
Received 30 March 2024, accepted 14 May 2024, date of publication 21 May 2024, date of current version 30 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3403721

A Hyper-Heuristic Approach for Quality of
Experience Aware Service Placement
Scheme in 5G Mobile
Edge Computing
SAFIQUL ISLAM 1, MAHADI AHAMMED 1, NURA ALAM SIDDIQUE 1,
PALASH ROY 1,2, MD. ABDUR RAZZAQUE 2, (Senior Member, IEEE),
MOHAMMAD MEHEDI HASSAN 3, (Senior Member, IEEE), AND KASHIF SALEEM 4
1Department of Computer Science and Engineering, Green University of Bangladesh, Narayanganj, Dhaka 1461, Bangladesh
2Green Networking Research Group, Department of Computer Science and Engineering, University of Dhaka, Dhaka 1000, Bangladesh
3Department of Information Systems, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia
4School of IT and Engineering, Melbourne Institute of Technology, Sydney, NSW 2000, Australia

Corresponding author: Md. Abdur Razzaque (razzaque@du.ac.bd)

This work was supported by the Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia, under Project
IFKSUOR3-282-2.

ABSTRACT The 5th Generation (5G) Mobile Edge Computing (MEC) addresses the problem of high
end-to-end delay experienced by traditional cloud computing users by ensuring fast accessible and reliable
computing resources. However, the deployment of service instances in MEC resources requires migration
due to user mobility. While Proactive Migration of service instances at multiple MECs increases users’
Quality-of-Experience (QoE), Reactive Migration might reduce the deployment cost at the expense of
user QoE. In this paper, we have developed a framework, that distributes service instances proactively
among the Edge Nodes depending on user movement trajectories to ensure faster migration of the service
instances and deliver higher QoE within minimum VNF deployment cost considering users’ budgets. The
aforementioned Proactive Service Placement (PSP) problem is formulated as a Multi-Objective Linear
Programming (MOLP) that brings a trade-off between these two conflicting objectives, maximizing user
QoE and lowering VNF deployment cost. For large networks, the PSP problem is proven to be an NP-hard
problem. Thus, we have developed an artificial intelligence-based Hyper-heuristic algorithm for PSP, called
HPSP, which can provide a high-performing solution within polynomial time. The HPSP exploits Tabu
Search Optimization as a high-level meta-heuristic algorithm that selects one of the three lower-level meta-
heuristic algorithms- Golden Eagle Optimizer, Sine Cosine Optimization, and Jellyfish Search Optimization
depending on the situation. The results of numerical analysis describe that the HPSP system outperforms
the other state-of-the-art works in terms of user QoE, cost, and the ratio of proactive to reactive service
placements.

INDEX TERMS Quality of Experience, 5G mobile edge computing, service instances, deployment cost,
hyper-heuristic approach.

I. INTRODUCTION
In recent years, smart mobile devices such as cell phones,
wearable technology, and smart automobiles have become

The associate editor coordinating the review of this manuscript and

approving it for publication was Alessandro Floris .

increasingly prevalent in our everyday lives as a result
of the widespread use of cellular mobile networking and
the fast growth of 5th Generation (5G) networks. The 5G
cellular network is one of the emerging technologies for
providing a more consistent user experience, greater data
speeds, ultra-low latency, increased reliability, vast network

72746

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0000-3827-0020
https://orcid.org/0000-0002-2000-0978
https://orcid.org/0009-0007-2321-8423
https://orcid.org/0000-0002-1076-3090
https://orcid.org/0000-0002-2542-1923
https://orcid.org/0000-0002-3479-3606
https://orcid.org/0000-0001-8062-3301
https://orcid.org/0000-0002-8745-1327

S. Islam et al.: Hyper-Heuristic Approach for QoE Aware Service Placement Scheme

capacity, Quality-of-Service (QoS), etc [1], [2], [3]. The
5G network technology has gained much popularity for
providing data-intensive and compute-intensive applications
like Virtual Reality (VR), face recognition, and video
conferencing by delivering quicker, more consistent lower
latency, data rates, and lower cost [4]. According to IMT-2020
specifications, 5G is designed to offer peak data rates of up
to 20 Gbps, energy savings of between 80 and 90 percent,
and an increase in device connection of up to 100 times that
of 4G network [5].
Additionally, by leveraging virtualization, Software

Defined Networks (SDN) and Network Function Virtualiza-
tion (NFV) can significantly enhance the functionality of 5G
network architecture [6], [7]. The NFV concept assists the
mobile customer in keeping the network operations of the
mobile applications in the cloud rather than on any individual
hardware device. Executing application codes for real-time
delay-sensitive applications in the distant master cloud
requires higher latency. Thus, utilizing cloud infrastructure
for mobile edge networks in the MEC environment reduces
response time for real-time 5G network applications [8].
There are multiple ENs in a MEC environment. A user
device automatically establishes connections to the ENs
covering that areawhen it moves from one location to another.
Depending on their needs, they can access services from
the previous EN where their service replica was running or
migrate it to the new EN. This may increase the service
delay and, as a result, it decreases the user QoE. Therefore,
service instance replication and a quickermigration technique
should be employed to deliver real-time services for the user
computationally intensive and latency-sensitive tasks to boost
user QoE.

There are currently two migration processes available for
migrating the service instance: the first is known as proactive
migration (PM), whereas the second is known as reactive
migration (RM), [9]. In the case of RM, when a user travels
from one EN to another EN, then the user’s data is migrated
to a new service instance at the current EN from the prior
EN, and the service instances on the prior one are switched
off. Before the migration procedure is finished, users need
to use the previous EN’s service. On the contrary, service
instances are proactively deployed under the PM strategy in
nearby ENs by considering the geographical proximity of
the users, which in turn drastically reduces the migration
time and incurs additional deployment costs. Fig. 1 depicts a
typical service migration model in the MEC. User 1 moves
from one location to another and requests the application
within the coverage of Edge Node 3, and the system launches
the application’s primary service copy i.e., VNF in Edge
Node 3. The copies of the same application service are
proactively deployed in the Edge Nodes 4, 2, and 1 to ensure
quicker migration when user 1 connects to any of these ENs.
However, if the user connects to any of the other ENs that
are not in the user’s trajectory, then reactive migration is
invoked.

FIGURE 1. Service migration in 5G MEC.

The proactive distribution of service instances substan-
tially enhances the user’s QoE. As opposed to that, when
reactivemigration is raised, response time increases, lowering
VNF deployment costs and decreasing user QoE. As a result,
selecting the appropriate EN for service instance distribution
while maximizing user QoE and lowering VNF deployment
costs has become a critical research problem. In the topic
of MEC, a considerable number of works have been carried
out to deploy the service instances in the MEC environment.
Roy et al. [10] have presented the procedure for placing
service instances in the cloud data center to improve the QoE
of the end users by trading off between the service instances’
relocation time and communication delay. They have not,
however, taken into account the user’s route prediction
model or the cost of deployment when placing the service
instances. Another group of authors in [11] has developed two
optimization strategies, one aims to lessen reactive migration
by proactively deploying additional service instances in the
ENs. And other one aims to reduce the deployment costs
by restricting the placement of service instances in advance.
However, they have deployed the service instances without
considering users’ movement trajectory, which in turn wastes
the reserved resources for users. Furthermore, the deployment
cost in the former strategy can be infinite, which is not
realistic in a real-world situation. In [12], the authors have
considered the placement of service instances including the
directions of user mobility while simultaneously attempting
to strike a trade-off between the QoE and the costs of
placement using a meta-heuristic algorithms-based solution.
One major weakness of meta-heuristic algorithms is that
they may be very effective for a certain scenario but are
unable to provide optimal results in constantly changing
various scenarios due to getting stuck in the local optima [13].
To overcome this limitation, a hyper-heuristic can be used
which selects the best heuristic from multiple heuristics in
a constantly changing network environment.

Some real-life challenges related to service instance
placement inMEC due to user mobility have yet to be covered
in the literature. The subsequent concerns persist unexplored
and thus the research questions to be answered in this paper
are listed below.

VOLUME 12, 2024 72747

S. Islam et al.: Hyper-Heuristic Approach for QoE Aware Service Placement Scheme

1) In the context of user mobility, how to achieve an
appropriate trade-off between the QoE and the service
deployment costs?

2) How can we achieve the highest QoEwhile minimizing
service deployment expenses when a user has a limited
budget?

3) How canwe determine the efficient approach for proac-
tive and reactive service placement decision-making
exploiting a hyper-heuristic approach?

In this paper, we have developed a framework for mobility-
aware Proactive Service Placement (PSP) problem, with the
objective of getting a trade-off between maximizing user
QoE and minimizing the deployment cost of the service
instances. The aforementioned optimization problem has
been formulated usingMulti-Objective Linear Programming.
The system needs to deploy a large number of service
instances to enhance the user QoE, which in turn also
increases the system’s VNF deployment cost. Therefore,
the PSP framework brings a trade-off between these two
conflicting objectives. For large networks, the optimization
formulation will be an NP-hard problem. Therefore, a Hyper
heuristic based Proactive Service Placement (HPSP) is also
devised, which adopts Tabu Search Algorithm as a higher
level heuristic and Sine Cosine Optimization algorithm for
PSP (SCPSP), Jellyfish Search Optimizer for PSP (JSPSP),
and Golden Eagle Optimizer algorithm for PSP (GEPSP)
as the lower level heuristic algorithms, which can provide
solutions within polynomial time and improve QoE and
minimize system’s VNF deployment cost for large networks.
The following are the main contributions of this paper:
• We develop an optimization framework for the
mobility-aware PSP problem as a Multi-Objective
Linear programming one that brings a trade-off between
maximizing user QoE andminimizing the system’s VNF
deployment cost under budget and resource constraints.

• Due to the NP-hardness of the developed optimization
framework, a hyper-heuristic algorithm, namely HPSP
has been developed, which dynamically exploits several
selected heuristics to merge their strengths and mitigate
their weaknesses in the search space.

• We have done extensive numerical analysis using
Python programming version 3.8.0 and the results show
that the HPSP system achieves significant performance
improvements concerning QoE and VNF deployment
costs by 20% and 18%, respectively.

The organization of the remaining sections of this paper
is as follows: Section II presents the state-of-the-art works
on service replica placement and service migration strategies
in MEC. In Section III, we provide a detailed description of
our developed systemmodel and assumptions. The developed
optimization framework for the PSP method is discussed in
Section IV. TheHyper-Heuristic Algorithm for the developed
PSP system is presented in Section V, and the performance of
the proposed HPSP system is evaluated in Section VI. Finally,
in Section VII, we conclude the paper and suggest potential
areas for future research.

II. RELATED WORK
In this section, we have investigated the research work
concerning service placement and replication strategies that
are regarded as emerging research areas in the 5G cloud
infrastructure. Several studies have been conducted on the
service placement, migration, and replication scheme in the
distributed cloud, or MEC environment [14], [15], [16], [17],
[18].

To obtain real-time service and satisfy the user QoE
considering mobility, a quicker live virtual machine (VM)
migration strategy needs to be used. The VM handover
approaches in the MEC system that accommodate the
dynamic behavior of the cloudlets are discussed by the
authors in [19] and [20]. However, these strategies lengthen
the overall VM transmission delay, which also lowers the user
QoE. The authors in [21] have provided some approaches for
VMs to ensure high reliability to minimize the difficulties
of service replication. This method necessitates constant
error detection, and it is recoverable by shifting to an
available instance. Two methods exist for identifying errors;
the first approach is record-and-reply; and the second one
is, check-pointing. Large amounts of data must be sent over
a special link on the replica side and saved in the primary
replica in the first strategy. The second technique depends
heavily on checkpoint frequencies. To bring an energy
and latency trade-off of mobile users, Gu et al. [22] have
developed energy-efficient binary and partially offloading
strategies that minimize energy consumption while taking
into consideration how long the tasks are to be processed.
However, they have not considered user mobility and
service deployment costs during the offloading of the
services.

The Ultra-Reliable Low Latency Communications
(URLLC) services that the 5G network provides are focused
on providing real-time low-latency access to the applications.
Hence, in [23], the authors have proposed the Follow Me
Cloud (FMC) architecture, which lowers the migration time
by allowing servicemigrations between the edges. This archi-
tecture always links the users to the most advantageous edge.
To minimize downtime during migration, the researchers
of [15] have proposed two migration methodologies based
on the FMC concept. In one scheme, it was assumed
that mobile user routes were known, but in the other
scheme, unknown directions were assumed. The goal of both
approaches was to improve the efficiency of total migration
procedures. The authors in [24] have devised a particle swarm
optimization (PSO) based technique for improving user QoS
and minimizing the server energy consumption due to user
mobility by utilizing transmission power control. Even so, the
authors neglected the accessible resource competence of the
ENs and service deployment costs. Nashaat& zhou et al. [25],
[26] have presented decentralized techniques for efficiently
placing service instances to reduce the utilization of network
assets. Subsequently, in [27] another group of authors has
developed an optimization framework to bring a trade-off
between service latency and availability to satisfy the

72748 VOLUME 12, 2024

S. Islam et al.: Hyper-Heuristic Approach for QoE Aware Service Placement Scheme

URLLC service requirement. However, they have not taken
into account the cost of implementing the services in the
MEC.

The service instance migration technique suggested by
the authors in [10] has brought a trade-off between service
migration time and network communication delay. Users
have the option to get service from the present data
center (DC), provided that the required service instance is
running in that DC. If this is not possible, they migrate
the service instances from the preceding DC to the current
one or get service from the prior DC. The first scenario
increases the migration time, and the latter scenario enhances
communication latency. However, the authors have not
utilized any route prediction model during the placement
of service replicas. It may be possible to dramatically
cut down on migration time if service replicas could be
placed proactively across the path nodes. Shah et al. [28]
have developed two optimization models for service replica
placement in the 5G MEC scenario due to user mobility.
Therefore, they have used a mobility pattern to predict the
user’s final destination. Reducing the number of RM (Min-
RM) and decreasing the cost of PM (Min-NSR) are two key
objectives of their work. Using the Min-RM technique, they
sought to restrict RM. As a consequence, they have deployed
the service instance proactively as much as possible without
considering any service deployment cost. In such a scenario,
the cost of replication can be infinite, which is implausible.
On the other side, the Min-NSR has aimed to reduce
service deployment costs without considering any experience
quality.

To decrease service unavailability and improve service
quality, the authors of [29] have studied the Markov decision
process and a deep Q-network-based service function chain-
ing (SFC) migration strategy by considering user mobility
and have proposed a migration timing decision (DQN-MTD)
algorithm. However, they have not taken into account the
service deployment cost and user service costs for getting
services. Another group of authors in [30] have studied a
greedy method to reduce the amount of VNF migration
using traffic prediction by exploiting the LSTM model.
Compared to random and first-fit approaches, a significant
improvement can be seen in the results of their study.
However, they have not considered the resource cost for
training the LSTMmodel. Moreover, the service deployment
cost has been ignored in their work. Subsequently, the
authors in [12] have developed an optimization framework
namely POPP to bring a trade-off between two conflicting
objectives, service deployment cost, and QoE by exploiting
the service instances in the user movement trajectory. Due to
the NP-hardness of their developed optimization model for
large networks, they have proposed a meta-heuristics Binary
Particle Swarm Optimization (BPSO) based service instance
deployment problem. But depending on different network
scenarios different heuristics may perform better which is
not considered here. The study conducted in [31] delved
into the issue of service migration, especially the process of

migrating an active service from the present edge server to a
selected target edge server. To solve this issue, the researchers
have developed a Deep Recurrent Q-learning-based service
migration decision algorithm namely DRQNSM. The major
goal of this method is to reduce both user latency and energy
usage during the migration process. This included analyzing
user data to determine if a specific task should be handled
locally, partially inside a single edge node, or transferred
to the next edge node. It’s important to note that their
migration strategy was purely reactive, which enhances the
overall migration delay. In their analysis, they solely took into
account the aspect of user delay, omitting considerations such
as user task completion deadlines, as well as user costs and
budget constraints.

Most of the existing works have not focused on
mobility-aware proactive service placement method that
addresses both optimizing QoE and VNF deployment costs.
As a result of focusing primarily on QoE improvement, VNF
deployment costs rise. Again, reducing VNF deployment
costs does not improve the quality of the user experience
significantly. When installing service replicas in ENs,
no prior effort has taken into consideration the user’s
route. Moreover, different heuristics solutions show different
performances based on the dynamic network environment.
These observations have inspired us to develop a system
that strikes a compromise between enhancing user QoE
and decreasing deployment expenses by exploiting a hyper-
heuristic approach.

III. SYSTEM MODEL AND ASSUMPTIONS
A. SYSTEM OVERVIEW
We consider a 5G MEC environment, which comprises of
M ENs, represented by M = {1, 2, 3, . . . ,M}, and, each
EN is referred to as an index 1 ≤ m ≤ M . Let, N
indicate the number of mobile users who request a service
represented by N = {1, 2, 3, . . . ,N }, where, the index of
a user is 1 ≤ n ≤ N . We additionally assume that there
is an edge orchestrator (EO) that regulates the ENs, M, and
makes the appropriate placement plan for the service replicas.
We presume that one user will request only one service at a
given time, and the usermust have a task (live video streaming
or online live gaming) that requires an excessively low delay.
Let, J = {j1, j2, . . . , jn} be used to represent the set of tasks of
all users, where, jn indicates the requested task of user n ∈ N.
There is a deadline 1n for each task jn ∈ J , and each user
n ∈ N has a service cost budget of Bn for completing the task.
Every mobile customer has a computationally demanding
and delay-sensitive task that must be processed on an
EN. As users request real-time delay-sensitive applications,
it requires placing the service replicas proactively on the
user’s movement route to receive uninterrupted service. The
EO uses the user movement trajectory and contextual data
from the path prediction model, to be detailed in Section III-B
and analyze the current load status of each EN. In the context
of stateful service instances, we explore the concept of
Flexible and Low-Latency State Transfer, namely FAST [18],

VOLUME 12, 2024 72749

S. Islam et al.: Hyper-Heuristic Approach for QoE Aware Service Placement Scheme

FIGURE 2. A general service migration model in 5G MEC system.

a programmable state transfer for synchronization state
information across multiple instances of the application. The
EO governs the direct transfers of application state from the
source application instances to the destination. This process
leverages switches enabled by SDN and deploys the service
instances accordingly.

In Fig. 2, as an illustration, one customer n ∈ N may
change his/her location after uploading a task jn ∈ J to its
nearest edge serverm ∈M for execution. We assume that our
scenario includes multiple tasks and multiple ENs that adhere
to a specific migration path and try to reduce the service
delay and service deployment cost while maximizing QoE by
placing service instances among multiple ENs. Nonetheless,
due to limited budget, Bn of user n ∈ N, and limited VNF
holding capacity ζm of EN m ∈ M, the proactive migration
will be restricted. Let, X be a D-dimensional binary matrix,
where, D = M ×N , and each entity Xm,n refers to a decision
variable. If a user n ∈ N has a service instance on EN
m ∈ M, then the value of Xm,n is 1, otherwise, it is 0. The
main notations that are used in this paper are displayed in
Table 1.

B. PATH PREDICTION MODEL
We anticipate the path of each user’s (pedestrian/vehicular)
course of travel by adopting the destination path prediction
model (DPPM), which is introduced in [32], with the
assumption that the DPPM has prior information about
the user’s destination. Several frequently visited locations
inside a road network are denoted by their coordinates
(i.e., longitude and latitude), also each of such places are
identified by a unique ID. The edge orchestrator keeps the
user contextual database, and historical movement database,

TABLE 1. Notation table.

which tracks the user movement and contextual information
like user characteristics, specific days, and time of visiting
places, respectively. The path prediction algorithm begins
from the origin and repeats till it gets to the destination.
In every repetition, the previous road section’s endpoint
becomes the current position, and then the potential nearby
sections are chosen depending on the predetermined thresh-
old. The best neighboring segment is then chosen using a
combination of the penalty function, the transition probability
based on historical data, and the connecting point with
the previous road segment. When the selected road portion
appears to be a dead end, we have here set the penalty
function value to zero. In the end, it will return a list of
road sections orderly denoted by Rn corresponding to user
n ∈ N.
When a user goes from one site to another along the

route, he or she needs to obtain services by the most
appropriate node based on its geographical location and
received signal power. Due to the curves in the roadways,
it may be divided between a certain number of straight
road portions, which may be served by one or several ENs.
Depending on the coordinates and connection intensities,
the EO links a single EN or an ordered collection of ENs
necessary to serve that segment and appends it to the set
M of ENs to assist user n ∈ N on the predicted trajectory
r ∈ Rn.

IV. DESIGN OF PSP SYSTEM
In this section, we have established the detailed design of PSP,
which is executed on the EO. Here, we have calculated the
QoE and VNF deployment cost in terms of delay and service
deployment periods, respectively. Then, we have presented
the optimal formulation of the PSP problem as a MOLP one,
which brings a trade-off between the aforementioned two
conflicting objectives.

72750 VOLUME 12, 2024

S. Islam et al.: Hyper-Heuristic Approach for QoE Aware Service Placement Scheme

A. CALCULATION OF QOE
Without loss of generality, we adopt a widely used parameter
model to describe task a jn ∈ J . Uplink data transmission
rate between mobile user n and source EN m ∈ M can be
expressed as:

rum,n = Wmlog2

(
1+ pnHm,n

θm

)
, (1)

where,Wm and Hm,n refer to wireless channel bandwidth and
channel gain between ENm and mobile user n; pn denotes the
transmission power of user n and θm is the white noise power.
The upload time between user n and EN m can be calculated
as follows:

T um,n =
λn

rum,n
, (2)

where, λn denotes the input data size of task jn ∈ J . We can
calculate the downlink data transmission rate rdm,n between
a user n ∈ N and an EN m ∈ M similar to uplink data
transmission date using Eq. (1). The required time to transfer
the result to user n from EN m can be calculated as follows,

T dm,n =
On
rdm,n

. (3)

whereOn is the size of output data. In the computation model,
there is a processing time to execute the task at EN m. The
execution time depends on the edge server’s processing speed
i.e., millions of instructions per second (MIPS) value of a VM
of the edge server m and required instructions In to execute
the task jn ∈ J . Processing time is calculated to execute task
jn in node m is,

T pm,n =
In

MIPSm
. (4)

When a user is connected to an edge server m ∈ M,
where the expected VNF is not deployed proactively, then we
need to do reactive migration to migrate the VNF from the
previously running edge server. The required migration time
to migrate the task jn ∈ J with data size λn can be calculated
as follows,

Tmign =
λn

β
, (5)

where, β indicates the bandwidth between two edge servers.
However, in the case of proactive VNF migration, the VNF
will be migrated to the EN before the user, and the input
data size of the task does not affect the delay, i.e., λn = 0;
therefore, Tmign = 0. The total delay is equal to the summation
of data uploading time, downloading time, processing time,
and migration time, denoted by ξm,n, which can be obtained
as follows,

ξm,n = T um,n + T
mig
n + T dm,n + T

p
m,n. (6)

Now, we can measure the QoE of user n ∈ N for deploying
the service instance at EN m ∈M as follows,

Qm,n = 1−
ξm,n

1n
, (7)

where, 1n is the application delay deadline of task jn. Note
that, there is an inverse relationship between the total service
delay and QoE. Higher service delay indicates a lower QoE
and vice versa. By exploiting the user path prediction model,
we can calculate the user’s QoE as follows,

Qm,n = {ψ × µm,n + (1− ψ)× (1− µm,n)}

× Qm,n × Xm,n. (8)

Here, ψ is the accuracy level of the path prediction model,
and the ranges of ψ and Qn are between 0 and 1. If a user
n ∈ N does not take service from the node m ∈ M, then
Xm,n = 0, which indicates that the QoE for that user will be
0. Also note that the QoE depends on the value of µm,n and
the accuracy of the path prediction model ψ . If the node m is
the predicted path node for user n ∈ N, then µm,n = 1, which
implies that the resultant QoE isQm,n = ψ×Qm,n. Otherwise,
the QoE is determined Qm,n = (1 − ψ) × Qm,n. The lower
accuracy value of the path prediction model deviates the users
to get services in time which in turn decreases the QoE of the
users.

B. CALCULATION OF DEPLOYMENT COST
There is a deployment cost to deploy a service instance in
the edge server. Let, em,n denote the per unit deployment
cost to deploy a service instance n ∈ N proactively at
edge server m ∈ M. This cost may vary due to the
cost of the computational, storage resources, and energy
consumption cost for deploying the service instances. For a
single user to deploy a service in one edge server, the cost
is:

Em,n = em,n × T deployn × Xm,n, (9)

where, T deployn denotes the deployment period of the service
instance for user n ∈ N. The normalized deployment cost,
Em,n, can be determined as follows,

Em,n =
Em,n

Bn
, (10)

where, budget Bn denotes the amount of money a user n ∈ N
can make expense out of getting computation services and
Em,n ∈ [0, 1].

C. OBJECTIVE FUNCTION
Our main objective in this work is to maximize the user
QoE while minimizing the system deployment cost, which
is formulated as a MOLP problem that is expressed as
follows,

Maximize : Z =
∑
n∈N

∑
m∈M
{α × Qm,n − (1− α)× Em,n}

(11)

Subject to : Xm,n ∈ {0, 1} (12)∑
m∈M

Xm,n ≥ 1, ∀n ∈ N (13)

Qm,n ≥ Qminn , ∀n ∈ N (14)

VOLUME 12, 2024 72751

S. Islam et al.: Hyper-Heuristic Approach for QoE Aware Service Placement Scheme

∑
m∈M
{Em,n × Xm,n} ≤ Bn, ∀n ∈ N (15)∑

n∈N
jn ≤ ζm ∀m ∈M (16)

Here, Eq. (11) is the objective function of our work,
which brings a trade-off between maximizing the user QoE
and minimizing the total deployment cost. In this context,
there are some constraints which need to be satisfied. Xm,n
in constraint (12) is a binary variable, whose value is 1 if
user n has a task proactively deployed at EN m ∈ M;
0 otherwise. Constraint (13) refers to the service availability
constraint, which ensures that there is at least one service
instance available for each user. Constraint (14) is the user’s
QoE constraint, and it ensures that each user should enjoy
a minimum level of QoE. The user’s budget constraint in
Eq. (15) confirms that the total service instance deployment
cost of user n ∈ N must be lower than or equal to the user’s
budget for it. Constraint (16) is the capacity constraint, which
shows that the total number of allocated service instances for
each EN m ∈ M must be less than or equal to the EN’s VNF
holding capacity ζm.
Theorem 1: The PSP problem formulated in Eq. (11) is an

NP-Hard problem.
Proof: The proposed MOLP formulation can be reduced

to the Multiple Knapsack Problem (MKP) [33], which is also
an NP-complete problem. The following are the features of
the MKP.
• A set of item I = {1, . . . , i}
• A set of knapsack K = {1, . . . , k}
• A profit function Pi,k that indicates profit of assigning
an item i ∈ I to a knapsack k ∈ K

• A weight function δi that denotes the weight of an item
i ∈ I.

• An availability function Wk indicates the available
capacity of a knapsack k ∈ K . This problem tries to
maximize the overall profit by placing the items in the
available knapsacks.

Maximize :
∑
i∈I

∑
k∈K

Pi,k × Xi,k (17)

Subject to :
∑
i∈I

δiXi,k ≤ Wk , ∀k ∈ K (18)∑
k∈K

Xi,k ≤ 1, ∀i ∈ I (19)

Xi,k ∈ {0, 1}, ∀i ∈ I, ∀k ∈ K (20)

The optimal PSP problem can be reduced to MKP by
leveraging some constraints. Let, Ym,n = α×Qm,n×ψ×µm,n.
By considering the QoE for deploying the service instances
at the path node, our optimization formulation can be reduced
to as follows,

Maximize :
∑
n∈N

∑
m∈M

YmXm,n (21)

Subjectto :
∑
n∈N

jn ≤ ζm, ∀m ∈M (22)

∑
m∈M

Xm,n ≤ 1, ∀n ∈ N (23)

Xm,n ∈ {0, 1}, ∀n ∈ N, ∀m ∈ N (24)

Since the MOLP formulation of the PSP problem can be
reduced to the MKP, it is plausible to infer that the optimal
proactive service placement problem is at least as hard as
MKP. Therefore, the above optimal formulation cannot be
solved in polynomial time for larger values of m and n.

V. DESIGN OF HYPER-HEURISTIC PSP SYSTEM
Due to the NP-hardness of the PSP system developed in
the previous section, we have developed an AI-enabled
Hyper-heuristic strategy for the Proactive Service Placement
problem. Hyper-heuristic refers to a multi-level computing
technique in which a higher-level heuristic algorithm governs
the search space of the underlying heuristic methods rather
than the solutions of an underlying problem. Meta-heuristics
might be a good starting point for their simplicity and can
be effective if the environment is somewhat predictable
and careful parameter tuning is feasible. Hyper-heuristics
hold promise for achieving better performance [34] and
self-adaptation in dynamic MEC environments. The main
objective in the hyper-heuristic algorithms is to choose
the best heuristic from multiple heuristics pools. Because
each heuristic or meta-heuristic method has some strengths
and limitations while working on a problem area, the
Hyper-heuristic approach selects or combines the simple
heuristics by combining their strength and compensating
for their weaknesses. In the next sections, we will discuss
elaborately population representation, and higher and lower
level heuristics of our devised HPSP algorithm.

A. POPULATION REPRESENTATION IN PROBLEM DOMAIN
The HPSP algorithm starts with a list of potential solutions,
represented by S. The position of a candidate solution k ∈ S in
the search space is denoted by aD dimensional binary vector,
where D = M ×N and X k = (xk1 , x

k
2 , . . . , x

k
d , . . . , x

k
D). Each

entry xkd ∈ X
k corresponds to a decision variable Xm,n, where

n ∈ N, m ∈M and 1 ≤ d ≤ D, such that,

xkd = Xm,n, (25)

where, d = {(m − 1) × N + n}, and also, 1 ≤ m ≤ M and
1 ≤ n ≤ N .

B. REPRESENTATION OF FITNESS FUNCTION
To find the best solution from each of the lower-level
heuristics, we need to calculate the fitness of every solution
X k by using a fitness function F(.). A higher fitness value
indicates a better solution. The fitness function F(.) is almost
similar to our objective function of Eq. (11). However,
we have slightly modified our objective function to assign a
positive fitness value for the feasible solution and a negative

72752 VOLUME 12, 2024

S. Islam et al.: Hyper-Heuristic Approach for QoE Aware Service Placement Scheme

value for the infeasible solution as follows,

F(X k) =

∑
xd∈X k

{α × Qd − (1− α)× Ed + 1}

if Eqs. (12) to (16) are satisfied
−1 Otherwise

(26)

Here, Qd = Qm,n, and Ed = Em,n, where d = {(m− 1)×
N + n}, 1 ≤ n ≤ N , and 1 ≤ m ≤ M . Qd and Ed indicate the
normalized value of QoE and cost at the d th dimension. Here,
the fitness function F(.) is almost identical to the objective
function of Eq. (11). However, The fitness function F(.) in
Eq. (26) is slightly modified to assign the positive value for
the feasible solution and the negative value to the infeasible
solutions.

The best solution of lower heuristic is denoted as L which
is updated using the following equation,

L(t ′′ + 1) =

{
X k (t ′′), if F(X k) > F(L)
L(t ′′), if F(X k) ≤ F(L).

(27)

Here, Eq. (27) updates the local best solution L with the
current solution X k , if its fitness value is greater than L.
Otherwise, we have restored the previous local best solution
as the current local best solution.

C. DESIGN OF HPSP ALGORITHM
The structural design of HPSP is shown in Fig. 3. The
developed HPSP algorithm utilizes the concept of the Tabu
Search Algorithm as a high-level meta-heuristic algorithm
that selects one of the Lower Level Heuristic (LLH)
algorithms from the lower-level heuristic pool to find
polynomial time solutions based on feedback quality. Local
search algorithms can get stuck in local optimal solutions.
However, Tabu Search [35] improves the performance by
preventing revisiting the same solutions that have been used
previously. The algorithm does not consider a potential
solution again if it has already been considered within a
predetermined short-term window. Instead, it is marked as
‘‘tabu’’. At the beginning, the HPSP algorithm chooses an
LLH at random from Sine Cosine optimization, Jellyfish
Search optimization, and Golden Eagle optimization. The
chosen LLH is adapted to the solution space of PSP. After
that, the population will be updated by the selected LLH,
and HLHwill get the information from the updated feedback.
Based on the level of feedback quality from the LLHs, HLH
changes the selection of LLH and updates the Tabu list to
adapt to the solution space of PSP again.

1) INITIAL SOLUTION GENERATION
The optimization process starts with a collection of random
solutions in population-based heuristics. A fitness function
evaluates this random collection periodically, and a set of
operators enhances it. As a result, HPSP starts by calculating
an initial value for a collection of solutions S. Each solution

FIGURE 3. Structural design of HPSP algorithm.

Algorithm 1 HPSP Algorithm
Input: Tmax :Maximum Iterations,W :Number of solution,

LLH : {SCPSP, JSPSP,GEPSP}
Output: Service allocation matrix, X
1: for all k ∈W do
2: Generate initial solution set, S← X k Using Eq.(28)
3: end for
4: Hi← randomly selected from LLH
5: while t ′′ ≤ Tmax do
6: L ← Update solution using the fitness function (26)

of selected heuristic Hi
7: if F(G) < F(L) then
8: G← L

9: Keep Hi
10: else
11: Tabu List← Hi
12: if Tabu List is Full then
13: Randomly select a Heuristic Hi′ , where i′ ̸= i

from Tabu list
14: else
15: Randomly select from LLH
16: end if
17: end if
18: end while
19: for each d ∈ G do
20: m← ⌈ dN ⌉
21: n← {d − (m− 1)× N }
22: Xm,n← Gd
23: end for
24: return X

generates in a first fit approach where we assign the
value by considering the budget constraint (15), capacity
constraint (16), and the path prediction model which can be
expressed as,

xkb = 1 if Eq. (15), Eq. (16) are satisfied. (28)

2) ACCEPTANCE AND SELECTION MECHANISM
At the beginning, the HPSP algorithm randomly chooses a
LLH as Hi. The result of iteration t ′′ is stored as the global
best solution and compares with the result of iteration t ′′+ 1.
If the feedback improves then we don’t insertHi into the tabu

VOLUME 12, 2024 72753

S. Islam et al.: Hyper-Heuristic Approach for QoE Aware Service Placement Scheme

list and run the selected LLH again but otherwise, we insert
Hi into the tabu list. In each iteration, HPSP chooses an
arbitrary one of the LLHs (excluding the tabu list) based on
their previous efficiencies in the search space, as shown by
the solution feedback. In line 4, the result of Hi will be saved
as the local best L. In lines 5 to 15, we will check if the local
best L improves the global best G or not. If it improves then
we will keep the Hi. Otherwise, Hi will be marked as tabu
and we will check if the tabu list is full (Line 10-14). If it is
full then it will select another Heuristic Hi′ from LLH where
i′ ̸= i.

D. LOWER LEVEL HEURISTIC ALGORITHMS
In our developed Hyper-heuristic solution for the PSP prob-
lem, three meta-heuristic algorithms namely, Sine Cosine
Optimization algorithm [36] for Proactive Service Placement
(SCPSP), Jellyfish Search Optimizer [37] for Proactive
Service Placement (JSPSP) and Golden Eagle Optimizer
algorithm [38] for Proactive Service Placement (GEPSP) are
used as the lower level heuristics to update the solution space
of the PSP problem. The descriptions of these algorithms are
given next, as per our fitness function and solution set S.

1) SCPSP ALGORITHM
Sine Cosine Optimization is a simple population-based
optimization algorithm, which is worked by initially creating
several random candidate solutions and then moving them
towards or outwards the best solution using a mathematical
model based on sine and cosine functions [36]. This algorithm
is divided into two phases: exploration and exploitation. The
exploration happens when traveling in between the range
[−r, r] in sine and cosine, and random solutions are blended
with other solutions thus growing a high rate of randomness
in order to find out the potential regions of the search space.
The SCPSP not only finds (exploration) random solutions but
also exploits them to get the optimal solution. The solution
space in SCPSP can be updated at each iteration as follows,

pkd (t
′′
+ 1) =

{
xkd (t
′′)+ r1 × sin(r2)×1xkd (t

′′), r4 < 0.5
xkd (t
′′)+ r1 × cos(r2)×1xkd (t

′′), r4 ≥ 0.5

(29)

where,

1xkd (t
′′) = |r3 × Ld (t ′′)− xkd (t

′′)| (30)

r1 = a1 − t ′′ ×
a1
tmax

. (31)

Here, a1 = 2, which is a sinusoidal nature constant,
and r1 is the sinusoidal nature controlling parameter ranges
in [0, 2], which determines whether the next position’s
movement occurs within or outside the region between the
solution and the destination. r2 is a random number between
[0, 2π], which specifies the magnitude of motion toward
or away from the target. r3 assigns a random weight to the
destination, which can stochastically accentuate (if r3 > 1) or
de-emphasis (if r3 < 1) the effect of desalination to determine

Algorithm 2 SCPSP Algorithm
Input: tmax :Maximum Iterations, W : Number of solution,

S : Solution set.
Output: Optimal solution, L
1: Compute F(X k) using Eq. (26)
2: while t ′′ ≤ tmax do
3: for all solution X k ∈ S do
4: Update L using Eq. (27)
5: for each dimension d ∈ X k do
6: Update the value xkd using Eq. (33)
7: Update the random parameters r1, r2, r3, r4
8: end for
9: end for

10: Update t ′′ = t ′′ + 1
11: end while
12: return L

the destination and r4 defines the alternation between the sine
and cosine functions in an equal manner using Eq. (30).

The value of pkd (t
′′
+ 1) calculated from Eq. (29) provides

continuous value. In PSP, the values must be converted
into binary variables. The sigmoid function converts this
continuous value into a probability value using Eq. (32). Then
we update the position using Eq. (33).

σ (pkd (t
′′
+ 1)) =

1

1+ e−p
k
d (t
′′+1)

(32)

xkd (t
′′
+ 1) =

{
1 if σ (pkd (t

′′
+ 1)) ≥ rand(0, 1)

0 Otherwise.

(33)

Here, if the probability value is greater than the random
value, then xkd is 1, indicating that the service instance is
deployed at the d th dimension for the k th population. The
whole process is summarized in Algorithm 2.

2) JSPSP ALGORITHM
Jelly Fish Search (JS) Optimization algorithm is derived
from the social movements of jellyfish in the water, such
as how they follow the ocean current and migrate within
the swarm [37]. There are two types of movement that the
jellyfish follow. They either float with the stream which
works as the exploration phase, or swim inside the swarm
which resembles the exploitation phase. The movement of
Jellyfish depends on the food availability in the ocean, and
the amount of food in a place is calculated via an objective
function. Jellyfish have a time control system, which works
as a regulator to swap between these two movements. The
time control system includes �f (t ′′) which is a time control
function and a constant �const . The value of the time control
function can be calculated as follows,

�f (t ′′) =

∣∣∣∣(1− t ′′

tmax
)× (2× rand(0, 1)− 1)

∣∣∣∣. (34)

72754 VOLUME 12, 2024

S. Islam et al.: Hyper-Heuristic Approach for QoE Aware Service Placement Scheme

The precise value of �const is unknown, and value of
�f (t ′′) fluctuates within 0 to 1. For that reason, the value of
�const is set as 0.5, which is the average of 0 and 1. When
the value of the time control function �f (t ′′) in Eq. (34)
surpasses �const , then the jellyfish moves with the ocean
current.

Algorithm 3 JSPSP Algorithm
Input: tmax :Maximum Iterations, W : Number of solution,

S : Solution set.
Output: Optimal solution, L
1: Find the jellyfish with best location L, in Population set

S using Eq. (26)
2: while t ′′ ≤ tmax do
3: for each k ∈W do
4: Calculate the time control �f (t ′′) using Eq. (34)
5: for each dimension d ∈ X k do
6: if �f (t ′′) ≥ �const then
7: Determine New Position by Eq. (35)
8: else
9: if rand(0, 1) > (1−�f (t ′′)) then

10: Determine New Position by Eq. (37)
11: else
12: Determine New Position by Eq. (38)
13: end if
14: end if
15: Update value of xkd Using Eq. (33)
16: end for
17: Update L using Eq. (27)
18: end for
19: t ′′ = t ′′ + 1
20: end while
21: return L

The orientation of ocean current is determined by the
mean position vector of all jellyfish to the finest jellyfish
position. The following equation is used to calculate the new
position of the d-th component of a jellyfish toward the ocean
current.

pkd (t
′′
+ 1) = xkd (t

′′)+ rand(0, 1)

× (Ld − rand(0, 1)× 3× xmeand) (35)

Here, Ld is the d th element of the jellyfish with the best
position found so far. xmeand refers to the average position of
d th element from all jellyfish which can be calculated as,

xmeand =

∑W
k=1 x

k
d

W
. (36)

where, W is total number of jellyfish.
When the value of time control function �f (t ′′) is smaller

than�const , then the jellyfish travels within the swarm. In this
case, the swarm jellyfish shows two types of motion which
are known as passive and active motions. Passive movement
refers to the movement of jellyfish around their own places.

Due to this movement, the new position for every jellyfish
can be determined as follows,

pkd (t
′′
+ 1) = xkd (t

′′)+ rand(0, 1)

× 0.1× (Bupper − Blower), (37)

where, Bupper and Blower are upper bound and lower bound
of search space, respectively. To imitate the active motion,
a jellyfish k except for the one of interest is arbitrarily chosen,
and the direction of flow starts at jellyfish l to the chosen
jellyfish k . When the amount of food accessible to the chosen
jellyfish k exceeds the amount available to the jellyfish of
interest l, the latter redirects its attention to the former. If the
amount of food available to a particular jellyfish k is less than
the amount available to a different jellyfish l, the latter moves
directly away from the former. Therefore, in a swarm, each
jellyfish swims in the best direction to obtain food. This can
be mathematically represented as,

pkd (t
′′
+ 1) =

xkd (t
′′)+ rand(0, 1)× (x ld (t

′′)− xkd (t
′′))

if F(X l(t ′′)) ≥ F(X k (t ′′))
xkd (t
′′)+ rand(0, 1)× (xkd (t

′′)− x ld (t
′′))

if F(X l(t ′′)) < F(X k (t ′′)).

(38)

This movement is seen as the exploitation of the local
search space. Here, the time control system is also used to
swap between passive motion and active motion. If the value
of (1−�f (t ′′)) is greater than a random number between 0 to
1 then the passive motion is selected; otherwise, the active
motion will be shown. At the end of the JSPSP algorithm,
it will return an optimal solution L, which is the deployment
vector of the service instances. Algorithm 3 summarizes the
above processes.

3) GEPSP ALGORITHM
Another LLH algorithm for our developed PSP problem

is the Golden Eagle Optimizer (GEPSP) Algorithm, which
is also a swarm-based meta-heuristic method for global
optimization [38]. The notion of this algorithm was inspired
by the golden eagle’s turning speed during various stages of
its circular course while hunting. During the early phases
of hunting, golden eagles are more likely to cruise than
attack, which is known as the exploration phase. However,
in the end, they tend to be more likely to attack than cruise,
which is termed as exploitation phase. Each golden eagle
keeps the best prey location it has visited in its memory. The
eagle must maintain a delicate balance between exploitation
and exploration propensities to find the best prey location.
The Eagles can randomly choose between the best prey
spots visited by other golden eagles and their own best prey
location. In each cycle, the eagle picks a targeted meal at
random from the flock’s memory. The attack and cruise
vectors for each eagle are then computed relative to the prey
they choose. The choosing procedure is completely random
and unaffected by any factors such as distance from the

VOLUME 12, 2024 72755

S. Islam et al.: Hyper-Heuristic Approach for QoE Aware Service Placement Scheme

Algorithm 4 GEPSP Algorithm
Input: tmax :Maximum Iterations, W : Number of solution,

S : Solution set, [P0c,P
tmax
c] = [1, 0.5] : Propensity to

cruise, [P0a,P
tmax
a] = [0.5, 2] : Propensity to attack, M :

population memory
Output: Optimal solution, L
1: M ← Evaluate F(X k) for each X k ∈ S using Eq. (26)
2: while t ′′ in tmax do
3: Update Pa and Pc using Eq. (44) and Eq. (45)
4: for each k ∈W do
5:

−→
X∗← Randomly select a solution from S

6: Compute
−→
Ak using Eq. (39)

7: if ∥
−→
Ak∥ ̸= 0 then

8: Compute
−→
Ck and1Xk using Eq. (40) and Eq. (42)

9: for each dimension d ∈ X k do
10: Update Position using Eq. (46)
11: Update the value xkd using Eq. (33)
12: end for
13: Compute F(X k) using Eq. (26)
14: if F(X k) > M [k]) then
15: M [k]← F(X k)
16: L← X k

17: end if
18: end if
19: end for
20: t ′′ = t ′′ + 1
21: end while
22: return L

prey’s location. When allocating prey to an eagle, a one-to-
one mapping is performed, meaning that an eagle is always
allocated just one prey. We can model the golden eagles’

attack with a vector
−→
Ak that begins at the eagles’ current

location and finishes at the preys’ location. The calculation
of the attack vector is as follows,

−→

Ak =
−→

X f −
−→

X k , (39)

where,
−→
Ak = [ak1, a

k
2, a

k
3, . . . , a

k
d , . . . , a

k
D] and

−→
X k =

[xk1 , x
k
2 , x

k
3 , . . . , x

k
d , . . . , x

k
D] denote the D dimensional attack

vector and current location vector of k th eagle.
−→
X f is the best

frequented destination or prey.

The exploration phase or the cruise vector
−→
Ck , is perpen-

dicular to both the attack vector and the spherical path of the
eagle, which can be calculated using Eq. (40) and Eq. (41) as
follows,

−→

Ck
=

[
ck1, c

k
2, . . . , c

k
d , c

k
d ′ . . . , c

k
D

]
, (40)

cd =

∑
xd∈X k hdxd −

∑
d ̸=d ′ ad ′

ad
(41)

where, H = [h1, h2, h3, . . . , hD] represents the normal
vector, cd and ad represent the d th element of the cruise vector
−→
Ck and attack vector

−→
Ak , respectively.

The eagles’ displacements or step vector involves attack
and cruise vectors, which can be calculated as follows,

1Xk =
−→r1 pa

−→
Ak

∥
−→
Ak∥
+
−→r2 pc

−→
Ck

∥
−→
Ck∥

(42)

∥
−→
Ak∥ =

√√√√√ d∑
j=1

a2j , ∥
−→
Ck∥ =

√√√√√ d∑
j=1

c2j . (43)

Here, r1 and r2 are random vectors whose elements fall
inside the range [0,1]. pa and pc represent the coefficients of
attack and cruise vectors, respectively, that can be calculated
using Eq. (44) and Eq. (45). The value of Pa regulates
exploration and exploitation. The algorithm starts with low
pa and high pc. As the iterations proceed, pa is gradually
increased while pc is gradually decreased.

Pa = P0a +
t ′′

tmax
∥Ptmaxa − P0a∥ (44)

Pc = P0c −
t ′′

tmax
∥Ptmaxc − P0c∥ (45)

Here, t ′′ and tmax denote current iteration number and
maximum iterations, respectively. P0a and Ptmaxa denote the
initial and final values of propensity to attack, whereas,
P0c and Ptmaxc are initial and final cruise propensities,
respectively. In this paper, we have set [P0a,P

tmax
a] = [0.5, 2]

and [P0c,P
tmax
c] = [1, 0.5]. This implies that Pa starts at

0.5 and linearly reaches to 2. On the contrary, Pc begins at
1 and is gradually dropped to 0.5.

The previous duty cycle is applied to the new duty cycle to
calculate the new location by Eq. (46) that corresponds to the
updated duty cycle as follows,

pkd (t
′′
+ 1) = xkd (t

′′)+1X kd (t
′′), (46)

where, pkd (t
′′
+1) is the position of the next iteration, xkd (t

′′) is
the position of the current iteration, and 1X kd (t

′′) is the step
vector. If the golden eagle’s new location is better than the
location it has in its memory, the k th eagle’s memory changes
to reflect the new location. Otherwise, the eagle restores
the same location in its memory and deploys the service
instances accordingly. The above processes are summarized
in Algorithm 4.

E. COMPLEXITY CALCULATION OF HPSP
We have calculated and evaluated the complexity of algo-
rithms in this section. In the HPSP algorithm, at lines 1-3, |W|
solutions are generated and each solution is a |D| dimensional
binary vector. Therefore, the complexity for lines 1-3 is
O(|W| × |D|). Lines 5-18 iterate Tmax times using a while
loop. Inside the while loop, HPSP selects an LLH from the
Lower Level Heuristics pool. The complexity of SCPSP,
JSPSP, and GEPSP can be written asO((|W|× |D|)+ (tmax×
|W| × |D|)). Therefore, the complexity of lines 5-18 sums
up as O(Tmax × ((|W| × |D|) + (tmax × |W| × |D|))). From
lines 19-23, a loop iterates |D| times. Hence, the complexity

72756 VOLUME 12, 2024

S. Islam et al.: Hyper-Heuristic Approach for QoE Aware Service Placement Scheme

TABLE 2. Simulation parameters.

of HPSP isO(Tmax×((|W|×|D|)+(tmax×W|×|D|))+|D|) ≈
O(Tmax × tmax × |W| × |D|).

VI. PERFORMANCE EVALUATION
In this part, we compared the performance of the proposed
HPSP system with the state-of-art works: DRQNSM [31],
POPP [12] and Min-NSR [39]. We have done extensive
numerical analysis to assess the efficiency of the developed
HPSP system.

A. ENVIRONMENTAL SETUP
We envision an MEC scenario comprised of multiple ENs,
where each EN is distributed in a city space of 2000 ×
2500m2 following uniform random distribution. When small
cells are deployed, each EN is modeled as an LTE eNB with
a network range of about 250 meters. Those ENs possess a
small server with a storage capability of 4 to 8 terabytes,
also the primary RAM is within 2 - 16 GB. Nearly 25 to
30 VMs are housed in each network infrastructure, which
are available in a variety of sizes and capacities. Each VM
comprises 512 MB to 1024MB of RAM and a clock speed of
3.30 GHz to 4.15 GHz. These VMs incorporate replicas of the
customer’s services and are responsible for their operation.
To make an accurate prediction of the consumer pathway,
we use the path prediction method developed in [32] and in
conjunction with the Geo Life project [40], retrieved from
Microsoft Research Asia’s database. In this collection, there
are about 17,621 different trajectories, and the combined
range of all of them is close to 1.2 million kilometers.
However, to assess HPSP’s performance, we only investigate
the 2000 × 2500m2 road network in the aforementioned
database. We assume, that just one service is linked to
a customer at any given time, the customer budget is
established with uniform random selection within regions of
50 to 200 Units, and the user arrival pattern is determined by
poison distributions. Each plot is constructed via 50 virtual
model processes that use randomly generated seed values.

B. PERFORMANCE METRICS
The following mentioned metrics are used to determine the
efficacy of our designed HPSP system:

• Quality-of-Experience (QoE) refers to the inverse of
the average delay of all users for getting the services
by deploying the service instances on the ENs that
corresponds to the user’s trajectory as well as the ENs
that have the highest likelihood, which is calculated
using Eq. (8). Higher service delay indicates a lower
QoE and vice versa. The higher value of QoE denotes
that the users can get faster service.

• Normalized VNFDeployment Cost is calculated as the
average cost for deploying the service instances of the
users proactively. The normalized VNF deployment cost
is computed by dividing the VNF deployment cost by
the user’s budget, with a range of [0, 1]. The bigger the
value, the lesser the performance of the system.

• Proactive to Reactive Migration Ratio is stated as
the comparison between the probability of proactive
migration and reactive migration of all users. A greater
value indicates a higher proactive migration probability
than the reactive.

• Average Migration Time: It indicates the average
time required for migrating the user service instances
to the ENs. If the service is deployed proactively
on the preferable EN, then there won’t be any
migration delay. However, if the service is deployed
reactively, then the user will experience some migration
delay.

C. RESULT ANALYSIS
The performance of our suggested HPSP solution is
addressed here which is assessed by adjusting the number of
users, number of ENs of the system, and average instruction
size of the tasks.

1) IMPACTS OF VARYING NUMBER OF USERS
Throughout the simulation, we have changed the total number
of users while keeping the number of ENs and the average
instruction size of the tasks constant at 12 and 140k ,
consequently.

Fig 4(a) shows that as the quantity of users grows, the
average quality of experience decreases. This is due to
the fact that with the increasing number of users, many
service instances can not be deployed proactively to the
user’s trajectory nodes for all users, which in turn reduces
the user QoE. The DRQNSM is only concerned with the
optimization of delay by processing tasks partially in the local
environment and deploying the rest of the service instances
in the ENs to reduce energy consumption caused by reactive
service migration without considering any user QoE. Also,
the Min-NSR system’s focus is only on reducing deployment
costs without considering any user QoE. On the other hand,
POPP and our developed HPSP jointly optimize the user QoE
and service deployment cost and exploit the user movement
trajectory system for deploying service instances proactively,
which in turn reduces the service latency and enhances
QoE. In HPSP, it finds the best result from the three LLHs,
whereas in POPP, the outcome is determined by a single

VOLUME 12, 2024 72757

S. Islam et al.: Hyper-Heuristic Approach for QoE Aware Service Placement Scheme

FIGURE 4. Impacts of varying number of users.

meta-heuristic, which might not always lead to the best
outcome. Therefore, HPSP performs better in terms of user
QoE.

Fig.4(b) depicts that the cost of deployment rises as
the number of users grows. This is as a result of the
system having to place additional service instances with the
growing quantity of users. Deployment cost is almost similar
in HPSP and POPP which is higher than DRQNSM and
Min-NSR since they are primarily concerned with reducing
delay, energy consumption, and costs while ignoring QoE.
Deployment cost in HPSP is relatively lower than the POPP
system because the HPSP finds the best result from the three
LLHs, where POPP provides the result using only one meta
heuristic. That’s why, the HPSP outperforms the state-of-the-
art works.

The change in the ratio of the probability of proactive
to reactive deployment can be seen in Fig.4(c). As the
number of users increases, the frequency of proactive
deployment decreases and reactive deployment increases.
The fundamental reason for this is that each EN’s limited
capabilities limit each user’s proactive placement of service
instances on their chosen ENs. The POPP and HPSP systems
both aim to distribute service instances as far as feasible
on the ENs within the budget while reducing the chance of

reactive migration. However, the performance of HPSP is a
little bit better than POPP because HPSP finds the best LLH
from the three LLHs of the heuristic pool, which provides the
best fitness value. The migration ratio is lower in DRQNSM,
because, it only focuses on reducing reactive migration
to minimize service delay without placing any service
instances proactively. Similarly, Min-NSR operates poorly
since it is focused on reducing the possibility of reactive
migration.

As the user’s quantity grows, the average migration time
also increases which is depicted in Fig.4(d). The limit of ENs
capacity causes an increase in reactive migration with the
increasing number of users as a result the average migration
also increases. Here, the DRQNSM andMin-NSR performed
worst because they only focused on reducing the energy
consumption and the deployment cost by increasing the
reactive migration which is the result of higher migration
time. On the other hand, the HPSP and POPP both exhibit
decreased migration times because they reduce reactive
migration as much as possible by leveraging the user
movement trajectory to increase the QoE of users. Although
both HPSP and POPP perform near to each other, HPSP
exhibits an improved result due to adopting a hyper-heuristic
strategy.

72758 VOLUME 12, 2024

S. Islam et al.: Hyper-Heuristic Approach for QoE Aware Service Placement Scheme

FIGURE 5. Impact of varying number of edge servers.

2) IMPACTS OF VARYING NUMBER OF EDGE SERVERS
During this test, we altered the number of ENs in the entire
environment by retaining the number of users, and average
instruction size of the tasks at 300 and 140k , consequently.
Fig.5(a) indicates that raising the ENs from 4 to

12 enhances QoE, but, increasing the ENs from 12 to
24 does not significantly increase QoE; instead, it approaches
a saturation point. Raising ENs from 12 to 24, QoE is
not improved. The reason is that the system can deploy
the expected number of service copies for users. For that
reason, QoE is not elevated in this range. Comparing QoE
among DRQNSM, Min-NSR, POPP, and HPSP, the QoE
of DRQNSM and Min-NSR are lower because they solely
seek to reduce service delay, and deploy service instances
reactively. Moreover, the performance of Min-NSR is lower
because it solely seeks to reduce the deployment costs without
taking into consideration user QoE. In contrast, the POPP
and HPSP deploy service instances proactively by taking into
account the user trajectory ENs and deploying the service
instances on those ENs where there is a higher likelihood that
a user will be connected, which improves user QoE. However,
HPSP enhances the results of POPP by utilizing the hyper-
heuristic Strategy. HPSP selects the LLH among the three
meta-heuristics from the heuristic pool which gives the higher

QoE. As a result, HPSP outperforms POPP in terms of
QoE.

The deployment cost rises as the number of ENs increases,
as seen in Fig.5(b). This is because expanding the number
of ENs necessitates expanding the deployment of service
replicas to ENs. From 4 to 12 ENs the deployment cost
significantly rises because user budget and edge capability do
not impose any restrictions on the provision of service copies.
However, from 12 to 24 ENs, the deployment cost does not
change significantly and also maintains almost a fixed range
because the systems do not need to deploy additional service
replicas to improve user QoE. Comparing deployment costs
among the studied systems, the DRQNSM and Min-NSR
outperform the developed HPSP solution since they only
aim to reduce deployment costs without considering QoE by
deploying service instances proactively. The HPSP and POPP
systems deploy the service replicas on the predicted path
nodes under the constraints of the user budget. However, due
to the utilization of a hyper-heuristic strategy in the developed
HPSP system, the HPSP system performs better than POPP.

In Fig.5(c), we can observe the change in the ratio of
the probability of proactive to reactive deployment due to a
change in the number of ENs. This graph demonstrates that
by increasing the number of ENs from 4 to 12, the migration

VOLUME 12, 2024 72759

S. Islam et al.: Hyper-Heuristic Approach for QoE Aware Service Placement Scheme

FIGURE 6. Impact of varying instruction sizes of tasks.

ratio is enhanced. However, this ratio is decremented by
raising the ENs from 12 to 24. Because of budget limits,
some service replicas cannot be deployed proactively in all
desirable ENs. Therefore, the possibility of reactivemigration
is increased than proactive migration in those scenarios.
Here, the DRQNSM and Min-NSR perform badly since they
simply evaluate lowering migration costs without addressing
diminishing reactive migration likelihood. Although the
POPP and HPSP give a close result, however, the HPSP
performs slightly better than the POPP. This is because we
have selected that lower level heuristic among the LLHwhich
gives the best fitness value.

Form Fig.5(d), it can be seen that with the increase of
network size, migration time also increases. The reason is,
with the increasing number of edge servers, the number of
reactive deployments is increased, which in turn enhances
migration time. The system reaches saturation for 300 users
when there are 12 ENs in the system, at which point
very few reactive migrations are required. We do not need
to deploy additional service replicas after increasing the
ENs from 12 to 24; therefore, the migration time has not
increased as much as before. The DRQNSM and Min-NSR
have not deployed the service instances proactively and
reduced the reactive migration probability by concentrating
on minimizing delay and the deployment cost which is the

reason for their large amount of migration time. The POPP
and HPSP systems are able to shorten the migration time
by deploying service instances proactively by considering
the user’s trajectory. However, HPSP reduces the migration
time further by utilizing the Hyper-heuristic strategy which
selects the best heuristic from LLHs depending on the sce-
nario. Therefore, the HPSP outperforms the state-of-the-art
works.

3) IMPACTS OF VARYING SIZES OF TASKS
In this experiment, we have altered the instruction size of
tasks in the entire system by retaining the number of users,
and the number of ENs at 300 and 12, respectively. Also with
the increasing sizes of tasks, we have increased the deadline
and unit cost for the tasks and budget of users.

From Fig. 6(a), we can observe that QoE experienced by
the users is reduced with the increase in instruction size of
the tasks. The reason is that, when the instruction size of the
tasks is increasing, the deadline of the task is also increasing,
but, due to the limitation of computational capabilities of the
ENs, services instances of all tasks can not be deployed to
the preferred ENs, which in turns degrades QoE. Here, the
DRQNSM and Min-NSR system performs the worst because
it is solely concerned with lowering delay and deployment
costs while neglecting user QoE and have not considered the

72760 VOLUME 12, 2024

S. Islam et al.: Hyper-Heuristic Approach for QoE Aware Service Placement Scheme

FIGURE 7. Impact of various mobility models.

user path prediction model to deploy the service instances
proactively. On the other side, the POPP and HPSP both
exploit the user movement trajectory and jointly optimize
user QoE and service deployment costs while deploying
the service instances. The HPSP exhibits improvement over
POPP in terms of QoE due to exploiting the Hyper-Heuristic
strategy for allocating the service instances.

The deployment cost decreases as the instruction size of
tasks increases, which is shown in Fig.6(b). Here, both the
unit cost for tasks and the budget of the user for the tasks
are also increased with the increasing size of the tasks.
However, due to the ENs’ limited processing power and the
increasing instruction size of tasks, service instances of some
tasks cannot be deployed to the preferred trajectory nodes.
Because of this, the cost of deployment decreases as task
size grows. The DRQNSM performs best in this case as it is
only concerned with the optimization of delay by processing
tasks partially in the local environment and deploying the
rest of the service instances in the ENs to reduce energy
consumption. Similarly, the Min-NSR shows better results
than the developed HPSP system in this case as it is focused
on reducing cost by reducing proactive deployment. On the
contrary, the POPP and HPSP have higher deployment costs
than Min-NSR and the results of the POPP and HPSP are
nearly identical.

Fig. 6(c) indicates the ratio of the probability of proactive
to reactive service placement decreases while increasing
the instruction size of tasks. Due to the computational
capacity limitation of the ENs, with the increasing number
of task sizes the proactive service placement decreases,
and the probability of reactive service placement increases.
The HPSP and POPP both try to proactively deploy the
service instances by considering user trajectory. Therefore,
the ratio of proactive to reactive placement in POPP and
HPSP systems is almost similar, which is better than
DRQNSM and Min-NSR. The result of Min-NSR is the
worst because it only focuses on reducing the deploy-
ment cost without considering the minimization of reactive
deployment. The result of DRQNSM is almost similar to

Min-NSR because it only focuses on reducing the delay and
deployment cost without concentrating on proactive service
deployment.

With the increasing instruction size of the task, the
migration time also increases which can be observed from
Fig.6(d). For the task with 60k to 140k instruction size, the
increments in migration time are small. But for the tasks with
140k to 260k instruction size, the increments in migration
time are huge. The inability of tasks with high instruction
sizes to be deployed proactively in all required ENs due to the
restricted computational capabilities of the ENs increases the
likelihood of reactive migration and lengthens the migration
time for tasks with large instructions. Migration time in the
DRQNSM and Min-NSR is larger than HPSP and POPP
because they only consider reactive migration of service
instances to minimize deployment costs. Even though the
HPSP and POPP show almost the same migration time,
HPSP can further decrease migration time than POPP due
to exploiting the hyper-heuristic approach, which selects
the best LLH from the heuristic pool. Therefore, HPSP
outperforms in terms of average migration time.

4) IMPACTS OF VARYING THE MOBILITY MODEL
In this experiment, we have changed the mobility model to
analyze the changes in the QoE and ratio of proactive to
reactive migration probability by varying the total number
of users while keeping the number of ENs and the average
instruction size of the tasks constant at 12 and 140k . We have
applied the mobility prediction model provided in [32], [41],
[42], and [43] referred to as Smooth RandomMobility (SRM)
Model, AP1, AP2, andDPPMon theHPSP system to evaluate
the effectiveness.

In Fig. 7(a), as the number of users increases, the QoE is
decreased. Analyzing this graph, we can notice that from all
of the above methods, the DPPM performs better. This may
be explained by the fact that DPPM retains both the users’
past movement traces and contextual information about the
users. Moreover, DPPM also considers the time of the day
and the day’s type (weekday, weekend, occasional, etc.) while

VOLUME 12, 2024 72761

S. Islam et al.: Hyper-Heuristic Approach for QoE Aware Service Placement Scheme

FIGURE 8. Impact of various heuristics.

filtering the data. In addition to these, DPPM is aware of
user destinations, unlike AP1 and AP2. When there are no
historical mobility traces of the users, DPPM accuracy is
roughly 38% while AP1 and AP2 accuracy is 0% [32]. This
is because without having historical mobility traces, these
methods cannot make any predictions accurately. Except for
these, to reach the destination, DPPM makes proficient use
of direction. On the other hand, the SRM model selects the
next position based on the random processes of speed and
direction control of the current position, which can not make
any prediction of the destination route. As a consequence,
by employing the DPPM mobility model, the HPSP system
near-optimally deploys service replicas, hence improving
user QoE. For a similar reason, the proactive to reactive
migration ratio is very much higher in our DPPM-based
HPSP method shown in Fig 7(b).

5) IMPACTS OF VARYING THE HEURISTIC
In this experiment, we have analyzed the performance
of the developed system by using different meta-heuristic
algorithms to analyze the changes in the QoE and deployment
cost. For that reason, we have varied the total number of users
while keeping the number of ENs and the average instruction
size of the tasks constant at 12 and 140k . We have applied
individual heuristic HPSP, SCPSP, JSPSP, and GEPSP to
evaluate the effectiveness.

In Fig. 8(a), as the number of users increases, the QoE is
decreased and in Fig 8(b) the deployment cost is increased.
The graph analysis reveals that HPSP outperforms all of
the aforementioned heuristics in terms of performance. This
can be attributed to the fact that HPSP leverages the best
efficiency and incorporates multiple levels of heuristics,
allowing for optimal heuristic selection within the LLH
framework. The difficulties of learning in a constantly
changing MEC environment and the constrained capabilities
of a single heuristic when compared to a multi-level heuristic
in search of optimal solutions might be responsible for the
inferior performance of LLH (SCPSP, GEPSP, and JSPSP)
compared to HPSP.

FIGURE 9. Impact of computation time.

6) IMPACTS OF COMPUTATION TIME
In this experiment, we have analyzed the changes in the
computation time by varying the total number of users while
keeping the number of ENs and the average instruction size
of the tasks constant at 12 and 140k.

In Fig. 9, as the quantity of users grows, the computation
time of the system increases. This is because, with the
increasing number of users, the deployment of additional
service instances is needed to handle the load, which in
turn increases the program execution time for finding near-
optimal solutions. The Min-NSR system takes minimum
computation time because it uses a greedy-based algorithm
and can get stuck in suboptimal solutions. Here, the POPP
system uses a metaheuristic and on the contrary, the
developed HPSP system uses a hyper-heuristic algorithm
(expanded version of metaheuristic). Meta-heuristics algo-
rithms strive to find good solutions while also exploring the
search space for potentially better options. The computation
time of the hyper-heuristic-based HPSP solution is a little bit
higher than the POPP system due to the automated selection
or generation of suitable meta-heuristics, and adaptive Learn-
ing for the decision-making process. The DRQNSM system
takes the maximum computation time because it uses the
DRQN algorithm, which requires a training phase where they

72762 VOLUME 12, 2024

S. Islam et al.: Hyper-Heuristic Approach for QoE Aware Service Placement Scheme

learn from a large amount of data to build a model for making
decisions. This training process can be computationally
expensive and time-consuming. Therefore, the computational
time of DRQNSM is highest among all systems.

VII. CONCLUSION
This work developed a framework for proactive deployment
of service replicas in the 5G mobile edge computing
environment. Service instances were deployed on route ENs
by predicting the users’ tracks, which improves user QoE.
However, the cost of service deployment was also increased
to achieve a better user QoE. As a result, our work developed
an optimal deployment approach that traded off between
enhancing QoE and decreasing deployment cost. For the
NP-hardness of the developed optimal formulation of the
service deployment problem for a large network, a hyper-
heuristic strategy-based HPSP solution was devised, which
maximized user QoE and minimized the deployment cost.
The numerical results carried out in Python 3.8.0 revealed
that the HPSP system outperformed the DRQNSM, Min-
NSR, and POPP systems by up to 40%, 50% and 20%,
respectively, in terms of user QoE. Furthermore, it reduced
deployment costs by 18% over POPP. Future research has a
lot of promise when it comes to examining how to increase
VNF deployment effectiveness in a situation where user
arrival rates are continually changing.

DECLARATION OF INTERESTS
The authors state that they do not have any known competing
financial interests or personal ties that may seem to have
influenced the work disclosed in this study.

REFERENCES
[1] S. Painuly, S. Sharma, and P. Matta, ‘‘Future trends and challenges in next

generation smart application of 5G-IoT,’’ in Proc. 5th Int. Conf. Comput.
Methodologies Commun. (ICCMC), Apr. 2021, pp. 354–357.

[2] L. Nadeem, M. A. Azam, Y. Amin, M. A. Al-Ghamdi, K. K. Chai,
M. F. N. Khan, and M. A. Khan, ‘‘Integration of D2D, network slicing,
and MEC in 5G cellular networks: Survey and challenges,’’ IEEE Access,
vol. 9, pp. 37590–37612, 2021.

[3] P. Ranaweera, A. Jurcut, and M. Liyanage, ‘‘MEC-enabled 5G use cases:
A survey on security vulnerabilities and countermeasures,’’ ACM Comput.
Surv., vol. 54, no. 9, pp. 1–37, Dec. 2022.

[4] M. Shahjalal, N. Farhana, P. Roy, M. A. Razzaque, K. Kaur, and
M. M. Hassan, ‘‘A binary graywolf optimization algorithm for deployment
of virtual network functions in 5G hybrid cloud,’’ Comput. Commun.,
vol. 193, pp. 63–74, Sep. 2022.

[5] G. Kang, H. Liu, and K. Li, ‘‘Analysis on the new progress of spectrum
planning of IMT-2020(5G),’’ J. Phys., Conf. Ser., vol. 1437, no. 1,
Jan. 2020, Art. no. 012016.

[6] A. A. Barakabitze and R. Walshe, ‘‘SDN and NFV for QoE-driven
multimedia services delivery: The road towards 6G and beyond networks,’’
Comput. Netw., vol. 214, Sep. 2022, Art. no. 109133.

[7] A. Abdulghaffar, A. Mahmoud, M. Abu-Amara, and T. Sheltami,
‘‘Modeling and evaluation of software defined networking based 5G core
network architecture,’’ IEEE Access, vol. 9, pp. 10179–10198, 2021.

[8] H.-W. Kao and E. H. Wu, ‘‘QoE sustainability on 5G and beyond
5G networks,’’ IEEE Wireless Commun., vol. 30, no. 1, pp. 118–125,
Feb. 2023.

[9] S. Velrajan and V. C. Sharmila, ‘‘QoS-aware service migration in
multi-access edge compute using closed-loop adaptive particle swarm
optimization algorithm,’’ J. Netw. Syst. Manage., vol. 31, no. 1, p. 17,
Jan. 2023.

[10] P. Roy, A. Tahsin, S. Sarker, T. Adhikary, M. A. Razzaque, and
M. M. Hassan, ‘‘User mobility and quality-of-experience aware placement
of virtual network functions in 5G,’’ Comput. Commun., vol. 150,
pp. 367–377, Jan. 2020.

[11] Y. Ma, W. Liang, J. Li, X. Jia, and S. Guo, ‘‘Mobility-aware and delay-
sensitive service provisioning in mobile edge-cloud networks,’’ IEEE
Trans. Mobile Comput., vol. 21, no. 1, pp. 196–210, Jan. 2022.

[12] P. Roy, S. Sarker, M. A. Razzaque, M. M. Hassan, S. A. AlQahtani,
G. Aloi, and G. Fortino, ‘‘AI-enabled mobile multimedia service instance
placement scheme in mobile edge computing,’’ Comput. Netw., vol. 182,
Dec. 2020, Art. no. 107573.

[13] M. Blocho, ‘‘Heuristics, metaheuristics, and hyperheuristics for rich
vehicle routing problems,’’ in Smart Delivery Systems (Intelligent Data-
Centric Systems), J. Nalepa, Ed. Amsterdam, The Netherlands: Elsevier,
2020, pp. 101–156.

[14] Y. Ma, M. Dai, S. Shao, Y. Xia, F. Li, Y. Shen, J. Li, Y. Li, and H. Peng,
‘‘A performance and reliability-guaranteed predictive approach to service
migration path selection in mobile computing,’’ IEEE Internet Things J.,
vol. 10, no. 20, pp. 17977–17987, Oct. 2023.

[15] R. A. Addad, D. L. C. Dutra, M. Bagaa, T. Taleb, and H. Flinck, ‘‘Fast
service migration in 5G trends and scenarios,’’ IEEE Netw., vol. 34, no. 2,
pp. 92–98, Mar. 2020.

[16] M.-L. Chiang, H.-C. Hsieh, T.-Y. Chang, T.-L. Lin, and H.-W. Chen,
‘‘An adaptive replica configuration mechanism based on predictive file
popularity and queue balance in mobile edge computing environment,’’
Soft Comput., vol. 27, no. 1, pp. 107–129, Jan. 2023.

[17] S. D. A. Shah, M. A. Gregory, and S. Li, ‘‘Cloud-native network slicing
using software defined networking based multi-access edge computing: A
survey,’’ IEEE Access, vol. 9, pp. 10903–10924, 2021.

[18] T. V. Doan, G. T. Nguyen, M. Reisslein, and F. H. P. Fitzek, ‘‘FAST:
Flexible and low-latency state transfer in mobile edge computing,’’ IEEE
Access, vol. 9, pp. 115315–115334, 2021.

[19] Y. Mansouri and M. A. Babar, ‘‘A review of edge computing: Features
and resource virtualization,’’ J. Parallel Distrib. Comput., vol. 150,
pp. 155–183, Apr. 2021.

[20] V. M. Varier, D. K. Rajamani, N. Goldfarb, F. Tavakkolmoghaddam,
A. Munawar, and G. S. Fischer, ‘‘Collaborative suturing: A reinforcement
learning approach to automate hand-off task in suturing for surgical
robots,’’ in Proc. 29th IEEE Int. Conf. Robot Human Interact. Commun.
(RO-MAN), Aug. 2020, pp. 1380–1386.

[21] S. A. Mohamed, S. Sorour, and H. S. Hassanein, ‘‘Group-delay aware task
offloading with service replication for scalable mobile edge computing,’’
in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2020, pp. 1–6.

[22] X. Gu, C. Ji, and G. Zhang, ‘‘Energy-optimal latency-constrained
application offloading in mobile-edge computing,’’ Sensors, vol. 20,
no. 11, p. 3064, May 2020.

[23] A. Aissioui, A. Ksentini, A. M. Gueroui, and T. Taleb, ‘‘On enabling 5G
automotive systems using follow me edge-cloud concept,’’ IEEE Trans.
Veh. Technol., vol. 67, no. 6, pp. 5302–5316, Jun. 2018.

[24] Q. Cao, Q. Wu, B. Liu, S. Zhang, and Y. Zhang, ‘‘An optimization
method for mobile edge servicemigration in cyberphysical power system,’’
Wireless Commun. Mobile Comput., vol. 2021, pp. 1–12, Feb. 2021.

[25] H. Nashaat, E. Ahmed, and R. Rizk, ‘‘IoT application placement algorithm
based on multi-dimensional QoE prioritization model in fog computing
environment,’’ IEEE Access, vol. 8, pp. 111253–111264, 2020.

[26] A. Zhou, S. Wang, S. Wan, and L. Qi, ‘‘LMM: Latency-aware micro-
service mashup in mobile edge computing environment,’’ Neural Comput.
Appl., vol. 32, no. 19, pp. 15411–15425, Oct. 2020.

[27] X. Wang, Z. Xu, and S. He, ‘‘Low latency-oriented reliable slicing for
URLLC services over TDM-PON based mobile edge computing enabled
cloud radio access network,’’ in Proc. 19th Int. Conf. Opt. Commun. Netw.
(ICOCN), Aug. 2021, pp. 1–3.

[28] S. D. A. Shah, M. A. Gregory, S. Li, and R. D. R. Fontes, ‘‘SDN
enhanced multi-access edge computing (MEC) for E2E mobility and QoS
management,’’ IEEE Access, vol. 8, pp. 77459–77469, 2020.

[29] H. Hu, W. Zhang, L. Xu, and P. Qi, ‘‘A mobility-aware service function
chain migration strategy based on deep reinforcement learning,’’ J. Netw.
Syst. Manage., vol. 31, no. 1, p. 21, Jan. 2023.

[30] F. Carpio, W. Bziuk, and A. Jukan, ‘‘Scaling migrations and replications of
virtual network functions based on network traffic forecasting,’’ Comput.
Netw., vol. 203, Feb. 2022, Art. no. 108582.

VOLUME 12, 2024 72763

S. Islam et al.: Hyper-Heuristic Approach for QoE Aware Service Placement Scheme

[31] W. Chen, Y. Chen, and J. Liu, ‘‘Service migration for mobile edge
computing based on partially observable Markov decision processes,’’
Comput. Electr. Eng., vol. 106, Mar. 2023, Art. no. 108552.

[32] A. Nadembega, A. Hafid, and T. Taleb, ‘‘A destination and mobility
path prediction scheme for mobile networks,’’ IEEE Trans. Veh. Technol.,
vol. 64, no. 6, pp. 2577–2590, Jun. 2015.

[33] M. Hung and J. Fisk, ‘‘An algorithm for 0-1 multiple knapsack problems,’’
Nav. Res. Logistics Quart., vol. 25, no. 3, pp. 571–579, 1978.

[34] G. L. Pappa, G. Ochoa, M. R. Hyde, A. A. Freitas, J. Woodward, and
J. Swan, ‘‘Contrasting meta-learning and hyper-heuristic research: The
role of evolutionary algorithms,’’ Genetic Program. Evolvable Mach.,
vol. 15, no. 1, pp. 3–35, Mar. 2014.

[35] R. Chelouah and P. Siarry, ‘‘Tabu search applied to global optimization,’’
Eur. J. Oper. Res., vol. 123, no. 2, pp. 256–270, Jun. 2000.

[36] S. Mirjalili, ‘‘SCA: A sine cosine algorithm for solving optimization
problems,’’ Knowl.-Based Syst., vol. 96, pp. 120–133, Mar. 2016.

[37] J.-S. Chou andD.-N. Truong, ‘‘A novel metaheuristic optimizer inspired by
behavior of jellyfish in ocean,’’ Appl. Math. Comput., vol. 389, Jan. 2021,
Art. no. 125535.

[38] A. Mohammadi-Balani, M. Dehghan Nayeri, A. Azar, and
M. Taghizadeh-Yazdi, ‘‘Golden eagle optimizer: A nature-inspired
metaheuristic algorithm,’’ Comput. Ind. Eng., vol. 152, Feb. 2021,
Art. no. 107050.

[39] I. Farris, T. Taleb, M. Bagaa, and H. Flick, ‘‘Optimizing service replication
formobile delay-sensitive applications in 5G edge network,’’ inProc. IEEE
Int. Conf. Commun. (ICC), May 2017, pp. 1–6.

[40] Y. Zheng, Y. Chen, Q. Li, X. Xie, and W.-Y. Ma, ‘‘Understanding
transportation modes based on GPS data for web applications,’’ ACM
Trans. Web, vol. 4, no. 1, pp. 1–36, Jan. 2010.

[41] C. Bettstetter, ‘‘Smooth is better than sharp: A random mobility model
for simulation of wireless networks,’’ in Proc. 4th ACM Int. Workshop
Modelling, Anal. Simulation Wireless Mobile Syst., Jul. 2001, pp. 19–27.

[42] H. Abu-Ghazaleh and A. S. Alfa, ‘‘Application of mobility prediction
in wireless networks using Markov renewal theory,’’ IEEE Trans. Veh.
Technol., vol. 59, no. 2, pp. 788–802, Feb. 2010.

[43] T. Anagnostopoulos, C. Anagnostopoulos, and S. Hadjiefthymiades,
‘‘Efficient location prediction in mobile cellular networks,’’ Int. J. Wireless
Inf. Netw., vol. 19, no. 2, pp. 97–111, Jun. 2012.

SAFIQUL ISLAM received the B.Sc. degree from
the Department of Computer Science and Engi-
neering, Green University of Bangladesh, Dhaka,
Bangladesh, in 2022. He is currently a member
of the Green Computing and Communication
(GCC) Research Group, Department of Computer
Science and Engineering, Green University of
Bangladesh. His research interests include opti-
mization, artificial intelligence, mobile device
cloud, network function virtualization, and mobile

edge computing in the field of networking.

MAHADI AHAMMED received the B.Sc. degree
from the Department of Computer Science and
Engineering, Green University of Bangladesh,
Dhaka, Bangladesh, in 2022. He is currently a
member of theGreenComputing andCommunica-
tion (GCC) Research Group, Department of Com-
puter Science and Engineering, Green University
of Bangladesh. His research interests include
optimization, artificial intelligence, mobile device
cloud, network function virtualization, and mobile

edge computing in the field of networking.

NURA ALAM SIDDIQUE received the B.Sc.
degree from the Department of Computer Science
and Engineering, Green University of Bangladesh,
Dhaka, Bangladesh, in 2022. He is currently a
member of theGreenComputing andCommunica-
tion (GCC) Research Group, Department of Com-
puter Science and Engineering, Green University
of Bangladesh. His research interests include
optimization, artificial intelligence, mobile device
cloud, network function virtualization, and mobile

edge computing in the field of networking.

PALASH ROY received the B.Sc. and M.Sc.
degrees from the Department of Computer Science
and Engineering, University of Dhaka, in 2019 and
2022, respectively. He is currently a Lecturer with
the Department of Computer Science and Engi-
neering (CSE), Green University of Bangladesh.
He is also a member of the Green Networking
Research Group (GNR), Department of CSE,
University of Dhaka. His research interests include
mobile device cloud, network function virtualiza-

tion, mobile edge computing, and reinforcement learning. He is an active
member of the IEEE Computer Society.

MD. ABDUR RAZZAQUE (Senior Member,
IEEE) received the B.S. degree in applied physics
and electronics and the M.S. degree in com-
puter science from the University of Dhaka,
Bangladesh, in 1997 and 1999, respectively, and
the Ph.D. degree in computer engineering from
Kyung Hee University, South Korea, in August
2009. From 2010 to 2011, he was a Research
Professor with the College of Electronics and
Information, Kyung Hee University, South Korea.

From 2016 to 2021, he was with the Green University of Bangladesh at
different periods as a Pro Vice-Chancellor, the Dean of the Faculty of Science
and Engineering, and the Chairperson of the Department of Computer
Science and Engineering (CSE). He was a Visiting Professor with Stratford
University, Falls Church, VA, USA, in 2017. He is currently a Professor with
the Department of CSE, University of Dhaka. He is also the Director of the
Green Networking Research Group (http://cse.du.ac.bd/gnr), Department of
CSE, University of Dhaka. He has published more than 140 research papers
in international conferences and journals. His research interests include
modeling, analysis, and optimization of wireless networking protocols and
architectures, mobile crowdsourcing, sensor data clouds, the Internet of
Things, and edge computing. He is a TPC Member of IEEE HPCC, ICOIN,
SCALCOM, SKIMA, ICIEV, ADM,NSysS, and ICACCI. He is amember of
the IEEE Computer Society. He is the General Chair of STI 2021–2019 and
the TPC Chair of ICIET 2019–2018. He was chairing the 2021 Executive
Committee for the IEEE Computer Society Bangladesh Chapter. He is an
Associate Editor of IEEE ACCESS. He is an Editorial Board Member of the
Journal of Networks and Applications.

72764 VOLUME 12, 2024

S. Islam et al.: Hyper-Heuristic Approach for QoE Aware Service Placement Scheme

MOHAMMAD MEHEDI HASSAN (Senior
Member, IEEE) received the Ph.D. degree in
computer engineering fromKyungHeeUniversity,
South Korea, in February 2011. He is currently a
Full Professor with the Department of Information
Systems, College of Computer and Information
Sciences (CCIS), King Saud University (KSU),
Riyadh, Saudi Arabia. He has authored or
coauthored more than 180 publications, including
refereed IEEE/ACM/Springer/Elsevier journals,

conference papers, books, and book chapters. He has authored and
coauthored more than 365 publications including refereed journals (333
SCI/ISI-Indexed Journal papers, 42 conference papers, one book, and
two book chapters. His research interests include cloud computing, edge
computing, the Internet of Things, body sensor networks, big data,
deep learning, mobile cloud, smart computing, wireless sensor networks,
5G networks, and social networks. He has served as the Chair and a
Technical Program Committee Member in numerous reputed international
conferences/workshops, such as IEEE CCNC, ACM BodyNets, and IEEE
HPCC. He was a recipient of several awards, including the 2021 Outstanding
Editors Award from Future Generation Computer Systems journal, the
Distinguished Research Award from the College of Computer and
Information Sciences, KSU, in 2020, the Best Conference Paper Award
from the IEEE International Conference on Sustainable Technologies for
Industry 4.0 (STI) 2020, the Best Journal Paper Award from IEEE SYSTEMS

JOURNAL in 2018, the Best Conference Paper Award from CloudComp,
in 2014 Conference and the Excellence in Research Award from the College
of Computer and Information Sciences, KSU, in 2015 to 2016. He is one of
the top 2% Scientists in the world in the networking and telecommunication
field. He is one of the top computer scientists in Saudi Arabia as well.
Recently, his six publications have been recognized as the ESI Highly Cited
Papers.

KASHIF SALEEM received the B.Sc. degree in
computer science from Allama Iqbal Open Uni-
versity, Islamabad, Pakistan, in 2002, the P.G.D.
degree in computer technology and communica-
tion fromGovernment College University, Lahore,
Pakistan, in 2004, and theM.E. degree in electrical
engineering electronics and telecommunication,
and the Ph.D. degree in electrical engineering from
the University of Technology Malaysia, in 2007
and 2011, respectively. Since 2012, he has been

engaged with the Center of Excellence in Information Assurance (CoEIA),
King Saud University, Saudi Arabia, as an Assistant Professor, and was
promoted to Associate Professor in 2018. Recently, he joined the School of
IT & Engineering at Melbourne Institute of Technology (MIT) in February
2024 as a Full Time Associate Professor of Networking. He is professionally
certified by the Massachusetts Institute of Technology (MIT) in cyberse-
curity, the University of the Aegean in information and communication
security, IBM in security intelligence analysis, and Microsoft and Cisco in
computer networks. He acquired several research grants in Saudi Arabia, the
EU, and other parts of the world. He has authored or coauthored more than
130 papers in refereed journals and international conferences. His research
interests include ubiquitous computing, mobile computing, the Internet of
Things (IoT), machine-to-machine (M2M) communication, wireless mesh
networks (WMNs), wireless sensor networks (WSNs), and mobile ad hoc
networks (MANETs), intelligent autonomous systems, information security,
and bioinformatics. He served as a technical program committee member
and organized numerous international workshops and conferences. He is
providing services as an Associate Editor mainly to Alexandria Engineering
Journal, Journal of Multimedia Information System (JMIS), IEEE ACCESS,
International Journal of E-Health andMedical Communications (IJEHMC),
and International Journal of Cyber-Security andDigital Forensics (IJCSDF).

VOLUME 12, 2024 72765

