of LLMs

TABLE 3. Static analyzer result for C++ and Java (G = ChatGPT, P = Copilot).

metrics LLOC andNOSwere worse. Investigating this source
we found that Copilot used a vector for testing like ChatGPT,
but it used push_back methods multiple times instead of
initializing it with the generic initializer. For task cut_vector
it was the same case. Task dice_game scored worse in every
metric and NLE was 3 times worse. Investigating this task
we found that ChatGPT used a formula to calculate the result
while Copilot enumerated every possible outcome and this
increased all the metrics. Note, that in this case neither of
themodels generated correctly functioning code but Copilot’s
solution is closer to a working code.

Besides the pure metrics, the number of bad coding prac-
tices and the types of these must be investigated. The number
of code smells was very similar for both models. The most
common code smell was using magic constants. In the
solutions generated by ChatGPT, it occurred 25 times, while
in the solutions of Copilot, it occurred 24 times.

From the validated coding smells the following smells
were equally typical for both models: magic constant,
narrowing conversion, string reallocation, and copying values
instead of passing references. Coding smells typical for
ChatGPT: multiple declarations in one line, not using braces
for single statements. Coding smells typical for Copilot:
redundant string initialization, not using range-based for-
loops, using else after return, not using empty for emptiness
check, redundant boolean operator.

The mentioned coding smells are categorized as Major
in SonarQube. We also took into consideration the Minor
labeled smells. There were three of them in ChatGPT-
generated sources. All of them suggest replacing a code part

with a standard algorithm, like accumulate and transform. For
Copilot, the Minor labeled smells point out that there were
return statements following each other and a variable’s scope
could be reduced.

Taking C++ both models are similar in the aspects of
metrics and coding smells too. Copilot tends to generate more
coding smells specifically that relate to modern C++ code.

2) JAVA RESULTS
Similarly to C++, we only discuss tasks where the models
are significantly different. One of the tasks where ChatGPT
scored worse is substitution_cipher. The NOS, McCC, and
NLEmetrics are worse for ChatGPT. Investigating the source
code, ChatGPT generated a Map for characters meanwhile
Copilot used single methods for look-up. This affects the
above-mentioned metrics as there are more statements and
additional loops. Another task where we investigate the code
is bowling. In this case, ChatGPT generated a utility function
for the task which led to the increased McCC as they usually
include loops.

Copilot-generated tasks got worse metric values for many
tasks and not only for one metric. Investigating the source
code we found that for vector_distance, shopping_list,
fuel_cost, and cut_vector the difference is due to testing.
ChatGPT generates fixed tests while Copilot reads values
from console resulting additional code e.g. for reading
vectors.

In the remaining examples LLOC, McCC and NOS were
higher for Copilot. Investigating the code we found that all

VOLUME 12, 2024 72311



Z. Ságodi et al.: Methodology for Code Synthesis Evaluation of LLMs

the tasks are similar, Copilot tends to generate more iterations
than ChatGPT. It uses iterations instead of using built-in
iterations and methods.

Paying attention to the validated code smells again, there
was no code smell which was typical for both models.
ChatGPT tends to have the following code smells: using
synchronized class if not needed, not using interface or
abstract return types, and ChatGPT-generated one example
where an unused import was present. Copilot tends to
have the following code smells: misleading method name
that matches the class name, not using string builder thus
making the code less effective, bad naming convention for
variables, having unused parameters and in one example
Copilot introduced a bug by using a method overload that
generates a temporary object.

For Java, we conclude that Copilot generates larger and
more complex code which could be replaced by improved
algorithmic solutions and function calls.

Based on these results we can answer RQ 1: How does
LLM-generated source code score in terms of source code
quality? LLMs perform quite well in terms of static analysis.
They only occasionally introduce bad smells or bugs but the
generated code passes the SonarQube quality gates mostly
with the best score.

E. HUMAN EVALUATION
In the human evaluation, 5-5 developers were interviewed for
each of the two programming languages. These developers
had industry experience ranging from 5 to 20 years.
We developed a simple web application for performing the
manual evaluation. During the inspection, the developers
were required to read the task text used to generate the
source code. Once they understood the task, the generated
sources were presented side-by-side for both models, with
the order randomly swapped to prevent the developer from
identifying which model was used. The developers were then
asked to rate four properties of each source code on a [-2;2]
interval, excluding 0. We chose this interval because it does
not allow the developer to remain neutral, and the plus and
minus values represent liking and disliking, respectively. The
properties that had to be scored were the following (with their
instructions towards the developers):

• First impression: Score the source code according to
your first impression. There are no special aspects given
that affect this score what you should consider. It is
solely your impression. Scale it from −2 to 2.

• Readability: Score the source code according to its
readability. Readability refers to your experience during
reading the code, while you are trying to understand the
various steps and conditions. How clear the purpose of
a variable or a method is. How easily you can follow the
flow of the code. Score it from −2 to 2.

• Usability: Score the source code according to its
usability. Usability refers to your experience during
interactingwith the source code. It involves writing tests,

including it in your source base, or using it as a black box
program. It should measure how satisfied you are after
using this source code. Score it from −2 to 2.

• Modifiability: Score the source code according to it’s
modifiability. Modifiability determines how hard it is to
change the code, to add or remove functionality. Score
it from −2 to 2.

Besides these properties, the developers had to decide
whether they accepted the source code or not. The possible
values were ‘‘Strong reject’’, ‘‘Weak reject’’, ‘‘Weak accept’’,
and ‘‘Strong accept’’. These string values are mapped to the
already used [−2;+2] interval where ‘‘Strong reject’’ refers
to -2 and ‘‘Strong accept’’ refers to +2. Zero value is not
allowed either. After scoring all the values, the developers had
to decide which of the shown source code was the better one.

As the previous sections presented the quality of the
generated code, this section evaluates how that code was
considered by experts. Table 4 shows the developer evaluation
results for C++ and Java. The values are summed scores7

for every property, each scoring from −2 to +2, therefore,
with 5 developers for each language the lowest score is
−10 (marked with red in the table) and the highest is +10
(marked green). The developers not only had to score based
on 5 properties, but had to decide which code was better (G/P
column). The negative values mean that ChatGPT was better
according to the experts while the positive values denote the
cases when Copilot was better.

1) C++ RESULTS
For C++, the results in Table 4 show that ChatGPT is more
welcome than Copilot. The First Impression for ChatGPT
on average over the tasks and developers is 5.8 with a
3.7 standard deviation while Copilot reached only 2.2 with
a 4.27 standard deviation. Looking at Usability, the average
for ChatGPT was 5.0 and for Copilot it was 2.0. The standard
deviation for ChatGPT andCopilot were quite similar, 4.9 and
4.5. It shows us that both models can generate quite usable
code and also hard-to-use code according to our developers.
Regarding Readability, both models achieved quite good
scores, in average ChatGPT scored 7.3 and Copilot reached
5.0. The standard deviations were 2.4 and 3.2. It shows
that ChatGPT generates more readable code, slightly more
frequently but Copilot’s score is quite similar. Modifiability
scores are similar too in average, 6.4 for ChatGPT with a
standard deviation of 2.8 and 5.4 for Copilot with 3.2 standard
deviation. The Acceptance has a larger difference. ChatGPT
reached 5.6 in average with a standard deviation of 5.5 and
2.6 for Copilot with standard deviation of 5.8. It seems both
models have accepted and rejected reviews and the large
deviation shows that both models can generate very good and
very bad code.

Although the pure numbers show that ChatGPT is more
favorable among the developers, we investigated how these
numbers would change if we included only the projects where

7See supplementary material referenced in Section IV.

72312 VOLUME 12, 2024



Z. Ságodi et al.: Methodology for Code Synthesis Evaluation of LLMs

TABLE 4. Developer evaluation results for C++ and Java (G = ChatGPT, P = Copilot, F.Impr. = First Impression, Usab. = Usability, Read. =Readability,
Modif. = Modifiability, Acc. =Acceptance, G/P = ChatGPT or Copilot is better).

the models reached good enough pass rate in random testing.
We did it for tasks where both models reached at least 75%
pass rate, for tasks where only ChatGPT scored this level of
pass rate and for tasks where only Copilot did so.

Although the average ratings improved for both models,
ChatGPT still performs better in every scenario but one.
Considering the tasks where only Copilot reached the
minimum pass rate Copilot got better scores for modifiability.
From this we can conclude, although the developers had no
information about the pass rates, they upscored the functional
code and using this criteria ChatGPT is still favored over
Copilot.

2) JAVA RESULTS
For Java, we did the same evaluations. These results are
also presented in Table 4. Firstly, First Impression shows
a great difference. ChatGPT reached an average of 7.5 with a
relatively small standard deviation of 2.5 and Copilot reachd
on average 3.6 with standard deviation of 4.2. It shows that
ChatGPT-generated code is mostly favored by the developers
while Copilot-generated code is less preferred. Regarding
Usability, the models are close to each other, ChatGPT
scored 6.4 with standard deviation of 4.6 and Copilot reached
5.4 with standard deviation of 3.5. On average, the generated
code is usable, but it is varying for both models. Readability
also shows a great difference between the models. ChatGPT
reached 8.4 with standard deviation of 1.4, which means the
ChatGPT generated code is consistently readable. On the
contrary, Copilot reached 5.0 with standard deviation of 3.2.
It shows that Copilot generated-code might be readable,

but it is less readable. Copilot generates more frequently
unreadable code than ChatGPT. Taking Modifiability, both
models vary in the same manner, as the standard deviation for
ChatGPT is 2.3 and for Copilot it is 2.7. The average values
are 7.4 and 5.8, which shows that the generated code can be
modified quite easily, be it generated by ChatGPT or Copilot.
In Acceptance, there is no big difference compared to C++.
Both models are accepted in the same manner. ChatGPT
scored 6.6 while Copilot reached 5.0. The standard deviations
are 4.5 and 3.9, which means that both models generate code
which is mostly accepted, but either of them can generate
disliked code too.

In case of Java, we also tested if the pass ratio affects
the results, thus we filtered again with the 75% pass rate.
The filtered results show that ChatGPT is still favored over
Copilot regarding the tasks where both models performed
well on the functional testing. Not surprisingly, ChatGPT
is preferred over Copilot in tasks where only ChatGPT
performed well in functional tests. What is more surprising
is that ChatGPT also has an advantage over Copilot in tasks
where only Copilot performed well in the functional tests.

Regarding this case, the First Impression and Readability
were much better for ChatGPT, which indicates that even if
the code is bad, the style has a great impact on developers’
opinion. Usability values were similar, so developers consid-
ered bad ChatGPT code usable too.

After the human evaluations we can answer RQ 2: Is
the generated source code accepted by experts? The
developers approved the generated source code most of the
time. Developers did not consider themodel-synthetized code

VOLUME 12, 2024 72313



Z. Ságodi et al.: Methodology for Code Synthesis Evaluation of LLMs

perfect or out-of-the-box usable, but they considered the code
acceptable.

F. SUMMARY
With the final evaluations we can answer RQ 3: What
aspects should be considered when choosing LLM-based
generative tools?

When choosing Large Language Model (LLM)-based
generative tools, particularly for code generation, it is
essential to consider a variety of aspects to ensure the model
is both effective and efficient.

• High-Level Task Interpretation: The LLM should
be capable of understanding task definitions at a
sufficiently abstract level. This means that the aim
is to understand and effectively respond to developer
requests with minimal input, ensuring both accuracy and
efficiency.

• Functional Validity Assessment: Before considering a
model suitable, it is critical to evaluate its functional
validity. This involves testing the model’s output in
various scenarios, including both common use cases and
edge cases. While edge case testing checks the model’s
performance under extreme or unusual conditions,
providing a larger amount of random tests shows a better
image of the general functionality. This comprehensive
testing ensures that the model can reliably generate
functional and robust code.

• Technical Validity: After establishing functional valid-
ity, the next step is to evaluate technical validity.
This might involve performing static analysis on the
generated code to detect any code smells, bugs,
or unnecessarily complex solutions. The analyzer must
be configured for the actual requirements of the final
environment the model would be used in.

• Human Evaluation: Using the results from functional
and technical validity assessments, you can compare
different models with a high degree of confidence.
Decisions can be based on these results as models
might pass the given criteria, however, developers co-
working with the model might discourage the usage
as the generated source code does not fit their way
of thinking. Developer reviews and evaluations play a
crucial role in the model selection process, providing
insights into each model’s strengths and weaknesses.
When conducting human reviews, one of the easiest
ways is to provide scoring options, although it must be
on an even scale to prevent neutral results. To prevent ties
on certain properties a final decision should be made to
decide which model-generated source code is better.

In conclusion, when selecting an LLM-based generative
tool for code generation, it is essential to consider how well
it understands high-level task definitions, its performance
in functional and technical validity assessments, and factors
related to human evaluation like first impression, usability,
and modifiability. These considerations help in choosing a

tool that not only meets immediate coding needs but also
integrates well into the broader development life cycle.

Although we included only the basic must-include parts,
there could be scenarios where other aspects are important
too. In such scenarios, evaluators of the models should
decide which criteria and techniques to use for assessing
the quality of the generated source code. Memory usage
and time complexity are factors that could be important for
specific applications, although they are not required in every
evaluation.

V. THREATS TO VALIDITY
Although we tried our best, there are still a few things that
must be noted which might make readers doubt.

A. MODEL SELECTION
Both models are GPT-3 based models and we could have
used other models. Our main goal was to show how models
could be compared properly, and from what aspects, which
was done via an actual comparison. We did choose from the
most popular models, the ones which were already in use
in the software engineering community. Codex was trivial
to use due to its plugin-like nature and ChatGPT was easy
to use as it provided a handy web interface. Although the
selected models are similar and in the same lineage, the
training sets and techniques are different. ChatGPT is a later
version, developed to be instruction-following and helpful
for humans, while Codex is trained mainly for source code
related tasks.

B. LANGUAGE SELECTION
One might consider why we did not include a scripting
language, like Python. As we described the main aspects on
language selection Python did not really fit those properties.
We assume that the results would be similar using Python as
there is plenty of code (training data) written in Python.

C. PROMPTING
As we could use a prompt that is designed for this purpose,
we could not alter the inner workings of the models, such
as randomness. Although Copilot provides a possibility to
set the temperature or top_p values, the web interface for
ChatGPT does not, thus in order to have a fair comparison
we used default values for both. Additionally, setting the
temperature might not force the model to be deterministic
enough as shown by Ouyang et al. [34]. Besides setting these
values, a well-known technique is to not only select the
first generated value but use more, frequently marked as
@1 @5 for the first and the first five values. As evaluating
every task in both C++ and Java, e.g. 5 values would
take too much human effort we decided to use @1 results.
Otherwise selecting from @5 values or interacting with
further prompting would have required human interaction
which would not be objective. It is similar to interactive
instructions for making the models’ output better with human

72314 VOLUME 12, 2024



Z. Ságodi et al.: Methodology for Code Synthesis Evaluation of LLMs

supervision. Results would highly depend on the supervisor’s
expertise and ability to instruct LLMs.

The selected benchmark was published in July, 2021 there-
fore there is a slight chance that ChatGPT has already seen
the tasks during training as it contains information up until
September, 2021. We cannot state such things from Codex
as we have no insight into its real training data or dates.
Although it is a possible flaw, we consider the amount of
text used in the benchmarks would be greatly outnumbered
by the total training corpus therefore, it would not alter the
results, furthermore, in real-life usage a specific benchmark
usage resolves this problem.

D. FUNCTIONAL EVALUATION
During the functional evaluation we used epsilon comparison
for float comparisons. Although float values are compared
with epsilon values, the benchmark did not include such
values. The benchmark used in our evaluations could be
changed but it was a key factor to have such a benchmark
that is specially created for program generation or program
synthesis.

E. TECHNICAL VALIDITY
During static analysis, we did use metrics on C++ and Java,
which languages support OOP. The analyzed metrics did not
include OOP-specific metrics as the tasks were way too small
to properly utilize OOP.

F. HUMAN EVALUATION
We involved only 5-5 developers for both languages.
To overcome the low number of developers our main goal
was to have professional reviewers qualified for such a role,
so we preferred quality over quantity.

VI. CONCLUSION AND FUTURE WORK
In this paper, we proposed a methodology for evaluating
Large Language Models’ (LLM) code synthesis capabilities
to help developers choose the best available model. This
methodology takes into account that prompting is very
important for LLMs and how detailed a usual task description
is. The primary concern is that the generated code works well,
so it needs to be functionally tested. In addition, technical
quality aspects are also important if the code is to be used
in the long term. On the basis of this evaluation, a model can
be chosen, but it is also worth asking the experts for their
opinion.

We applied this methodology in a case study and evaluated
and compared ChatGPT and Copilot on a publicly available
code synthesis benchmark consisting of 25 tasks. For
prompting, we used the specifications in the benchmark,
which were specifically designed to test program synthesis,
and accepted the first generated solution. We functionally
tested the generated code with general and edge cases and
found that themajority of the generated codewas functionally
correct. We then used static code analysis to check the
technical quality and found that despite minor errors, the

models generated good-quality code. Finally, we involved
experts to review the solutions and their opinion supports our
results. Our conclusion is that both ChatGPT and Copilot can
be used for program synthesis, but based on the comparison
it seems that ChatGPT is better.

We consider the proper comparison of LLMs in code
generation an important task which will be inevitable during
industrial software development. Based on this study we
aim to create a framework in the future where LLMs
can be compared in the most automatized way possible,
including memory and time consumption values. Using
this comparison we aim to observe the preferred models
of developers among the vast amount of models. This
opens the opportunity to investigate what model features
are preferred providing more information to develop better
models. Using a decent comparing methodology we can also
investigate the effects of various prompting techniques and
fine-tunings, therefore, providing knowledge for improving
models.

REFERENCES

[1] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz,
E. Kamar, P. Lee, Y. T. Lee, Y. Li, and S. Lundberg.
(Mar. 2023). Sparks of Artificial General Intelligence: Early
Experiments With GPT-4. March 2023. [Online]. Available:
https://www.microsoft.com/en-us/research/publication/sparks-of-
artificial-general-intelligence-early-experiments-with-gpt-4

[2] A. Dieumegard, A. Toom, and M. Pantel, ‘‘Model-based formal
specification of a DSL library for a qualified code generator,’’ in
Proc. 12th Workshop OCL Textual Modeling New York, NY, USA:
Association for Computing Machinery, Sep. 2012, pp. 61–62, doi:
10.1145/2428516.2428527.

[3] A. V. Aho, S. C. Johnson, and J. D. Ullman, ‘‘Code generation for
expressions with common subexpressions,’’ in Proc. 3rd ACM SIGACT-
SIGPLAN Symp. Princ. Program. Lang., 1976, pp. 19–31.

[4] C. Schmitt, S. Kuckuk, H. Köstler, F. Hannig, and J. Teich, ‘‘An evaluation
of domain-specific language technologies for code generation,’’ in Proc.
14th Int. Conf. Comput. Sci. Appl., Jun. 2014, pp. 18–26.

[5] M. Chen et al., ‘‘Evaluating large language models trained on code,’’ 2021,
arXiv:2107.03374.

[6] P. Black, ‘‘Static analyzers: Seat belts for your code,’’ IEEE Secur. Privacy,
vol. 10, no. 3, pp. 48–52, May 2012.

[7] C. Kaner and W. P. Bond, ‘‘Software engineering metrics: What do they
measure and how do we know?’’ in Proc. Int. Softw. Metrics Symp.,
Chicago, IL, USA, 2004, pp. 1–12.

[8] P. Vaithilingam, T. Zhang, and E. L. Glassman, ‘‘Expectation vs.
experience: Evaluating the usability of code generation tools powered
by large language models,’’ in Proc. Extended Abstr. CHI Conf. Hum.
Factors Comput. Syst. New York, NY, USA: Association for Computing
Machinery, Mar. 2022, pp. 1–7, doi: 10.1145/3491101.3519665.

[9] N. Al Madi, ‘‘How readable is model-generated code? Examining
readability and visual inspection of Github copilot,’’ in Proc. 37th
IEEE/ACM Int. Conf. Automated Softw. Eng. New York, NY, USA:
Association for Computing Machinery, Feb. 2023, pp. 1–5, doi:
10.1145/3551349.3560438.

[10] K. E. Someoliayi, N. Y. M. Harrand, S. Larsén, H. Adzemovic, H. L. Phu,
A. Verma, F. Madeiral, D. Wikstrom, and M. Monperrus, ‘‘Sorald:
Automatic patch suggestions for SonarQube static analysis violations,’’
IEEE Trans. Dependable Secure Comput., vol. 20, no. 4, pp. 2794–2810,
Apr. 2022.

[11] D. Marcilio, C. A. Furia, R. Bonifácio, and G. Pinto, ‘‘Automatically
generating fix suggestions in response to static code analysis warnings,’’
in Proc. 19th Int. Work. Conf. Source Code Anal. Manipulation (SCAM),
Sep. 2019, pp. 34–44.

VOLUME 12, 2024 72315

http://dx.doi.org/10.1145/2428516.2428527
http://dx.doi.org/10.1145/3491101.3519665
http://dx.doi.org/10.1145/3551349.3560438


Z. Ságodi et al.: Methodology for Code Synthesis Evaluation of LLMs

[12] D. Marcilio, R. Bonifácio, E. Monteiro, E. Canedo, W. Luz, and G. Pinto,
‘‘Are static analysis violations really fixed? A closer look at realistic
usage of SonarQube,’’ in Proc. IEEE/ACM 27th Int. Conf. Program
Comprehension (ICPC), May 2019, pp. 209–219.

[13] J. Samhi, J. Gao, N. Daoudi, P. Graux, H. Hoyez, X. Sun, K. Allix,
T. F. Bissyandé, and J. Klein, ‘‘JuCify: A step towards Android code
unification for enhanced static analysis,’’ in Proc. IEEE/ACM 44th Int.
Conf. Softw. Eng. (ICSE). NewYork, NY, USA:Association for Computing
Machinery, May 2022, pp. 1232–1244, doi: 10.1145/3510003.3512766.

[14] Y. Zhang, Y. Xiao, M. M. A. Kabir, D. Yao, and N. Meng, ‘‘Example-
based vulnerability detection and repair in Java code,’’ in Proc. IEEE/ACM
30th Int. Conf. Program Comprehension (ICPC). New York, NY, USA:
Association for Computing Machinery, May 2022, pp. 190–201, doi:
10.1145/3524610.3527749.

[15] J. R. B. Higuera, J. B. Higuera, J. A. S. Montalvo, J. C. Villalba, and
J. J. N. Pérez, ‘‘Benchmarking approach to compare web applications static
analysis tools detecting OWASP top ten security vulnerabilities,’’Comput.,
Mater. Continua, vol. 64, no. 3, pp. 1555–1577, 2020.

[16] J. Liu and X. Zhang, ‘‘ReX: A framework for incorporating temporal
information in model-agnostic local explanation techniques,’’ 2022,
arXiv:2209.03798.

[17] Z.Manna and R.Waldinger, ‘‘A deductive approach to program synthesis,’’
ACMTrans. Program. Lang. Syst., vol. 2, no. 1, pp. 90–121, Jan. 1980, doi:
10.1145/357084.357090.

[18] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, and A. Askell, ‘‘Language models
are few-shot learners,’’ in Proc. NIPS, 2020, pp. 1877–1901.

[19] R. Thoppilan et al., ‘‘LaMDA: Language models for dialog applications,’’
2022, arXiv:2201.08239.

[20] C. Maddison and D. Tarlow, ‘‘Structured generative models of natural
source code,’’ in Proc. Int. Conf. Mach. Learn., 2014, pp. 649–657.

[21] D. Sobania, M. Briesch, and F. Rothlauf, ‘‘Choose your programming
copilot: A comparison of the program synthesis performance of GitHub
copilot and genetic programming,’’ in Proc. Genetic Evol. Comput. Conf.
New York, NY, USA: Association for Computing Machinery, Jul. 2022,
pp. 1019–1027, doi: 10.1145/3512290.3528700.

[22] T. Helmuth and P. Kelly, ‘‘PSB2: The second program synthesis
benchmark suite,’’ in Proc. Genetic Evol. Comput. Conf. Lille, France:
Association for Computing Machinery, Jun. 2021, pp. 10–14, doi:
10.1145/3449639.3459285.

[23] A. Babar, ‘‘Programmer’s new friend: Github copilot,’’ Int. J. Res.
Publication Rev., vol. 3, pp. 2721–2725, Nov. 2022.

[24] N. Jain, S. Vaidyanath, A. Iyer, N. Natarajan, S. Parthasarathy, S. Rajamani,
and R. Sharma, ‘‘Jigsaw: Large languagemodels meet program synthesis,’’
in Proc. IEEE/ACM 44th Int. Conf. Softw. Eng. (ICSE). New York, NY,
USA: Association for Computing Machinery, May 2022, pp. 1219–1231,
doi: 10.1145/3510003.3510203.

[25] H. Pearce, B. Tan, B. Ahmad, R. Karri, and B. Dolan-Gavitt, ‘‘Examining
zero-shot vulnerability repair with large language models,’’ in Proc. IEEE
Symp. Secur. Privacy (SP), May 2023, pp. 2339–2356.

[26] O. Asare, M. Nagappan, and N. Asokan, ‘‘Is Github’s copilot as bad as
humans at introducing vulnerabilities in code?’’ Empirical Softw. Eng.,
vol. 28, p. 129, Jan. 2023.

[27] H. Pearce, B. Ahmad, B. Tan, B. Dolan-Gavitt, and R. Karri, ‘‘Asleep at the
keyboard? Assessing the security of GitHub Copilot’s code contributions,’’
in Proc. IEEE Symp. Secur. Privacy (SP), May 2022, pp. 754–768.

[28] M. L. Siddiq, S. H. Majumder, M. R. Mim, S. Jajodia, and J. C. S. Santos,
‘‘An empirical study of code smells in transformer-based code generation
techniques,’’ in Proc. IEEE 22nd Int. Work. Conf. Source Code Anal.
Manipulation (SCAM), Oct. 2022, pp. 71–82.

[29] R. Khoury, A. R. Avila, J. Brunelle, and B. Mamadou Camara, ‘‘How
secure is code generated by ChatGPT?’’ 2023, arXiv:2304.09655.

[30] How to Get Codex to Produce the Code YouWant!Accessed: Aprl. 2, 2024.
[Online]. Available: https://microsoft.github.io/prompt-engineering/

[31] P. Denny, V. Kumar, and N. Giacaman, ‘‘Conversing with copilot:
Exploring prompt engineering for solving CS1 problems using natural
language,’’ in Proc. 54th ACM Tech. Symp. Comput. Sci. Educ. New
York, NY, USA: Association for Computing Machinery, Mar. 2023,
pp. 1136–1142, doi: 10.1145/3545945.3569823.

[32] J. White, S. Hays, Q. Fu, J. Spencer-Smith, and D. C. Schmidt, ‘‘ChatGPT
prompt patterns for improving code quality, refactoring, requirements
elicitation, and software design,’’ 2023, arXiv:2303.07839.

[33] R. Ferenc, L. Langó, I. Siket, T. Gyimóthy, and T. Bakota, ‘‘Source meter
sonar qube plug-in,’’ in Proc. IEEE 14th Int. Work. Conf. Source Code
Anal. Manipulation, Sep. 2014, pp. 77–82.

[34] S. Ouyang, J. M. Zhang, M. Harman, and M. Wang, ‘‘LLM is like a box of
chocolates: The non-determinism of ChatGPT in code generation,’’ 2023,
arXiv:2308.02828.

ZOLTÁN SÁGODI is currently pursuing the Ph.D.
degree.

Despite this being the first year of the Ph.D.
degree, he has already been working in research
during his M.Sc. and even B.Sc. studies. His
Ph.D. topic is detecting vulnerabilities and faults in
source code via static analysis and AI application.
He is also with the Department of Software
Engineering, University of Szeged. Besides his
research tasks, he takes his part in education. This

means multiple courses and in his freetime, he takes effort into automatizing
many of the educational tasks (e.g., creating and correcting exams and
preparation for the courses).

ISTVÁN SIKET received the Ph.D. degree in
computer science, in 2011. He is currently an
Assistant Professor with the Department of Soft-
ware Engineering, University of Szeged. His
research interests include source code analysis,
measurement, quality assurance, and bug detec-
tion. He has been participating in several research
and development projects related to source code
analysis and quality assurance.

RUDOLF FERENC received the Ph.D. degree in
computer science from the University of Szeged,
in 2005, and the Habilitation degree, in 2015.

He is currently an Associate Professor and
acting as the Head of the Department of Software
Engineering, University of Szeged. His research
interests include static code analysis, metrics,
quality assurance, design pattern and antipattern
mining, and bug detection. He leads the Static
Code Analysis Group, which develops tools for

analyzing the source code of various languages. These tools calculate
code metrics and detect coding issues and duplications. He has more than
100 publications in these fields with over 2000 citations. He is leading several
research and development projects, which are related to quality assessment,
improvement, and architecture reconstruction of software systems for major
banks and software development companies in Hungary. He has been serving
as the Program Co-Chair and a Program Committee Member at the major
conferences in this field (ICSE, ICSME, ESEC/FSE, SANER, CSMR,
WCRE, ICPC, SCAM, and FASE), since 2005.

72316 VOLUME 12, 2024

http://dx.doi.org/10.1145/3510003.3512766
http://dx.doi.org/10.1145/3524610.3527749
http://dx.doi.org/10.1145/357084.357090
http://dx.doi.org/10.1145/3512290.3528700
http://dx.doi.org/10.1145/3449639.3459285
http://dx.doi.org/10.1145/3510003.3510203
http://dx.doi.org/10.1145/3545945.3569823

