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ABSTRACT This article presents a systematic review of Multiple Instance Learning (MIL) applied to
image classification, specifically highlighting its applications in medical imaging. Motivated by the need
for a comprehensive and up-to-date analysis due to the scarcity of recent reviews, this study uses defined
selection criteria to systematically assess the quality and synthesize data from relevant studies. Focusing
on MIL, a subfield of machine learning that deals with learning from sets of instances or ‘‘bags”, this
review is crucial for medical diagnosis, where accurate lesion detection is a challenge. The review details
the methodologies, advances and practical implementations of MIL, emphasizing the attention-grabbing and
transformative mechanisms that improve the analysis of medical images. Challenges such as the need for
extensive annotated datasets and significant computational resources are discussed. In addition, the review
covers three main topics: the characterization of MIL algorithms in various imaging domains, a detailed
evaluation of performance metrics, and a critical analysis of data structures and computational resources.
Despite these challenges, MIL offers a promising direction for research with significant implications for

medical diagnostics, highlighting the importance of continued exploration and improvement in this area.

INDEX TERMS Images classification, medical images, multiple instance learning (MIL).

I. INTRODUCTION
Within the evolving domain of machine learning research,
the subfield of MIL is distinguished by its approaches and
methodologies. MIL has found its place in many applications,
from complex medical diagnostics to the dynamic world of
video surveillance [1]. Its existence is due to its remarkable
ability to increase accuracy and optimise the image analysis
process, making it a key technology in several domains [2].
However, the MIL field is marked by various method-
ologies and a rapid advance of the research frontier. This
diversity and progress require a careful and insightful
exploration of state-of-the-art techniques to select the most
effective and context-appropriate methods.
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The adoption of MIL in medical images for lesion
detection is motivated by several critical factors highlighting
its relevance and effectiveness. Firstly, it addresses the
inherent uncertainty in the location and characterization of
lesions, allowing systems to learn to identify pathological
patterns even in incomplete or ambiguous information [1].
This is particularly useful in cases where accurate lesion
annotation is challenging, such as in large image datasets.
In addition, MIL can effectively handle inter and intra-patient
variability in lesion characteristics, thus improving diagnostic
accuracy [3]. MIL’s ability to process and analyse sets of
instances (i.e., sub-regions of the image) makes it ideal for
detecting subtle abnormalities, which are often crucial in
early diagnosis and evaluating responses to treatment [3].
Finally, integrating MIL with the latest machine learning
and artificial intelligence techniques promises to increase
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the efficiency of diagnostic processes and leverage a deeper
understanding of the morphological characteristics of lesions,
leading to significant advances in personalized medicine and
clinical decision-making [4].

Analysing existing literature reviews on MIL applied to
medical images, a considerable number of publications can
be observed, although most of them were carried out before
2019. A review from 2022 was found [5], which only
focuses intensively on medical images of the Whole Slide
Images (WSI) type. However, it is imperative to recognize the
diversity and importance of other medical imaging modalities
in the context of MIL. The variety of applications and clinical
relevance of images from other modalities underlines the
need to expand research and analysis beyond the limited
scope of WSI, thus covering a more comprehensive range of
images. The aim of this review is, therefore, to study more
recent methods of MIL in medical imaging, not restricting
itself to WSI alone but also exploring other modalities, which
could provide broader insights applicable to various clinical
and research contexts.

This review employs a systematic approach guided by
clear selection criteria to critically assess study quality and
synthesize data. It aims to enhance our understanding of
Multiple Instance Learning (MIL) in imaging by providing
a comprehensive analysis that facilitates future research and
practical applications. The review illuminates the landscape
of MIL applications in image datasets, focusing on advanced
techniques that drive success in the field. It covers three main
areas: the characterization of MIL algorithms across various
imaging domains, the evaluation of performance metrics,
and the analysis of the data structures and computational
resources each method requires. This analysis not only maps
current MIL trends and innovations but also evaluates the
most effective solutions for both research and practical
implementation.

A. CONTRIBUTIONS
MIL research in medical imaging has shown remarkable
progress, reflecting a deepening understanding and applica-
tion of this advanced technique. MIL methods, characterized
by their ability to handle weakly labelled datasets and
learn from multiple instances, have shown promise for
lesion detection in medical imaging. These approaches
allow for the efficient processing of large volumes of
images, identifying complex disease patterns accurately and
efficiently. In the state of the art, we find a diversity of MIL
implementations, each exploring different aspects of machine
learning and offering valuable insights for advancing the
automatic analysis of medical images. This review highlights
the most recent and impactful developments in the field of
MIL, underlining how these innovations are transforming the
diagnosis and assessment of injuries in medical contexts.
This study undertakes a systematic review of the current
state of the usage of MIL in detecting lesions in medical
images. Research questions are formulated to address the
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TABLE 1. Inclusion (IC) and exclusion criteria (EC).

Criteria | Description

1C0 Published since 2018

IC1 The title, abstract, or keywords match the search query

ECO Work not published in a refereed journal or conference

EC1 Literature/Systematic Review

EC2 Full text is not available

EC3 Mentions MIL but does not approach it

EC4 The title, abstract, or keywords do not match the search query
EC5 The language used is not English

identified methods found and try to provide a comprehensive
understanding of the problem and pave the way for future
research by answering the following questions:

Q1: What are the main challenges and limitations of
current MIL methods in image classification?

Q2: How does the quality and quantity of training data
influence the performance of MIL methods?

Q3: How accurate are MIL methods on different types of
image datasets?

Q4: What kind of MIL algorithms are used in image
classification?

Il. REVIEW METHODOLOGY

This review used a method that is widely used in this field,
the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) [6], as it helps to formulate the
research question, choose relevant studies, and present the
results, ensuring transparency and quality in the research.

A. INCLUSION CRITERIA

We established strict inclusion criteria for selecting articles
to ensure a comprehensive and up-to-date analysis of MIL
methods applied to image classification.

The articles included in this systematic review must fulfil
all of the following criteria: only articles published on or after
January 1, 2018, were considered. Five years was chosen to
ensure the inclusion of information on the latest advances
and emerging technologies in the field of MIL for image
classification. Studies must mention the use of MIL in image
classification in their abstract. A detailed discussion of MIL
in the abstract indicates direct relevance to the review’s topic
of interest. Articles dealing with MIL in contexts unrelated
to image classification were excluded. Also, articles with full
text unavailable, restricted access, or insufficient information
for detailed evaluation resulted in exclusion from the study.

These criteria were applied systematically to all the
literature searches conducted in the selected databases. Strict
adherence to these criteria ensures that the systematic review
is focused and relevant and provides a representative view of
the current state of the application of MIL methods in image
classification.

B. SEARCH STRATEGY
The search strategy for this systematic review was designed
to capture a broad spectrum of relevant studies applying MIL
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methods to image classification. We included three well-
established databases in this search strategy: IEEE Xplore,
Scopus, and SpringerLink.

The search strategy for this review was to select keywords
to filter literature significantly relevant to our area of research.
Our search terms included “MIL”, “Image Classification”,
and “Medical Images’’. To ensure comprehensive coverage,
we incorporated variants of these terms, employing Boolean
operators like “AND” and “OR” to capture studies that
intersect MIL with image classification, and those addressing
advanced techniques and specific applications within this
sphere. This thorough search was conducted across multiple
databases to encompass a wide range of scholarly papers,
enriching our review’s robustness.

The search was initially limited to results that included
the keywords in the title or abstract. The titles and abstracts
were then read to identify articles related to the review’s aim.
Relevant articles were then selected to obtain and analyse
the full text. The search was complemented by a manual
investigation of the references of the selected articles to
identify additional studies that might have escaped the initial
search strategy. This chain search process helped ensure the
inclusion of relevant papers that might have been outside the
direct scope of the defined keywords.

With this search strategy, we intended to carry out a
comprehensive and representative review of the current
literature on the use of MIL for image classification, thus
contributing to a deeper understanding of this expanding field
of research.

C. EXTRACTION OF STUDY CHARACTERISTICS

As part of this systematic review, each selected article’s
characteristics were extracted to capture information for
the comparative analysis of MIL methods applied to image
classification or detection.

Special attention was paid to how the characteristics
were extracted from the images, including details on pre-
processing techniques, image descriptors, and dimensionality
reduction methods. The models used for classification,
be they specific neural network architectures or machine
learning algorithms, were carefully identified. The evaluation
metrics, fundamental for comparing the effectiveness of the
methods, were catalogued and included but were not limited
to precision, recall, Fl-score, and the area under the curve
(AUO).

The systematic approach adopted for data extraction
provided a solid basis for subsequent analysis, ensuring a
detailed overview and comprehensive understanding of MIL
strategies in the image classification literature.

Ill. RESULTS

After all these methodologies that were present before,
and as shown in Fig. 1, initially, there were 734 papers
found in the three different databases. From that, and using
the different inclusion and exclusion criteria, the number
decreased significantly, and in the end, 22 papers were
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selected for further analysis. These underwent the process
of characteristics extraction, resulting in a summary of each,
which will be presented below.

In [7], the authors ascertained a MIL model based on
attention and the triple kernel with contrastive learning
(TGA-MIL). Several datasets were used for evaluation,
including the USBC Breast Cancer Dataset, the Colon Cancer
Dataset, a set based on MNIST, and the DDSM Dataset
for mammogram images. The kernel, a convolution matrix,
plays a key role in manipulating and highlighting specific
image features. Advancing on this technique, the triple kernel
concept involves using three distinct kernels, each to enhance
different aspects of the medical image. The kernel functions
used were Laplace, Radial Basis Function, and Inverse
Multiquadric. The next step involves generating an attention
map by the applied kernel functions, which is essentially a
weighting mechanism that highlights the regions considered
most important. The model employed ResNet and Contrastive
Learning of Visual Representation (SimCLR) in the feature
extraction process. This self-supervised learning approach
trains the feature extractor to identify meaningful aspects
of unlabelled data. This method achieved 60.9% and 81.0%
accuracy on the USBC Breast Cancer and Colon Cancer
datasets, respectively.

In [8], a two-phase approach has been developed for
classifying Whole Slide Images (WSI) of weakly super-
vised learning. It uses contrastive learning to train the
feature extractor in the compression stage. The learning
phase combines convolutional neural networks (CNN) and
transformers to capture local and global information from
the images. For classification, the article proposes a two-
phase model called CWC-Transformer. This model includes
a compression phase, where contrastive learning is used,
and a learning phase, where CNNs and transformers are
combined to analyse the images. Three datasets were used for
evaluation: CAMELYON16, TCGA-LUNG, and MSK. In the
CAMELYON16 dataset, the CWC-Transformer achieved an
accuracy of 89.14% and an AUC score of 93.85%. On the
TCGA-LUNG dataset, it achieved an accuracy of 85.94%
and an AUC of 94.88%. The article also mentions some
limitations. One is the high consumption of computing
resources and memory due to the auto-attention mechanism,
especially when working with high-magnification images.
In addition, the contrastive learning approach can treat very
similar patches as negative pairs, affecting the model’s
performance.

In [9], a method for detecting lung diseases using chest
CT scans employing a MIL-based approach is introduced.
The main goal is to enable a more comprehensive analysis
of lung diseases, including detecting semantic patterns in
the lungs and predicting the mutation status of the EGFR
gene. The study uses MIL as its primary methodology.
Within this framework, two bag generators are employed:
the Radiomic Bag Generator and the Hounsfield Units Bag
Generator, which differ in the complexity of the shapes of the
instances and the nature of the features. It employs bag-based
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FIGURE 1. Process of the paper selection.

classifiers for classification, focusing on the Normalised
Set Kernel (NSK) algorithm from the MISVM package.
The study uses three databases: the Non-Small Cell Lung
Cancer Radiogenomics (NSCLC Radiogenomics) database,
the Interstitial Lung Disease (ILD) database, and a private
database from the Centro Hospitalar e Universitdrio de Sao
Jodo (CHUS]J). Fibrosis detection achieved an AUC of (.89,
while emphysema detection achieved an AUC of 0.72. A vital
limitation of the study is the relatively small size of the
databases. This limits the generalisability of the results and
the application of more powerful deep learning methods.

In [4], it is presented a method for classifying medical
images, called Dual Space Multiple Instance Representative
Learning (DSMIRL). The main objective is to address the
challenges faced in classifying medical images, particularly
the imbalance between positive and negative instances
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in the images. DSMIRL includes two main components:
Adaptive Instance Representative Selection (AIRS) and
Multiple Instance Representative Learning (MIRL). AIRS
uses clustering methods to select relevant subsets of instances
(sub-bags), while MIRL performs aggregations in feature
and label space for the final classification. The proposed
model, DSMIRL, is a MIL method that integrates instance
selection and aggregation in dual spaces (features and labels).
It uses a ResNet50 network for feature learning and an
attention module for aggregation in the feature space. DSMIR
was evaluated on two sets of medical images (Camelyonl6
and Pneumonia CT). In Camelyonl6, it achieved 88.9%
accuracy, 95.3% AUC, and 86.6% F1 score. Although the
article demonstrates the effectiveness of DSMIRL, the main
limitation is the complexity of the method and the need for
large data sets for training.
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In [10], the MIL method proposed incorporates a con-
volutional transform-based MIL anomaly classifier for the
detection of polyps in colonoscopy videos. This method is
particularly notable for its ability to operate with weakly-
labelled videos, dividing each video into chunks. The main
objective is to improve the learning of a MIL anomaly
classifier for these chunks to optimise the accuracy of the
anomaly scores at the chunk level. The classifier architecture
is bifurcated into a temporal resource encoder that uses
transform technology to capture the global temporal rela-
tionships between the sections and a MIL anomaly classifier
responsible for generating each section’s anomaly scores.
To train this system effectively, a joint optimization approach
is adopted that involves transform-based temporal feature
learning, a contrastive snippet mining (CSM) technique,
and a video classifier. The dataset used in the study is an
extensive and diverse compilation of colonoscopy videos, the
Hyper-Kvasir dataset, and the LDPolypVideo dataset. The
methodology shows significant advances in polyp detection
accuracy when compared to previous approaches, using
metrics such as the area under the AUC curve and average
accuracy. It achieved an AUC of 98.41% and 86.63% in the
respective datasets. The classification distinguishes between
normal videos and those with abnormalities, such as polyps.

In [11], a patch sampling strategy based on the sequential
Monte Carlo method is proposed, specifically for the
classification of histological images. MIL is implemented,
where instead of labelling each patch individually, MIL treats
the entire image as a single instance, assigning a general label
based on the labels of the patches contained in it. This process
uses neural network architectures adapted to the different data
sets. For the MNIST set, an architecture like VGG with a
receptive field of 40 x40 pixels was used, while for the ICTAR
and GTEx datasets, an architecture based on ResNet was
chosen, with a receptive field of 224 x 224 pixels. In feature
extraction, image points are initially sampled following a
uniform distribution. Each point is then evaluated: a patch
centered on the point is sampled and processed by the neural
network, whose output represents the point. The points are
then normalised between O and 1, and resampling is carried
out, where points with low scores are discarded and new
ones are sampled over those with higher scores, with a
slight shift guided by a Gaussian distribution. As for the
evaluation metrics, for the MNIST-Sparse set, the uniform
sampling strategy achieved an average accuracy of 52.0%,
while the Monte Carlo approach recorded a significantly
higher accuracy of 82.5%.

The article [12], uses self-supervised autoencoders (MAE)
for initialising the feature space. In addition, they also adopt
a cluster-based resource distribution modelling method and
aresource space refinement strategy based on pseudo-labels.
The proposed framework, called DGMIL, employs a model
to refine the latent resource space iteratively. This refinement
is done through linear projection heads and a classification
head, composed of a single fully connected layer. Two
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datasets were used: the CAMELYONI16 dataset and the
TCGA Lung Cancer dataset. For the CAMELYON16 dataset,
the article shows an AUC of 0.9045 and FROC of 0.4887 for
patch classification, an AUC of 0.8368, and an accuracy of
80.18% for slide classification. For the TCGA Lung Cancer
dataset, they achieve an AUC of 0.9702 and an accuracy
of 92.00% for slide classification. Common limitations in
medical imaging studies include the need for large sets of
annotated data, the variability in imaging techniques between
different sources, and the generalisation of models to different
types of cancer or tissue.

Reference [13] develops a method for classifying lung
cytological images. It uses the Multiple Instance Deep
Learning Algorithm (AD MIL) with an attention mechanism,
Convolutional Neural Networks (CNNs) such as LeNet,
AlexNet, Inception, ResNet, and DenseNet for feature
extraction, and Otsu’s automatic binarisation algorithm for
image processing. Otsu’s method is a thresholding technique
used especially in situations where the object of interest and
the background have different contrasts, playing an important
role in the image preparation stage before being processed
by the model. A dataset made up of images of lung cells
was used. The best performance was obtained with the CNN
AlexNet-like structure in AD MIL, achieving a classification
accuracy of 91.6%.

Reference [14] focuses on analysing individual cells
extracted from images by an R-CNN architecture and
uses ResNet feature maps to perform classification without
needing individual labelling of the cells. It uses a modified
Mask R-CNN architecture with a ResNet backbone to
detect individual cells in the images. It applies a CNN to
classify each instance (cell) based on the weak labels of
the sample. It employs an embedding level approach to
MIL, where a unique representative for the set of instances
is generated using a MIL clustering method, and based
on the work of Ilse et al. it uses an attention mechanism
to calculate a weighted average over the embeddings of
instances, assigning weights learned by the neural network
and associated Attention Pooling with Auxiliary Branch SIC.
The study used blood samples from patients diagnosed with
hereditary spherocytosis, part of the CoMMiTMenT study.
The accuracy of the MIL model with attention pooling and
SIC auxiliary branch was 79%, the F1 score was 78% and the
AUC was 0.960. The number of cases studied was relatively
small, requiring external validation to assess the practical
effectiveness of the method. The study focused on specific
genetic blood disorders, and its applicability to other diseases
or conditions still needs to be investigated.

It presented in [15], a new Transformer model for
classifying images of histopathology slides (WSI). It uses
the K-means to extract a set of anchors based on the
spatial clustering property of the features, EfficientNet-bO
to extract features from the WSI patches, and the cross-
attention algorithm to communicate information between
the kernels and the patch tokens. The study evaluates two
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databases: Gastric2K and Endometrial-2K. KAT achieved
98.3% accuracy in the subtyping task and 96.7% accuracy in
the binary classification task on the Endometrial-2K dataset.
In the Gastric-2K dataset, KAT achieved 98.3% accuracy
in the subtyping task and 96.9% accuracy in the binary
classification task. Limitations in studies such as this may
include dependence on the quality and diversity of images
in the database and the need for fine-tuning the model for
different tissue types or diseases.

Reference [16] focused on developing a computer-aided
diagnosis (CAD) system for diagnosing breast cancer through
the classification of histopathological images. It uses a
transfer learning approach and the selection of discriminative
patches. The methodology employs algorithms such as CNN
for extracting features from the patches, dendrogramming
and clustering for selecting discriminative patches, and
EfficientNet models for classifying the images. It also
uses the Support Vector Machine (SVM) technique for
classification based on extracted features. The study tested
on the BreakHis dataset, achieving a maximum accuracy of
99.81%, 99.26%, 99.49% and 99.14% for binary classifica-
tion at magnification levels of 40x, 100x, 200x and 400x,
respectively, using EfficientNet-B7, and accuracy of 96.99%,
95.17%, 94.71% and 91.66% for multiclass classification at
the same magnification levels. The limitations of the study
include the dependence on the quality and variety of the
images in the BreakHis dataset, the possibility of omitting
relevant information due to the selection of discriminative
patches, and the variability of performance depending on
the specifics of the EfficientNet architecture and the SVM
parameters.

In [17], it is demonstrated a method called SA-AbMILP
(Self-Attention Attention-based MIL Pooling) for image
classification using the MIL paradigm in a weak learning con-
text. This method stands out for its ability to capture global
dependencies between instances within a set, combining self-
attention and attention-based pooling techniques to transform
these instances into a fixed-size vector for classification.
In this process, there are two distinct neural networks: the
first is responsible for generating representations of the
instances, while the second, comprising self-attention mech-
anisms, attention-based pooling, and a classifier, uses these
representations to identify fungal species. To generate these
representations, they recommend using deep architectures
such as ResNet-18 and AlexNet, pre-trained on ImageNet.
In addition to SA-AbMILP, other derived models, such as
GSA-AbMILP, IQSA-AbMILP, LSA-AbMILP, and MSA-
AbMILP, are explored in the article. These models were
tested on several datasets, including MNIST, breast, and
colon cancer histological datasets, DIFaS microbiological,
and a retinal image screening set. Although the article does
not explicitly discuss the limitations of the method, it is
possible to infer some weaknesses, such as the dependence
on the type of kernel used, issues of interpretability of
the results, and the scalability of the method for larger
data sets. These considerations highlight future research’s
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importance in improving and adapting SA-AbMILP for
different applications and data scales.

In [18], a graph-based multiple instance learning (GMIL)
model is proposed for binary and multiclass classification
tasks on unbalanced breast cancer datasets. The article uses
a GMIL model, which employs a graph neural network
(GNN) and a MIL framework. The model also incorporates
a Gated Attention Module for efficient information fusion
from nodes in a graph. In addition to the proposed GMIL
model, the paper compares its performance with other high-
performance deep learning models in recent years, including
CSDCNN, Inception-V3, Inception-ResNet-V2, IRRCNN,
BreastNet, and C-Net. The BreakHis dataset is used to
evaluate the model. For binary classification, GMIL achieved
an accuracy of 99.75% and an AUC of 99.69%. In multiclass
classification, it achieved an accuracy of 96.40% and an
AUC 0f 98.57%. These results demonstrate the superiority of
GMIL compared to the other models evaluated. Although the
article does not explicitly specify limitations, it is common
for models such as GMIL to face challenges such as the need
for large sets of labelled data, the computational complexity
for large-scale graph processing, and the interpretability of
deep learning models.

The main objective of [19] is the classification of WSIs
at high magnification (40x), using a machine learning
approach called TransMIL, which is a MIL model based
on transformers, complemented by a new bag embedding
loss (BEL). Within the methodology, the authors use the
TransMIL model, which employs a recently proposed method
called the Neystrom Method to approximate self-attention,
allowing many instances to be processed. In addition, pre-
processing is used, which includes patch extraction from
WSIs and feature extraction using DenseNet-121. The data
used includes two datasets: BRACS and CAMELYON17.
TransMIL with BEL achieved an accuracy of 60.0% and an
F1 score of 57.0%, while in CAMELYON17, it achieved
73.0% accuracy and 48.0% in F1 score. The article mentions
that despite the improvements with BEL, there are still
challenges due to poor annotation and the large size of the
“bags™ (sets of instances). In addition, the performance
improvement seems to depend heavily on maximising the
distance in the BEL loss term. This indicates that, although
effective, the approach may still be sensitive to the quality
of the class representations and the configuration of the BEL
hyper-parameters.

[20] developed and validated an advanced machine
learning model called Attention MIL with Transformer
(AMIL-Trans) to classify breast cancer WSIs. The model
aims to improve the selection of discriminating instances
and the aggregation of bag-level features by integrating
channel attention and self-attention. AMIL-Trans is com-
bined with ResNet-50 with the efficient channel attention
module (ECA) for selecting discriminating instances and
a Transformer encoder for aggregation at the bag level.
In addition, attention-based and Transformer methods are
used to capture discriminant information and correlations
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between instances. Two datasets were used: Camelyon-16
and MSK. AMIL-Trans achieved optimal AUC values of
94.3% on the Camelyon-16 dataset and 84.2% on the MSK
dataset. Typical challenges in such approaches include the
need for large amounts of labelled data for effective training,
the computational complexity associated with processing
large WSIs and generalising the model to different tissue
types or pathological conditions beyond breast cancer.

It is shown in [21] a model called Shuffle Attention
Multiple Instance Learning (SAMIL) for classifying breast
cancer WSI. The methodology employs MIL and integrates
the following algorithms and techniques: Shuffle Attention
(SA) to capture pixel-level relationships and channel depen-
dencies; Multi-Head Attention (MHA) and Long Short-Term
Memory (LSTM), which are used to build an aggregator
for instance features. ResNet with Shuffle Attention (SA) is
used for instance selection and MHA and LSTM for bag-
level prediction. The Camelyon-16 dataset was used. The
SAMIL model achieved an accuracy of 96.0%, AUC of
95.3%, precision of 92.1%, recall of 97.2%, and an F1-score
of 94.6%.

In [22], the study is based on WSI classification using a
MIL method with weak supervision. The feature extraction
process uses self-supervised contrastive learning to generate
high-quality representations for MIL. An innovative aspect is
incorporating a pyramid fusion mechanism, which integrates
features from different scales of the WSIs, providing a
more holistic and detailed approach. The classification
model is an MIL network with a dual-flow architecture.
This model incorporates a MIL aggregator, which uses
a trainable distance measure to model the relationships
between instances. Self-supervised contrastive learning plays
a vital role in effectively extracting representations for
the MIL. The model was validated using two databases:
Camelyonl6 and the TCGA dataset. In Camelyonl6, the
DSMIL (Dual-Stream Multiple Instance Learning Network)
model had an accuracy of 86.8% and an AUC of 89.4%. In the
TCGA lung cancer dataset, the accuracy was 91.9%.

A Multi-View Attention-guided Multiple Instance Detec-
tion Network (MA-MIDN) model is proposed in [23]. The
methodology integrates MIL, a new Multi-View Attention
(MVA) algorithm, and a convolutional neural network (CNN)
in an end-to-end structure. A Deep Mutual Learning (DML)
scheme is also used for training. The main model is
MA-MIDN, which combines MIL, MVA, and CNN. The
BreaKHis, BACH, and PUIH datasets were used. In the
BreaKHis dataset, the MA-MIDN model achieved an AUC
of over 99.0%. In the other sets, it outperformed reference
models by a significant margin. Some intrinsic limitations
include the dependence on the quality and resolution of
histopathological images and as the need for large volumes
of data for effective model training.

A method for classifying the stages of retinopathy
of prematurity (ROP) using deep learning techniques is
developed in [24]. In the methodology, a Fully Convolutional
Neural Network (FCN) extracts high-level features from
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fundus images. It generates a spatial score map (SSM) with
this, the MIL trains and classifies the stages of ROP using
SSM patches. The data was collected from various hospital
institutions, resulting in 6209 retinal images. The method
proved effective and achieved promising performance in
classifying ROP phases. The approach proposed by the study
is innovative in that it combines FCN and MIL with an
attention module, which can significantly increase accuracy
in classifying the stages of ROP, a challenging task due to
the similarity between the early stages of the disease and the
small region of the lesions concerning the full fundus images.

Reference [25] demonstrated a Transformer-based net-
work architecture for Vision called Local-Global Vision
Transformer (LGViT). LGViT aims to combine the advan-
tages of Transformers in learning global representations
and CNNs in capturing local features. The methodology
involves using a mechanism called Local-Global Multi-
head Self-attention (LGMSA) and a Ghost Feed-forward
Network (GFFN). LGMSA is a self-attention mechanism
that effectively captures local and global features of images
with low computational cost. The GFFN brings locality to
the network using a simple depth convolution. The database
used was the PatchCamelyon (PCam) dataset. The LGViT
model achieved results of 91.8% accuracy, 92.2% precision,
91.8% recall and 91.8% F1-Score. Limitations include the
dependence on image quality and variability, the need for
large sets of annotated data for training and validation, and
the generalisability of the model to different types of data and
image conditions.

A machine learning model called Multi-scale Efficient
Graph Transformer (MEGT) for classifying WSIs in cancer
pathology was developed in [26]. MEGT is a dual-branch
Transformer model that aggregates image patches of different
resolutions to improve the accuracy of cancer diagnosis
in WSIs. This model is notable for its ability to integrate
information from multiple scales and to capture spatial
information relevant to diagnosis. MEGT’s main features
include the Efficient Graph-Transformer (EGT), a component
that improves the ability of the branches in MEGT to learn
spatial information in WSIs. It integrates a WSI graph
representation with a Transformer to learn both the WSI’s
spatial information and the long-range dependencies between
image patches. Multi-scale Feature Fusion Module (MFFM),
is designed to learn multi-scale features and reduce the
semantic gap between patches of different resolutions. The
model was evaluated using The Cancer Genome Atlas Renal
Cell Carcinoma (TCGA-RCC) and CAMELYON16 datasets.
MEGT achieved an accuracy of 96.9% on TCGA-RCC and
96.89% on CAMELYON 6.

In [27], a new method called MIST (Multiple Instance
Learning for Whole Slide Image Classification of Colorectal
Adenomas) was proposed to classify colorectal adenomas in
whole slide images. MIST is based on the Swin Transformer
for feature extraction, employing a three-stage process. Ini-
tially, patches are extracted from the images at magnifications
of 2.5x and 5x. Subsequently, two Swin Transformer fea-
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ture extractors are trained using self-supervised contrastive
learning, and the resulting embeddings are combined to
train the MIL aggregator, completing the classification of
the entire blades. In the MIL implementation, MIST uses a
MIL network with two branches. One identifies the critical
instance with the highest score through max pooling, while
the other evaluates the similarity of the instances to the critical
instance. The characteristics are then aggregated to calculate
the final bag score, which is derived from the average of the
scores of the two branches. MIST uses the Swin Transformer
complemented by models such as CLAM and DSMIL for
classification. The research used a database with 666 images
of whole colorectal cancer slides and 273 additional images
MIST achieved an AUC of 78.5% in the internal validation
set and 92.1% in the external validation set, as well as an
accuracy of 78.4% and an F1-score of 73.6% in the latter set.

IV. DISCUSSION

While exploring recent advances in MIL algorithms for
classifying medical images, it is essential to highlight
this methodology’s distinct characteristics and specific
challenges. MIL, unlike traditional supervised learning
approaches, operates under the premise of bags of instances,
where labels are only available for sets of instances and
not for individual instances. This approach is particularly
pertinent in medical scenarios, such as the analysis of
histopathological images for the diagnosis of breast cancer,
where the precise identification of pathological areas in
large volumes of tissue is fundamental. MIL techniques
have recently incorporated advances such as CNNs and
transformers, adapting them to deal with medical data’s
ambiguous and often sparse nature. While offering significant
promise, each technique faces inherent challenges, such
as the need for extensively annotated datasets and issues
of generalisation and interpretability critical in clinical
application.

Based on the latest research, the following analysis
explores the use of MIL techniques for classifying medical
images. Attention mechanisms and transformers will be
given special attention, as they are the most commonly
used techniques. However, the analysis will also cover other
innovative approaches. After this, we will go through the
research questions and answer them. Table 2 summarises
the main points of each article analyzed in this systematic
review.

Given the predominant use of breast cancer images in
these studies, it was decided to compile a comparative table
to discern which models perform best with these images.
This is motivated by the role that advanced image analysis
plays in the early detection and accurate diagnosis of breast
cancer. The comparative table, Table 3, aims to shed light
on the diversity of MIL methodologies applied in different
research, offering information on their effectiveness and the
challenges they face when dealing with breast cancer imaging
datasets.
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Furthermore, to address the application of MIL beyond
breast cancer images, Table 4 presents the metric results from
models applied to a wide range of datasets, including datasets
containing images of the colon, lung, skin cancers, blood
cells, gastric and endometrial images, retina, among others.
This expansion emphasises the versatility and adaptability
of MIL techniques to the unique challenges presented by
different types of data and pathologies.

By juxtaposing various studies, it provides a clear overview
of the algorithms used, the specific breast cancer datasets
utilized, and the resulting performance metrics such as
accuracy and AUC. Including a wider variety of datasets in
the analysis enhances understanding of the applicability and
effectiveness of MIL techniques in a broader spectrum of
medical imaging contexts, highlighting significant advances
and persistent challenges in this area of research.

A. ATTENTION MECHANISMS

The attention mechanisms emerged recently as a transfor-
mative component in the field of Deep Learning, adjusting
the importance attributed to different parts of the input data,
enabling deep learning models to identify and prioritise
relevant information for carrying out specific tasks, improv-
ing DL models’ interpretability and providing significant
advances in a variety of applications including in MIL
approaches [48].

After a thorough analysis of every article selected, [7],
[13], [14], and [17], [18], [21], [23], [24], are the ones that
mention the use of attention mechanisms. The combination
of MIL with the triple kernel, [7], allows for a more
refined manipulation of image features, and the generation
of an attention map by kernel functions highlights important
regions of the images, which is essential for identifying
critical areas in complex images. Also, in [17], depending
on the type of kernel used, the combination of self-attention
and attention pooling can capture global dependencies
between instances, which is crucial. The integration of
attention mechanisms with multiple CNNs was also found,
allowing the model to focus on specific features, [13],
[23], or to calculate weighted averages on the instance’s
embeddings, which can be very efficient in terms of time and
resources [14]. It is also observed in the integration of MIL
with shuffle attention, in which the central idea is to “‘shuffle”
the elements within the feature maps [21], helping capture
pixel-level relationships and channel dependencies. In [23],
a new form of attention, MVA, is used to identify the relevant
features in different perspectives of the images. A different
approach to implementation attention mechanisms is a graph-
based model with GNNs, which is important for efficiently
merging node information into a graph [18].

In all these studies, attention mechanisms play a cru-
cial role in improving the accuracy and effectiveness
of MIL models, allowing them to focus on the most
important features of medical images. This method is
particularly useful in clinical settings, where the identifi-
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TABLE 2. Resume of the papers selected.

Reference Dataset Models Used Metrics
Hu. Huafen USBC breast cancer, colon cancer, Musk1, TGA-MIL (Triple-kernel Gated Accuracy. Precision. Recall
5 a’l 2023 [%] Musk2, Fox, Tiger, Elephant, MNIST-based Attention-based Multiple Instance Learning F)—/;core AUé 5
’ dataset with Contrastive Learning) ’
Y \;gl;%[gi al. Camelyon16, Tcga-Lung and MSK CWC-Transformer AUC, Accuracy

Frade, Julieta,
et al. 2022 [9]

Zhang,
Xijaoxian, et al.
2022 [4]

Tian, Yu, et al.
2022 [10]

Combalia,
Marc, et al.
2018 [11]
Qu, Linhao, et
al. 2022 [12]
Teramoto,
Atsushi, et al.
2021 [13]
Sadafi, Ario, et
al. 2020 [14]
Zheng, Yushan,
etal. 2022 [15]
Ahmad,
Nouman, et al.
2022 [16]
Rymarczyk,
Dawid, et al.
2021 [17]
Sens, Daniel, et
al. 2023 [19]
Zhang, Jianxin,
et al. 2022 [20]
Hou, Cungqiao,
et al.2022 [21]
Li, Bin, et al.
2021 [22]
Li, Guangli, et
al. 2021 [23]
Chen, Shaobin,
etal. 2021 [24]
Wang, Lang, et
al. 2023 [25]
Ding, Saisai, et
al. 2023 [26]
Cai, Hongbin,
etal. [27]
Li, Xiaoyu, et
al. 2023 [18]

Non-Small Cell Lung Cancer
Radiogenomics(NSCLC Radiogenomics),
Interstitial Lung Disease (ILD), a private
database from the Centro Hospitalar e
Universitario de Sao Joao (CHUSJ)

Camelyon16, Pneumonia CT

HyperKvasir, LDPolypVideo

MNIST-Sparse, MNIST-Clustered, ICTAR
Grand Challenge 2018 Part A, GTEx Skin

Camelyon16, Tcga-Lung
Dataset made of lung cells (Self-created)

Blood samples, part of CoMMitMenT study

Gastric2K, Endometrial-2K
BreakHis

MNIST, Breast Cancer Histologic dataset,
DIFaS, Retinal Image Set

BRACS, Camelyon17
Camelyon16, MSK
Camelyonl16
Camelyon16, Tcga-Lung

BreakHis, BACH, PUIH

Data collected from various hospital
institutions

PatchCamelyon

Cancer Genome Atlas Renal Cell Carcinoma
(TCGA-RCC), Cammelyonl16

Colorectal Cancer images

BreakHis

Normalised Set Kernel (NSK)

Dual Space Multiple Instance Representative
Learning (DSMIRL)

Convolutional transformer MIL anomaly
classifier, Contrastive snippet mining (CSM)
approach
VGG-like architecture for MNIST,
ResNet-based architecture for ICIAR, and
GTEx
Distributed Guided MIL for WSI,
Self-Supervised masked Autoencoders (MAE)

MIL Deep Learning Algorithm with attention
(ADMIL), CNNs, Otsu algorithm
Mask R-CNN, MIL Attention Pooling

Kernel Attention Transformer (KAT)
Suport Vector Machine (SVM), EfficientNet

Self-Attention Attention-Based MIL Pooling
(Sa-AbMILP), Resnet-18

TransMIL, Bag Embedding Loss (BEL)

Attention MIL Transformer (AMIL-Trans)

Shuffle Attention (SA), Multi-Head Attention
(MHA), Long Short Term Memory (LSTM)

Dual-Stream (DSMIL), Attention Pooling

Multi-View Attention-guided Multiple
Instance Detection (MA-MIDN)
Fully Convolutional Neural Networks (FCN),
Space Score Map (SSM)

Local Global Vision Transformer (LGViT)

Multi-scale Efficient Graph-Transformer
(MEGT)

Swin Transformer, CLAM, DSMIL

Graph-based multiple instance learning
(GMIL)

AUC

Accuracy, AUC, F1-Score

AUC

Accuracy

AUC, Accuracy

Accuracy

AUC, F1-Score

Accuracy

Accuracy

Accuracy

Accuracy, F1-Score

AUC

AUC, Precision, Recall,
F1-Score

Accuracy, AUC
AUC

AUC

Accuracy, Precision, Recall,
F-score

Accuracy
AUC, Accuracy, F1-Score

AUC

cation of subtle patterns can be crucial for diagnosis and
treatment.

B. TRANSFORMERS

Introduced in 2017 by Vaswani et al. [49], they have
revolutionised DL with its self-attention mechanism that
processes sequences in parallel, in contrast to previous
architectures based on recursion or convolutions. Essential
in natural language processing tasks, they have also gained
ground in computer vision and medical image analysis,
helping to detect and classify pathological features. Their
ability to generate contextualised representations of data
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is especially valuable in medicine, where they integrate
information from various sources for accurate diagnoses,
continuing to evolve to meet the complexities of medical
imaging.

In analysing the articles that mention the use of trans-
formers [8], [10], [19], [25], [26], [27], we observed
various implementations and significant impacts in the field
of medical image analysis. In the article [8], the CWC-
Transformer model was developed for WSI classification,
combining contrastive learning with CNNs and transformers.
This approach stands out for its ability to capture both local
and global information from the images, providing a richer
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TABLE 3. Results from the studies that used breast cancer datasets.

Dataset Model Used Accuracy AUC
USBC breast cancer [28] TGA-MIL [7] 77.0% 75.6%
Camelyon16 [29]/ MSK [30] CWC Transformer [8] 89.1%/ 92.6% 93.9%/ 94.7%
Camelyon16 [29] DSMIRL [4] 89.9% 95.3%
ICTAR Gr;;? gkiglll]enge 2018 ResNet based architecture [11] 77.6% - 84.7% -
Camelyon16 [29] MAE [12] 80.2% 83.7%

BreakHis [32]

Breast Cancer Dataset [28]
BRACS [33]/ Camelyon17
[34]
Camelyon16 [29]/ MSK [30]
Camelyon16 [29]

SVM, EfficientNet [16]
Sa-AbMILP [17]

BEL [19]

AMIL-Trans [20]
MHA, LSTM [21]

Camelyon16 [29] DSMIL [22]
BreakHis [32], BACH [35],
PUIH [36] MA-MIDN [23]
PatchCamelyon [37] LGViT [25]
BreakHis [32] GMIL [18]

97.0% - 99.6%

65.5% - 76.7% 85.8% - 86.7%

60.0%/ 68.0% 76.0%/ 68.0%

- 94.3%/ 84.2%
96.0% 95.3%
86.8% 89.4%

96.0%- 98.8% 99.0% - 99.8%

91.8% -
96.4% - 99.8% 99.7% - 98.6%

TABLE 4. Results from the other datasets * - Datasets not referenced.

Dataset Model Used Accuracy AUC
Colon Cancer dataset [38] TGA-MIL [7] 92.7% 98.3%
Tcga-Lung [39] CWC Transformer [8] 92.6% 94.7%/
NSCLC [40]/ ILD [41] NSK [9] - 59.0% - 89.0%/ 59.0%
Pneumonia CT DSMIRL [4] 93.0% 96.7%

HyperKvasir [42] &

LDPolypVideo [43] Cer Lol ; el
GTEx Skin [44] ResNet based architecture [11] 82.6% - 94.2% -
Tcga-Lung [39] MAE [12] 92.0% 97.0%

Self made Lung Cells Dataset* ADMIL [13] 91.6% -

Blood samples [45] Mask R-CNN [14] 79.0% 96.0%

Gastric-2K*/ Endometrial-2K* KAT [15] 91.5%/ 94.9% 96.7%/ 98.3%
Retinal Image Dataset [46] Sa-AbMILP [17] 76.3% -
Tcga-Lung [39] DSMIL [22] 91.9% 96.3%
Retina Data collected from FCN/SSM [24] 94.4% 97.2%
various hospitals™*
TCGA-RCC [47] MEGT [26] 96.9% 97.9%

Colorrectal Cancer Images*

Swin Transformer/ CLAM/ DSMIL [27]

- 78.4%

and more detailed analysis. In [10], a MIL method based
on transformers is presented for the detection of polyps in
colonoscopy videos with the ability to operate with weakly
labelled videos and capture global temporal relationships,
surpassing previous techniques and demonstrating the effec-
tiveness of transformers in video contexts. In [19], the
TransMIL model uses Neystrom’s Method [50] to process
many instances in high-resolution images, an important
innovation to show the usefulness of transformers in dealing
with complex, high-dimensional data. The article [25]
introduces LGViT. This architecture combines the advantages
of Transformers in learning global representations with the
ability of CNNs to capture local features, highlighting the
synergy between global and local learning provided by
Transformers. MEGT, discussed in [26], is a dual-branch
Transformer model that integrates image patches of different
resolutions to improve the accuracy of cancer diagnosis in
WSIs. This ability to combine information from multiple
scales stands out as a crucial approach for the detailed
analysis of pathological images. To conclude, the article [27]
describes the use of MIST, a method based on the Swin
Transformer, to classify colorectal adenomas in WSIs. This
approach improves classification accuracy, benefiting from
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the efficiency of the Swin Transformer in combination with a
three-stage process and a MIL aggregator.

These studies collectively illustrate how transformers offer
arange of benefits in medical image analysis, from improved
accuracy to the ability to process and analyse complex data,
playing a crucial role in advancing accurate and detailed
medical diagnosis.

C. TRANSFORMERS AND ATTENTION MECHANISMS

The combination of transformers and attention mechanisms
in machine learning, especially in MIL contexts, represents
a powerful fusion of advanced artificial intelligence tech-
niques. These techniques allow MIL models to identify
key features within a bag of instances and understand the
complex relationships between these instances, significantly
improving the accuracy and effectiveness of image-based
diagnoses or analyses. [51]

And since, in the articles selected, studies that approach
both techniques [15], [20] were found, there will be some
discussion about that. In [15], KAT uses the K-means
algorithm to extract a set of anchors based on the spatial clus-
tering property of the features and EfficientNet-b0 to extract
features from WSI patches. In addition, a cross-attention

VOLUME 12, 2024



D. Barbosa et al.: Multiple Instance Learning in Medical Images: A Systematic Review

IEEE Access

algorithm is used to facilitate information communication
between kernels and patch tokens. The use of transformers
and attention mechanisms in the KAT aims to highlight
the most relevant regions of the images for more accurate
classification, resulting in high accuracy in the subtyping
and classification tasks in the datasets. In [20], the AMIL-
Trans model integrates ResNet-50 with an efficient channel
attention (ECA) module to select discriminating instances
and a Transformer encoder for bag-level aggregation. This
model’s implementation of attention mechanisms and trans-
formers is designed to capture discriminant information and
correlations between instances, improving feature selection
and aggregation at the bag level.

These studies exemplify how integrating transformers and
attention mechanisms into MIL models offers a more refined
and detailed analysis of medical images. This approach
improves diagnostic accuracy by highlighting crucial dis-
criminating features.

D. OTHER METHODS

In the context of MIL for medical image analysis, techniques
such as CNNs and supervised and unsupervised learning
methods offer valuable alternatives to attention mechanisms
and transformers, contributing significantly to accurate and
efficient diagnosis [52].

In the articles [4], [9], [11], [12], [16], and [22], we see
the application of various techniques in the context of MIL
for analysing medical images, each chosen for its specific
advantages.

In [9], the method for detecting lung diseases uses CT
scans and combines different bag generators with the NSK
algorithm, providing a more comprehensive and accurate
analysis of lung diseases. DSMIRL, presented in [4],
addresses the challenges of the imbalance between positive
and negative instances in medical images, offering a balanced
solution through a combination of adaptive instance selection
and multi-instance representative learning that, although
complex, this method improves classification accuracy.
In [11], the patch sampling strategy based on the Monte
Carlo method is chosen for its effectiveness in improving
classification accuracy in histological images, overcoming
the limitations of uniform sampling. The paper [12] uses
masked autoencoders and a pseudo-label-based refinement
strategy to improve the initialisation of the feature space,
resulting in high accuracy and AUC. In [16], the CAD
system for breast cancer employs transfer learning and
discriminative patch selection, aiming for high classification
accuracy. Finally, [22] uses MIL with weak supervision and
self-supervised contrastive learning, choosing this approach
to integrate a pyramid fusion mechanism and provide a
more holistic and detailed view in WSI analyses despite the
complexity of the model.

Each of these studies highlights the importance of selecting
appropriate techniques in MIL to deal with the specificities
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of medical images, seeking to balance accuracy, processing
capacity, and suitability for the available data.

E. LIMITATIONS

By analysing the limitations presented in the studies from [7]
to [27], we observe common and specific challenges faced in
MIL approaches to medical image analysis.

In [7], the implementation of the TGA-MIL model reveals
challenges such as the need to fine-tune for different tissues
and the dependence on image quality. Similarly, [8] with its
CWC-Transformer model highlights the high consumption of
computational resources, especially with high magnification
images, and potential problems in treating similar patches
such as negative pairs. The study [9] on the detection of
lung diseases faces limitations due to the restricted size
of the databases, compromising the generalizability of the
results. Similarly, [4] and [10] show challenges related to
the complexity of their methods and the need for large
data sets. The article [11], which proposes a Monte Carlo-
based sampling strategy, may face challenges with the
computational effort required for effective implementation.
In [12], limitations include the need for large, annotated
datasets and challenges in generalising the model. The
study [13] on classifying lung cytology images may face
similar, though unspecified, challenges. The analysis of
individual cells in [14] is limited by the small number of
cases studied, requiring external validation and investigation
of applicability to other conditions. The article [15] on the
KAT model highlights the dependence on image quality and
the need to fine-tune the model. The study [16] on the CAD
system for breast cancer diagnosis highlights limitations
such as the possibility of omitting relevant information due
to the selection of discriminative patches. The [17] faces
challenges related to dependence on the type of kernel used
and scalability issues. The challenges of poor annotations
and the large size of the “bags” are evident in [19], as is
the sensitivity to the quality of the class representations.
The paper [20], with its AMIL-Trans model, highlights the
need for large amounts of labelled data and challenges
in generalisation. The study [21] on the SAMIL model
for breast cancer WSI classification can address model
complexity and the need for adjustments for different types
of data. In [22], WSI classification with MIL and self-
supervised learning faces implementation challenges due to
its complexity. The article [23] with the MA-MIDN model
highlights the dependence on image quality and the need for
large volumes of data. [24] addresses the classification of
stages of retinopathy of prematurity, facing challenges due
to the similarity between early stages of the disease. The [25]
with LGViT, also has limitations, such as the dependence on
image quality and the need for large data sets. The MEGT
model in [26] faces challenges in integrating information
from various scales. Finally, [27] the MIST method highlights
common challenges in medical imaging studies, including the
need for large, labelled datasets and variability in imaging
techniques.
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These limitations underline the complexity of developing
effective MIL models for medical image analysis, highlight-
ing the importance of data quality, model generalisation, and
the balance between accuracy and computational complexity.

F. RESEARCH QUESTIONS

In this section, we explore research questions related to
challenges, influences, effectiveness, and diversity of algo-
rithms in Multiple Instance Learning (MIL) applied to image
classification. Based on the summaries of recent studies, this
analysis seeks to elucidate critical aspects that shape the MIL
field, ranging from technical and methodological limitations
to the nuances in algorithm performance on different types of
image datasets.

Q1: The main challenges and limitations of current
MIL methods in image classification include the need for
large sets of annotated data, computational complexity, and
dependence on image quality and diversity. As seen in the
studies [7], [8], [9], and others, these challenges directly
impact the generalizability of the results and the applicability
of the models to different pathological conditions or tissue
types.

Q2: The quality and quantity of training data significantly
influence the performance of MIL methods. Insufficient
or low-quality data can limit the model’s ability to learn
accurate and generalisable representations, as evidenced
in [9] and [12]. Large sets of annotated data are crucial for
effective training, especially in complex models such as those
described in [4] and [20].

Q3: The accuracy of MIL methods varies on different
types of image datasets. For example, in [15] and [16],
high accuracy was observed in classifying histopathology
and breast cancer images. However, this accuracy can be
influenced by several factors, including the complexity of
the image, the nature of the classification problem, and the
specificity of the MIL algorithm used.

Q4: Several MIL algorithms are used in image classifi-
cation, ranging from techniques based on kernels and self-
attention, as in [7] and [17], to approaches that integrate
contrastive learning and pyramid fusion, as seen in [22].
In addition, algorithms that combine CNNs, transformers,
and attention strategies, as in [8] and [20], demonstrate the
versatility and adaptability of MIL methods to the specific
needs of image classification.

Therefore, the field of MIL in image classification is
marked by a diversity of approaches and techniques, each
with its challenges and advantages. Choosing the appropriate
algorithm and the availability of high-quality data are crucial
to successfully applying these methods in practical medical
image analysis contexts.

V. CONCLUSION

This systematic review article rigorously explores the
dynamic field of multiple instance learning (MIL) applied
to image classification, offering valuable insights into
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current trends, challenges, and technological advances in
this area. Through carefully analysing the selected studies,
we addressed the defined research questions, uncovering
crucial aspects of MIL and its application in various
imaging contexts, with a special emphasis on medical
imaging.

From this review, although MIL offers considerable
promise for image analysis, especially in medical appli-
cations, significant challenges remain. These include the
need for greater interpretability of models, more efficient
methods for dealing with large volumes of data, and the
integration of specific domain knowledge into learning
processes.

This study serves as a basis for future research, suggesting
the exploration of advanced machine-learning techniques
and the integration of specialised knowledge to improve
the accuracy and usefulness of MIL methods in practical
applications. Furthermore, it emphasizes the importance of
high-quality, representative datasets for the field’s continued
evolution.

In short, MIL continues to be a vital and expanding
area of research, with significant potential to positively
impact various applications, especially in medical imaging.
As technology advances and new approaches are developed,
MIL solutions are expected to become even more effective
and widely adopted, contributing to significant advances in
various fields.
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