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ABSTRACT The existing methods for pavement crack classification and identification solely offer informa-
tion about the crack type, neglecting size and direction details, which are essential for guiding repair efforts
and forming the engineer digital information data. In response to the challenges posed by insufficient crack
information, prolonged training time and intricate parameter adjustment inherent in employing deep learning
algorithms for pavement crack classification and recognition, we propose an integrated approach combining
tensor voting with the random sample consensus for pavement crack classification and recognition. The
method involves pre-processing road images using gray value transformation and the K-Means clustering
algorithm. Subsequently, the tensor voting algorithm is applied to enhance the linear features, resulting in
the generation of linear saliency maps of cracks along with crack junction information. Furthermore, a non-
maximum suppression method and the RANSAC algorithm are employed to refine and fit the crack skeleton
curves respectively, accomplishing the crack classification and recognition. The outcomes demonstrate that
the proposed integrated approach in the crack skeleton segmentation algorithm yields an average F1-score of
0.7879, outperforming traditional non-maximum suppression methods. The accuracy of crack classification
and recognition reaches 96%, outperforming other crack classification and recognition algorithms grounded
in digital image processing methods. Compared with the neural networks employed for classification and
recognition, the proposed algorithm is able to capture direction and size details of cracks, which can provide
guidance for intelligent crack repair. This additional information can offer valuable guidance for intelligent
crack repair processes.

INDEX TERMS Crack classification and recognition, non-maximum suppression, random sample
consensus (RANSAC), tensor voting.

I. INTRODUCTION
The 2022 Statistical Bulletin on the Development of the
Transportation Industry, released by the Ministry of Trans-
port of China, reveals that as of the end of 2022, the total
length of highways in China has reached 5.3548 million
kilometers, resulting in an increasingly demanding road
maintenance workload. Among various surface defects,
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cracks stand out as the most prevalent issue. Failure to
promptly detect and assess these cracks, followed by neces-
sary repairs, may contribute to the exacerbation of pavement
deterioration. It has significant theoretical and practical
implications to study the crack classification and recogni-
tion techniques to accomplish automatic crack detection and
repair, elevating the efficiency of maintenance efforts.

Currently, the detection and recognition of road cracks
generally involve the collection of road images through
road inspection vehicles or unmanned aerial vehicles (UAV),
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followed by the utilization of digital image processing
techniques and deep learning methods for crack detection.
In acquired road images, due to contrasting grayscale val-
ues between cracks and surrounding regions, digital image
processing techniques can be employed by setting grayscale
thresholds to achieve crack pixel detection and segmenta-
tion. Compared with the semantic segmentation network in
deep learning algorithms [1], [2], [3], the threshold method
exhibits lower segmentation accuracy and lacks continuity,
but segments smaller cracks and saves network training
time [4].

Many studies focus on enhancing the classical Otsu
threshold method, K-means clustering, and other algo-
rithms to determine the optimal gray value segmentation
threshold. Li et al. [5] employed histogram equalization
and linear gray value transformation to accentuate crack
features, eliminate noise, and applied the Zhang-Suen refine-
ment algorithm and connectivity domain threshold method
for crack skeleton extraction and skeleton burrs removal.
Vivekananthan et al. [6] utilized the Sobel filter for crack
edge detection, combiningmax-min gray level discrimination
with the Otsu method for improved segmentation accuracy.
Xiong et al. [7] enhanced the pixel gray segmentation thresh-
old in Otsu algorithm by introducing background tendency
coefficients and bias parameters, resulting in superior crack
segmentation compared to traditional digital image process-
ing methods. Zhu et al. [8] initially partitioned images into
blocks, and combined two-dimensional maximum entropy
threshold segmentation method with Otsu algorithm for each
image sub-block, realizing effective crack segmentation in
identified sub-blocks with crack regions. References [9],
[10], and [11] demonstrate that the optimal crack segmen-
tation threshold was automatically determined through opti-
mizing the initial clustering selection method of the K-Means
algorithm and enhancing the algorithm’s optimization capa-
bilities, resulting in improved crack segmentation. However,
despite the automatic segmentation achieved through the
optimization of threshold methods, the resulting crack curves
often contain noise points and face challenges in dealing with
background interferences like shadows.

Additionally, some research focused on crack segmen-
tation by analyzing geometric characteristics of cracks.
Xu et al. [12] initially segmented cracks using the Otsu
method and employed the K-Means clustering algorithm to
cluster connected domain parameters of crack pixels, achiev-
ing segmentation based on connected domain characteristics.
Peng et al. [13] introduced a three-threshold pavement crack
segmentation method utilizing structured random forest for
noise suppression and proposing a morphological operation
technique to enhance crack curve continuity. Liu et al. [14]
proposed an iterative tensor voting algorithm aimed at
enhancing the linear characteristics of cracks, allowing for
crack detection with the interference of inhomogeneous
textures and complex backgrounds. Moreover, it has been
observed that after the rough segmentation via traditional

threshold or clustering methods, accurate crack segmentation
can be achieved by extracting crack seed points for regional
growth based on crack characteristics [15], [16], [17].

In recent years, some studies have concentrated on combin-
ing digital image processing algorithms with deep learning
methodologies. Zheng et al. [18] integrated a tensor voting
module into semantic segmentation network, enhancing the
feature map by incorporating significant domain maps gen-
erated through tensor voting. Choi et al. [19] utilized the
ResNet50 network model to extract features from concrete
crack images, subsequently applying the Sobel edge detec-
tion operator to amplify crack characteristics and diminish
background noise, and employed the K-Means clustering
algorithm to ascertain crack distribution, offering an auto-
mated and effective approach for assessing and monitoring
damage in concrete structures. Luo et al. [20] combined
the Canny result images with the low-level features within
DeeplabV3+ network, enriching pavement crack location
details and compensating for detail loss during the fusion of
high-level and low-level feature layers.

Currently, deep learning methods are the primary approach
for achieving classification and identification tasks related
to pavement cracks, enabling the identification of whether
the image contains cracks and crack types such as trans-
verse, longitudinal, etc., by enhancing classical classification
and recognition networks like AlexNet [21], [22], [23],
VGG [24], [25], and ResNet [26], [27], [28], [29]. How-
ever, the utilization of deep learning methods for crack
classification and recognition presents significant challenges:
(1) The creation of training sets and model training demands
substantial time and often requires high-end hardware sys-
tems. (2) The neural network designed for classification and
recognition solely provides information about crack types.
To gather additional details regarding direction and size, the
use of supplementary algorithms becomes imperative, further
increasing the algorithm’s running time. (3) Model param-
eters are generally determined through iterative processes,
with each parameter’s practical implications not always
clearly defined, making direct parameter adjustments chal-
lenging to achieve desired outcomes.

Accurate crack segmentation enables the analysis of geo-
metric characteristics across various crack curve types, facili-
tating the use of digital image processing algorithms for crack
classification and identification. Rodriguez-Lozano et al. [30]
proposed a data dimensionality reduction method for crack
classification and identification, calculating the maximum
value and the difference between the maximum value by
counting pixels in rows and columns of the crack binarization
image, achieving fast and high-precision crack classifica-
tion and identification. Sghaier et al. [31] employed crack
length, width, surface area, projection attributes, and Hough
attributes to determine crack severity and type, utilizing SVM
for crack classification and identification. Qin et al. [32]
introduced a crack classification and identification method
using diagonalmatching of bounding boxes, which quantified
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FIGURE 1. Implementation pathway of the integrated pavement crack classification and recognition method using tensor voting and RANSAC.

the bounding box’s aspect ratio, the number and loca-
tion of crack segment intersections with the diagonal, and
extracted crack geometric features by calculating intersec-
tion points, enabling crack classification and identification.
Huyan et al. [33] employed the least squares method to deter-
mine crack curve inclination, initially categorized cracks as
linear or mesh based on blank regions between crack pixels,
and subsequently differentiated transverse and longitudinal
cracks using length-to-width ratios and curve inclination.

Addressing the limitations of inconspicuous crack pixel
detection in crack classification and recognition using digital
image processing techniques, as well as the above-mentioned
challenges associated with deep learning methods, this
paper proposes an integrated approach combining the tensor
voting and random sample consensus (RANSAC) for pave-
ment crack classification and recognition. The entirety of
this method relies on digital image processing techniques
for crack segmentation and classification. The proposed
approach eliminates the need for model training and param-
eter adjustment associated with deep learning algorithms.
In addition to the information of crack type, the direction
and size of the crack are also provided, offering guidance for
intelligent road repair. This streamlining facilitates broader
practical application, holding positive implications for the
theoretical expansion of crack classification and recognition
methodologies.

II. PROPOSED ALGORITHM
The process of implementing the pavement crack classifi-
cation and recognition method, which combines the tensor
voting and RANSAC algorithms as proposed in this paper,

is illustrated in Fig. 1. This method initiates by employing
grayscale value transformation and the K-Means cluster-
ing algorithm to extract crack seed points. Subsequently,
the tensor voting algorithm is applied to acquire the linear
saliency map of these seed points, followed by the introduc-
tion of a non-maximum suppression algorithm to obtain the
crack skeleton diagram. Lastly, the RANSAC algorithm is
employed to fit the crack skeleton diagram, culminating in
the achievement of crack classification and recognition.

A. INTERFERENCE MITIGATION AND EXTRACT CRACK
SEED POINTS
Under natural illumination conditions, roadside trees or
buildings cast shadows on the road surface. Due to the sim-
ilarity in pixel grayscale values between these shadows and
cracks, direct application of a threshold method for crack
seed point extraction can often lead to the capture of a sig-
nificant number of shadowed area pixels. This, in turn, can
introduce interference to subsequent tensor voting algorithm.
To address shadow interference, the conventional approach
involves the segmentation of shadow regions, followed by
subsequent brightness compensation. Huyan et al. [33] sep-
arately applied brightness compensation to the umbra and
penumbra regions through the integration of illumination
compensation models and interpolation techniques, effec-
tively achieving shadow elimination. Li et al. [34] devised
an efficient single-image shadow elimination algorithm based
on hierarchical clustering, successfully mitigating the impact
of shadows. However, it is important to note that images
subjected to regional brightness compensation might exhibit
unnatural transitions at shadow boundaries.
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Tomitigate shadow interference in pavement crack images,
this paper introduces a combined approach involving gray
value transformation and the K-Means clustering algorithm.
The specific steps are as follows:

1) GRAY VALUE TRANSFORMATION
After grayscale the pavement image (the gray value range is
0∼255), calculate the maximum valuem and minimum value
n of the gray value of all pixels, and transform the gray value
according to (1).

Dst(i, j)

=


400Src(i, j)
m− n

−
400n
m− n

, n ≤ Src(i, j) ≤
m+ n
2

110Src(i, j)
m− n

+
145m− 255n

m− n
,
m+ n
2

< Src(i, j) ≤ m

(1)

where Src (i, j) represents the gray value of the pixel at the
coordinate position of (i, j) in the original gray image, and
Dst (i, j) is the gray value of the pixel at the coordinate
position of (i, j) after the gray value transformation.

2) K-MEANS CLUSTERING ALGORITHM
The K-Means clustering algorithm is used to segment a
pavement image with shadow interference into pavement
background areas and shadow areas. The main steps are as
follows:

Step 1: Calculate the average µ and the standard deviation
σ of the gray values of all pixels, and divide the image into
two clusters: low gray value and high gray value cluster.
Initialize the iteration center of the low gray value cluster as
µ − σ (set to 50 if the µ − σ is less than 0), and that of the
high gray value cluster as µ + σ (set to 200 if the µ + σ is
greater than 255).

Step 2: Based on the current iteration center, calculate the
distance between each pixel’s gray value and the iteration
center of the two clusters (that is, the absolute difference
between gray values), and assign each pixel to the nearest
cluster.

Step 3: Calculate the average gray value of all pixels in
each cluster, as the new iteration center for the next iteration.

Step 4: Calculate the distance between the two group of
cluster centers obtained in Steps 2 and 3. If the distance is
less than the given iteration accuracy (taken as 0.01), end the
iteration, and record the coordinates of the pixels in the low
gray value cluster at this time, otherwise repeat Steps 2 to 4.

3) COARSE EXTRACTION OF CRACK SEED POINTS
Following K-Means clustering algorithm, a secondary gray
value transformation is performed in the low gray value clus-
ter utilizing (1), further enhancing contrast and emphasizing
distinguishing features.

Crack seed points are coarsely extracted using a threshold-
ing method. Calculate the average µL and standard deviation
σL of all pixels in the low gray value cluster after the sec-
ondary gray value transformation, and extract pixels with

gray values less than µL − 2σ L as coarse extraction result
of crack seed points.

4) REFINED EXTRACTION OF CRACK SEED POINTS
After obtaining the coarsely extracted crack seed points,
we aimed to discern whether the image contained cracks and
optimize the seed points extraction. Initially, the morpholog-
ical close operation was applied to the coarsely extracted
crack seed points to connect adjacent points into regions.
Subsequently, all connected domains in the image were quan-
tified, and the small connected domain suppressing method
was employed to remove areas with fewer pixels than a
specified threshold (which should be adjusted based on the
image resolution, set at 500 in this paper). The remaining
connected domains comprised the Region of Interest (RoI)
of the crack seed points. Only the crack seed points within
the RoI were retained as the refined extraction result of the
crack seed points. For images lacking obvious cracks, the
remaining crack seed points are typically few and dispersed,
making them candidates for elimination in subsequent tensor
voting algorithms. For images containing cracks, the noise in
the refined crack seed points was suppressed.

By meticulously following these steps, the proposed
method effectively eliminates the impact of shadow and
noise interference in pavement crack images. Moreover, it is
suitable for image pre-processing under various lighting
conditions.

B. TENSOR VOTING ALGORITHM
In this section, the tensor voting algorithm is applied to deter-
mine the linear and ball salience of crack seed points. Tensor
voting is a classic image enhancement algorithm used to
infer implicit structural features from noisy dot maps, finding
broad application in image denoising and feature extraction
domains [14], [18], [35], [36], [37], [38]. This approach
enhances the identification and significance of linear features
within the crack patterns, thereby contributing to improved
accuracy and reliability in subsequent crack skeleton extrac-
tion and classification recognition procedures.

1) TENSOR REPRESENTATION AND VOTING FIELD
In a two-dimensional image, the tensor of a pixel can be
represented using a non-negative definite second-order sym-
metry matrix. Let the eigenvalues of the matrix be λ1, λ2, and
λ1 ≥ λ2, corresponding to their respective unit eigenvectors
e1, e2, as presented in Table 1. There are three fundamental
types of tensors: the unit ball tensor, the unit stick tensor and
the ellipse tensor.

An ellipse tensor T can be represented as a superposition of
the ball tensor and the stick tensor, and it can be decomposed
according to its eigenvalues, as shown in (2).

T = λ1e1eT1 + λ2e2eT2 (2)

Equation (2) can be further decomposed, as shown in (3).

T = (λ1 − λ2)e1eT1 + λ2(e1eT1 + e2eT2 ) (3)
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TABLE 1. Fundamental types of tensors.

FIGURE 2. Diagram of the stick voting field.

where (λ1 − λ2) e1eT1 represents a stick tensor, and (λ1 − λ2)

signifies its linear saliency, and e1 represents its normal direc-
tion. Additionally, λ2(e1eT1 + e2eT2 ) represents a ball tensor,
and λ2 signifies its ball saliency.
During the process of tensor voting, each individual pixel

conveys directional and saliency information to neighboring
pixels through a voting field. The voting field assumes two
primary forms: stick voting field and ball voting field.

a: Stick voting fields
As illustrated in Fig. 2, consider point O as the voting point
with its tangent direction along the x-axis and its normal
direction along the y-axis. Let point P be the recipient of the
vote, and let point C denote the center of the circle passing
through the point O and P, with O’s normal direction as the
radius direction.

The tensor voting field intensity produced by pointO atP is
determined by the distance between the two points. A greater
distance corresponds to a weaker voting field intensity. The
decay coefficient DF(s, k, δ) of voting field intensity with
increasing distance between the voting and recipient points
is governed by the degradation function depicted in (4).

DF(s, k, δ) = exp(−
s2 + ck2

δ2
) (4)

where δ represents the sole parameter determining the scale
of the voting field; s, k and l are the length of the arc, the
curvature of the arc and the length of the line between points
O and P, respectively. s = αl

/
sinα and k = 2sinα

/
l, where

α is the angle between the line OP and the positive direction
of the x-axis. c is the parameter controlling the rate of decay,
determined by δ, c = −16log[0.1 (δ − 1)]

/
π2.

The voting field intensity S of point O at any given point P
is determined by (5).

S =
DF(s, k, δ)

[
− sin(2α + θ )
cos(2α + θ )

]
[− sin(2α + θ), cos(2α + θ )] , |α| ≤ 45◦

0, |α| > 45◦

(5)

where θ represents the angle between the normal direction
vector of point O and the positive direction of the y-axis. The
scenario illustrated in Fig. 2 corresponds to when θ = 0.

b: Ball voting fields
By rotating the stick voting field around the center point O
at regular small intervals and superimposing the field inten-
sities, a ball voting field can be obtained.

2) SPARSE BALL TENSOR VOTING
To initially obtain the direction and linear saliency of crack
seed points, a sparse ball tensor voting process is performed.
All crack seed points obtained from the threshold segmenta-
tion in Section II-A are initialized as spherical tensors without
directional information. A ball voting field is formed at each
of these points, and the values of the ball voting fields are
calculated and superimposed. Subsequently, the tensors of
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TABLE 2. Classification of crack seed points based on eigenvalues.

the non-crack seed points in the image are reset to
[
0 0
0 0

]
.

The tensors resulting from the sparse ball voting process are
subjected to the eigenvalue decomposition as shown in (3),
yielding the linear saliency, λ1 − λ2, and the ball saliency,
λ2, for each pixel. Based on different eigenvalues, the seed
points are categorized into four classes as shown in Table 2.
Seed points with linear saliency lower than ball saliency (λ1−
λ2 < λ2) exhibit weaker linear features and are discarded to
emphasize the linear characteristics of crack curves.

3) DENSE STICK TENSOR VOTING
The dense stick tensor voting is employed to further refine the
linear saliency of crack seed points and simultaneously con-
nect breakpoints between cracks. Initially, the ball salience
λ2 of the residual crack seed points with relatively high
linear saliency from the sparse ball tensor voting is set to
zero, transforming them into stick tensors with well-defined
directional information, where the normal direction vector is
denoted as e1. Subsequently, stick voting field corresponding
to its respective direction is established at each pixel, and the
values of the stick voting fields are calculated and superim-
posed. After performing dense stick tensor voting, eigenvalue
decomposition as shown in (3) is applied to the obtained ten-
sors, yielding the linear saliency, λ1−λ2, and ball saliency, λ2,
of each pixel. To minimize erroneous connections between
breakpoints, normalized values of the linear saliency, λ1−λ2,
which less than 0.2 are set to zero. A linear saliency map is
generated based on the values of λ1 − λ2.
As indicated in Table 2, the linear saliency, λ1 − λ2 of

crack intersections is approximately 0. This implies that at
these intersection points, the linear salience value is likely
to be diminished and may be eliminated after performing
sparse ball tensor voting. Consequently, critical information
concerning the junctions of crack curves might be missing
from the linear saliency map. The ball saliency, λ2, of crack
junctions typically exceeds that of noise points(λ2≈ 0). Thus,
using the value of λ2, a distinction can be made between
crack junctions and noise points. Nevertheless, portions with
larger values might also correspond to turning points in the
crack curves. In addressing this, the approach outlined in
reference [37] is adopted. First, the ball saliency values, λ2,
of all retained crack seed points are normalized, and those
exceeding 0.6 are extracted. Subsequently, connected domain
analysis is conducted, and for each connected domain, the
following steps are executed:

FIGURE 3. Diagram of neighborhoods and adjacent points of a pixel.

Step 1: Calculate the centroid coordinates of the connected
domain and round them to the nearest integers. In the linear
saliency map, draw a circular region with a radius of 10 pixels
around this centroid point. Record the linear saliency, λ1 −

λ2, of the pixels that the circular edge traverses, sequentially
arrange them into an array.

Step 2: Count the number of local maxima points in the
array. If the count is 2, then the connected domain is identified
as a turning point in the crack curve. If the count is greater
than 2, then it is determined to be a junction of crack curves.

Using the above method, the number of junctions of crack
curves, denoted as N , is obtained. This value serves as an
important parameter for the subsequent crack classification
and recognition algorithm.

C. NON-MAXIMUM SUPPRESSION ALGORITHM
The linear saliency map obtained from tensor voting is
refined using a non-maximum suppression algorithm to
obtain the crack skeleton. The crack skeleton is a one-pixel-
wide curve that delineates the direction of the crack curve.
The non-maximum suppression algorithm described in ref-
erence [38] employed an eight-neighborhood comparison
approach. It searches along the pixel’s normal direction and
the normal direction +180◦ for two adjacent pixels. If the
linear saliency, λ1 − λ2, of the pixel is greater than or
equal to the values of the two adjacent pixels, it is retained;
otherwise, it is discarded. However, the crack skeleton gen-
erated using this method often exhibits numerous ‘‘spikes.’’
To address this, a subsequent step of small connected domain
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suppression is applied to remove the spikes. However, small
connected domain suppression might inadvertently remove
some short cracks, resulting in incomplete crack extraction.
Therefore, building upon the eight-neighborhood comparison
non-maximum suppression algorithm, this paper broadens
the scope of pixel neighborhood searches to mitigate the
occurrence of spikes. The specific method for determining
adjacent pixels is as follows:

1) DETERMINE THE NEIGHBORHOOD OF A PIXEL
All possible neighborhoods of a pixel are illustrated in
Fig. 3(a). A pixel possesses eight main directions. and
16 areas are divided with each of the main direction rotating
22.5◦ clockwise. Symmetric areas about the pixel’s center are
merged into a single area. The area where the pixel’s normal
direction vector resides is considered the neighborhood of the
pixel.

2) DETERMINE THE K-RADIUS NEIGHBORHOOD OF A PIXEL
The square region formed by extending K pixel lengths in
each of the four directions of top, bottom, left and right is
called the K-radius neighborhood of a pixel, and the area size
is (2K + 1) × (2K + 1). As depicted in Fig. 3(a), the square
region illustrates the 3-radius neighborhood of the pixel.

3) DETERMINE THE ADJACENT POINTS OF THE PIXEL IN
THE K-RADIUS NEIGHBORHOOD
Within a pixel’s K -radius neighborhood, points lying on the
eight main direction lines, as well as points located one pixel
distance away from each main direction line, are identified
as all adjacent points of the pixel. As shown in Fig. 3(b),
the red dots represent all adjacent points of the pixel in area
2. According to this rule, the number of adjacent points in
different areas within the pixel’s K -radius neighborhood is
equal to 4K .

The steps of the non-maximum suppression algorithm are
as follows:

Step 1: Calculate the angle between the normal direction
vector, e1, and the main direction 1 of all pixels in the linear
saliency map. Based on the angle, determine the neighbor-
hood for each pixel. Specify K value to establish the K -radius
neighborhood of each pixel, and further identify all adjacent
points for each pixel.

Step 2: Compare the linear saliency, λ1 − λ2, of each pixel
with its respective adjacent points, if the λ1 − λ2 value of the
pixel is greater than or equal to the value of all its adjacent
points, the pixel is retained; otherwise, it is discarded.

Step 3: Display all retained pixels to obtain a crack skeleton
image.

D. RANSAC ALGORITHM
The crack skeletons obtained in section II-C possess pro-
nounced linear characteristics. Images are deemed crack-free
when the number of pixels in the crack skeleton image falls
below 500. In cases where cracks are present, cracks can be
categorized into four types: transverse cracks, longitudinal

TABLE 3. Pavement crack classification and recognition rules.

TABLE 4. Camera parameters of the UAV.

cracks, block cracks and alligator cracks. To facilitate clas-
sification and recognition, the crack skeleton is subjected to
curve fitting using the RANSAC algorithm. The specific steps
are as follows:

Step 1: Establish the coordinate origin of the crack skele-
ton image at the bottom left corner, with the x-axis aligned
horizontally and the y-axis aligned vertically.

Step 2: Randomly select two points (ensuring that the
Euclidean distance between the two points is required to be
greater than max {image height h, image width w}/3), and
connect them into a straight line.

Step 3: Set the threshold value s =max {h,w}/10. Translate
the straight line upwards and downwards by distance s, and
count the number of points falling within the range enclosed
by the two translated lines.

Step 4: Repeat Step 2 to Step 3 n (n = total number
of pixel points of the crack skeleton image /3) iterations.
Identify the straight line with the highest count of enclosed
points within the translation range as the final fitted straight
line. Record the coordinates of the two points through
which the fitted line passes, denoted as (x1, y1) and (x2, y2).
Calculate the angle β between the fitted line and the posi-
tive x-axis using the formula β= arctan[(y2 − y1)

/
(x2 − x1)]

(with a range of values calculated by the arctan function is
[−π

/
2, π

/
2]). Calculate the ratio R, which is the ratio of

the count of points enclosed within the translation range of
the line to the total number of pixels in the crack skeleton
image.

Step 5: Determine the type of pavement cracks according
to the angle β, ratio R and the number of crack junctions N
obtained in section II-B.3. The specific classification rules
are provided in Table 3. The threshold for each criterion may
vary depending on the specific context and dataset.
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III. EXPERIMENT RESULTS AND DISCUSSION
The proposed method, which combines tensor voting with
the RANSAC algorithm for pavement crack classification
and recognition, was implemented usingMatlab R2018a soft-
ware. We performed the experiments on a computer with a
3.2GHz CPU, 16GB RAM and NVIDIA RTX 3060 GPU.
The pavement crack images were collected by the UAV,
and the camera parameters of the UAV are shown in Table 4.

The imaging field of view of the camera is determined
by (6) and (7).

FOVH =
H ·WD

f
(6)

FOVW =
W ·WD

f
(7)

where, FOVH represents the imaging field of view of the
camera along the flight direction of the UAV, while FOVW
represents the imaging field of view of the camera perpen-
dicular to the flight direction of the UAV. H andW represent
the vertical and horizontal target size of the selected camera,
with H being 13.5 mm and W being 18.5 mm. WD rep-
resents the working distance of the camera, indicating the
distance between the photographed object and the camera
lens, approximately being the flight altitude 2 m. f represents
the focal length of the selected lens, which is 24 mm.

The equation (6) and (7) yield FOVH =1542 mm and
FOVW =1125 mm, indicating that the real-world size of
the image captured by the camera is 1542 mm × 1125 mm.
This size corresponds to the camera resolution of 1920 ×

1080 pixels. Consequently, the size of the real object cor-
responding to each pixel in the image is approximately
1.0 mm × 0.8 mm. Given this resolution, the smallest
detectable crack size in the image is about 1 mm, which
fulfills the requirements for most pavement crack detection
scenarios.

To capture images without pixel ghosting, the maximum
flight speed of the UAV, denoted as vmax , is determined by (8).

vmax =
µc

tmin
(8)

where, µc represents the minimum actual size represented by
a pixel in the image, taken as 1mm. tmin represents the mini-
mum exposure time of the camera, set as 1.25 µs according
to Table 4. vmax is calculated as 8 m/s or 28.8 km/h.
When a road inspection vehicle is equipped with industrial

cameras with similar parameters, it can capture a clear and
comprehensive image of pavement cracks by ensuring that
the vehicle’s speed remains below 30 km/h.

To enhance the algorithm’s processing speed and facilitate
its verification, the collected images are resized and cropped.
The resolution of the pavement crack images used in this
paper is 480 × 320 pixels.

A. RESULTS OF GRAY VALUE TRANSFORMATION
As illustrated in Fig. 4, the gray value transformation method
proposed in Section II-A.1 was applied to asphalt pavement

FIGURE 4. Result of gray value transformation concerning pavement
cracks under varying lighting conditions and materials. (a1), (a2) and (a3):
Original pavement images. (b1), (b2) and (b3): Gray histograms of
grayscale images before the transformation. (c1), (c2) and (c3): Grayscale
images after the transformation. (d1), (d2) and (d3): Gray histograms of
grayscale images after the transformation.

cracks under sunny conditions (Fig. 4(a1)), asphalt pavement
cracks under cloudy conditions (Fig. 4(a2)), and cement
pavement cracks under cloudy conditions (Fig. 4(a3)). Sub-
sequently, the effectiveness of the gray value transformation
method was analyzed concerning pavement cracks under
varying lighting conditions and materials based on the gray
histogram before and after the transformation.

From the perspective of different lighting conditions,
images may exhibit shadows and a broad range of gray values
under good sunlight on sunny days. In contrast, the distribu-
tion range of gray values narrows on cloudy days, leading to
low contrast between cracks and the surrounding background.
As depicted in Fig. 4(c1), (c2), and (c3), the contrast of cracks
is significantly improved following the gray value transfor-
mation under varying lighting conditions. Fig. 4(d1), (d2),
and (d3) illustrate that the gray value distribution range of
the image is expanded through stretching, resulting in an
increased number of pixels with high gray values and a wider
gray value gap with crack pixels. This stretching process
proves convenient for the extraction of crack seed points.

From the perspective of different pavement materials, the
gray value distribution range in asphalt pavement images is
narrower than that in cement pavement images. In asphalt
pavement, the majority of pixels fall within the range of [100,
150] in terms of gray value (in Fig. 4(b2)), resulting in lower
contrast for cracks and making crack seed point extraction
more challenging compared to cement pavement. However,

72124 VOLUME 12, 2024



H. Wang et al.: Pavement Crack Classification and Recognition Algorithm

FIGURE 5. Results of crack seed points extraction. (a1), (a2), (a3) and (a4): Original pavement crack images. (b1), (b2), (b3)
and (b4): Results of coarse extraction of crack seed points. (c1), (c2), (c3) and (c4): Results of refined extraction of crack
seed points.

after applying the gray value transformation, the gray value
range of most pixels in asphalt pavement crack images shifts
to [150, 170] (in Fig. 4(d2)), distinctly differentiating them
from low-gray-value crack pixels. This observation demon-
strates the effectiveness and versatility of the gray value
transformation method proposed in this paper across various
lighting conditions and pavement materials.

B. RESULTS OF CRACK SEED POINTS EXTRACTION
The results of crack seed points extraction using the method
proposed in Section II-A are illustrated in Fig. 5.

As depicted in Fig. 5, the coarsely extracted crack seed
points exhibit considerable noise interference points, partic-
ularly noticeable in images without cracks. This is primarily
due to the direct extraction of pixels by the K-Means clus-
tering algorithm and threshold method, leading to misiden-
tifications in crack-free images. In comparison, the refined
extracted crack seed points show a notable reduction in
noise points, resulting in significantly fewer seed points in
crack-free images as well, which can be further eliminated
using the following tensor voting algorithm.

C. RESULTS OF CRACK SKELETON SEGMENTATION
Fig. 6 illustrates the crack skeleton extraction results of crack
seed points in Fig. 5(c1), (c2), (c3) and (c4). Fig. 6(e1),
(e2), (e3) and (e4) depict crack skeleton images manually
labeled using the Image Labeler App in Matlab, serving
as ground truth references for crack skeleton segmentation.
Within the tensor voting algorithm, the scale determining
parameter δ for the voting field is set as 15. In the context
of the non-maximum suppression algorithm, the parameter
K is selected as 7.

From Fig. 6, it can be observed that the non-maximum
suppression algorithm proposed in this paper diminishes the
occurrence of ‘‘spikes’’ and false crack recognition phenom-
ena by expanding the search range to surrounding pixels.

The recall rate (abbreviated as Re), precision rate (abbrevi-
ated as Pre) and F1-score (abbreviated as F1) are used as the
quantitative evaluation metrics for crack skeleton segmenta-
tion performance [39]. Re is defined as the ratio of correctly
extracted crack pixels by the algorithm to all the manually
labeled crack pixels. Pre is defined as ratio of correctly
extracted crack pixels by the algorithm to all crack pixels
extracted by the algorithm. F1 represents the comprehensive
evaluation of Re and Pre, and is calculated by (9).

F1 = 2
Re · Pre
Re+ Pre

(9)

These evaluation metrics are adopted to assess the skeleton
segmentation results of 20 pavement crack images. Given
the presence of errors in the manually labeled crack skeleton
images, the morphological dilation operation with a 5 ×

5 square structuring element was conducted on the man-
ual labeling and the algorithmically extracted crack skeleton
images. The Re, Pre and F1 statistics for the crack skeleton
segmentation algorithms from reference [38] and this paper
are illustrated in Fig. 7.

The crack skeleton segmentation algorithm in this paper
achieves an average Re of 0.7455, an average Pre of 0.8407,
and an average F1 of 0.7879. As can be seen from Fig. 7, the
Re of the algorithm utilizing eight-neighborhood comparison
non-maximum suppression in literature [38] is slightly higher
than that of themethod proposed in this paper, mainly because
the crack skeleton segmented by the method in literature [38]
contains more pixels. The Pre and F1 of proposed algorithm

VOLUME 12, 2024 72125



H. Wang et al.: Pavement Crack Classification and Recognition Algorithm

FIGURE 6. Comparison of pavement crack skeleton segmentation results. (a1), (a2) (a3), and (a4): Crack seed points. (b1), (b2) (b3), and (b4): Linear
saliency maps. (c1), (c2), (c3) and (c4): Crack skeleton images using non-maximum suppression algorithm in literature [38]. (d1), (d2), (d3) and
(d4): Crack skeleton images using non-maximum suppression algorithm proposed in this paper. (e1), (e2), (e3) and (e4): Crack skeleton images
manually labeled.

in this paper demonstrate a substantial improvement over
those reported in the literature [38]. The augmentation of
the search range around each pixel within the non-maximum
suppression algorithm contributes to the enhancement of
segmentation precision.

Every pixel within the crack curve segmented by the
tensor voting algorithm carries orientation information. Con-
sequently, the crack skeleton map can be derived through
a straightforward non-maximum suppression algorithm that
integrates the pixel orientation information. The pixel orien-
tation information of the crack is illustrated in Fig. 8. The

red arrows in Fig. 8 indicate the normal direction of the crack
pixels, which can provide guidance for automatic repair work.

In the case of the semantic segmentation neural network,
the resulting segmented crack only encompasses the crack
curve without pixel orientation information. Consequently,
additional image thinning algorithms are requisite to acquire
the crack skeleton map, leading to an additional increase in
algorithm’s running time.

Each pixel in the crack curve segmented by tensor
voting algorithm contains orientation information. There-
fore, the crack skeleton map can be obtained by a simple
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FIGURE 7. Evaluation metrics comparison of two non-maximum
suppression algorithms.

FIGURE 8. Diagram for the pixel orientation information of the crack in
Fig. 6(d3).

non-maximum suppression algorithm by combining the pixel
orientation information. Upon acquiring the crack skeleton,
the pixel count of the crack skeleton serves as a representation
of the pixel length of the crack. Additionally, the pixel width
of the crack can be denoted by the distance from the normal
direction of the edge pixels to the crack skeleton curve, given
the known pixel direction. However, obtaining pixel width
information for the crack curve segmented by the semantic
segmentation network proves challenging, as it lacks inherent
direction information.

D. FITTING RESULTS OF CRACK SKELETON CURVES
Following the generation of crack skeleton images through
tensor voting and non-maximum suppression algorithms, the
RANSAC algorithm is employed for linear fitting of the
crack skeletons. The fitting outcomes are illustrated in Fig. 9,
where (a), (b) and (c) correspond to the fitting outcomes
for the three crack skeleton sets shown in Fig. 6(d2), (d3)
and (d4). In the figures, the blue line represents the final fitted
line, while the blue dashed lines indicate the two translation
lines of the fitted line. Red dots denote crack pixels falling
within the range of the two translation lines, while black dots

FIGURE 9. Fitting results of crack skeleton curves using the RANSAC
algorithm.

signify crack pixels not falling within this range. In accor-
dance with the pavement crack classification criteria outlined
in Table 3, the classification results for Fig. 9(a), (b), and (c)
are respectively identified as transverse cracks, block cracks,
and alligator cracks.

E. ACCURACY COMPARISON AND DISCUSSION
We present the results of our experiments in terms of
crack classification and recognition accuracy, and compar-
ison with existing methods. For five types of pavement
cracks (non-crack, transverse cracks, longitudinal cracks,
block cracks and alligator cracks), 40 images of each type,
and a total of 200 images were selected. Initially, the crack
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TABLE 5. Running times of various algorithms for different tasks.

FIGURE 10. Comparison of crack classification and recognition accuracy
using algorithm proposed in this paper and literature [32].

skeleton images were obtained using the methodologies out-
lined in Sections II-A-II-C of this paper. Subsequently, the
classification and recognition effectiveness of the pavement
crack classification algorithm based on RANSAC fitting,
as described in Section II-D was compared with the square
bounding box algorithm proposed in Literature [32]. The
precise identification counts for each of the four crack types
were individually tallied, and the recognition accuracy was
computed. The results of this comparison are graphically
presented in Fig. 10.

Fig. 10 reveals that the two methods demonstrate similar
recognition accuracy for transverse and longitudinal cracks.
However, for block cracks and alligator cracks, due to the
accurate estimation of crack junctions enabled by the ten-
sor voting algorithm, the recognition accuracy using the
proposed method in this paper is notably higher. The com-
prehensive recognition precision of the proposed algorithm
reaches 96%, effectively fulfilling essential usage require-
ments. The proposed method demonstrates its capability to
accurately classify different types of pavement cracks and
effectively distinguish them from other features in the images.

F. RUNNING TIME COMPARASION AND DISCUSSION
To gather additional details regarding direction and size,
the use of supplementary algorithms becomes imperative for
classification neural network. The running times of various
algorithms are presented in Table 5. Notably, the scale deter-
mining parameter δ in tensor voting plays a crucial role in
determining the algorithm’s running time, and in this partic-
ular implementation, the parameter δ is set to 15 according to
the processed image size.

As can be seen in Table 5, the tensor voting algorithm
exhibits a slightly longer running time when compared to
the classical semantic segmentation network U-Net. How-
ever, its subsequent non-maximum suppression algorithm
requires only a single traversal of the image to obtain the

crack skeleton map, leveraging the known orientation infor-
mation of the crack pixels. In contrast, other image refinement
algorithms necessitate multiple traversals, resulting in longer
running times. Concerning crack classification, the RANSAC
algorithm does not differ significantly from the classical
VGG16 classification network. The crack classification and
recognition algorithm presented in this paper processes
an image in approximately 1.5s on average, meeting the
requirements of the practical project.

Compared with the classification recognition neural net-
work, the proposed algorithm exhibits a notable advantage
in acquiring not only crack type information but also
crack direction and size details. This additional informa-
tion can provide valuable guidance and recommendations
for hierarchical management and automated repair of cracks.
Furthermore, the proposed algorithm eliminates the need for
extensive dataset creation andmodel training. It also demands
less hardware resources, making it suitable for integra-
tion into embedded systems, thereby facilitating widespread
practical application in engineering. All parameters in the
algorithm possess explicit practical significance, providing a
well-defined approach for parameter adjustment in practical
applications.

G. LIMITATIONS AND FUTURE WORK
Despite the promising results, our method may have lim-
itations when dealing with handling highly complex crack
patterns or certain challenging lighting conditions, and the
classification accuracy is slightly imperfect compared with
deep learning methods. We discuss potential pathways for
future research to further enhance the performance and appli-
cability of the proposed approach. In practical application, the
camera’s shooting height, angle, and range can be customized
based on the specific road surface conditions to capture
more standardized images. Furthermore, adjustments to the
algorithm’s parameters can be made to align with the real-
world context, thereby enhancing recognition accuracy.

IV. CONCLUSION
In this paper, we propose an integrated approach combining
the tensor voting and RANSAC for pavement crack classi-
fication and recognition. The classification and recognition
algorithm proposed in this paper is grounded on the accu-
rate segmentation of crack skeletons, allowing simultaneous
acquisition of crack type, orientation and size information.
The feature information fusion of points and lines enables
effective classification and recognition of cracks, with high
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recognition accuracy that satisfies the road maintenance
and management usage requirements. The method shows
promising performance on automatic crack repair and pro-
vides a solid foundation for further research and practical
application.

V. DATA AVAILABILITY
The dataset used for comparison of crack classification and
identification results is available at
https://github.com/0110TJY/Crack-Classification-Dataset.
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