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ABSTRACT In this paper, a robust online Multi-robot Simultaneous exploration and coverage path planning
problem is presented. The entire workspace is initially partitioned using a variant of Voronoi partitioning,
Manhattan Voronoi, and the robots execute simultaneous exploration and coverage using Spanning Tree
Coverage algorithm and cover the workspace. Once the robot(s) failure is detected the uncovered portions of
the Voronoi cell of the failed robot will be shared between other eligible robots or a replacement strategy,if
available, is performed. Simulation experiments within the V-rep environment is used to demonstrate and
validate the performance of the proposed algorithm. Though the authors used the Spanning Tree Coverage
algorithm for path planning for the purpose of demonstration, any suitable coverage algorithm may be used.

INDEX TERMS Coverage path planning, robot failure, dynamic partition boundaries, Manhattan Voronoi,
multi-robot systems.

I. INTRODUCTION
In the context of mobile robots, several major applications
involve tasks such as cleaning, mine-sweeping, and structural
inspection. These applications require robots to execute
complete coverage paths within the accessible workspace.
Various recent approaches are presented in [1], [2], [3],
[4], [25], [26], and [27]. However, planning such paths in
multi-robot scenarios presents several challenges, including
task duplication, coordination between robots, and optimal
task allocation. To address these challenges, efficient task
allocation between robots becomes a primary focus [5], [6],
[7]. One effective approach in coverage path planning (CPP)
with multiple robots is the ‘divide and conquer’ method. This
approach divides the entire workspace into cells equal to the
number of robots in the system [10], [11], [12], [13], [14],
[18], [19]. Each robot is then assigned an individual cell to
cover, eliminating the need for continuous communication
with other robots.

Voronoi partitioning or its variants [14], [22], [24] are
commonly used for dividing the workspace. However,
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most literature performs partitioning based on the initial
positions of the robots, which may be less efficient without
an optimal initial deployment scheme. Additionally, some
methodologies combine exploration and coverage for multi-
robot systems. After the partitioning phase, the robots
begin covering their assigned regions while simultaneously
exploring them. It is worth noting that these approaches often
do not account for robot failures in their plans [20]. Therefore,
it is crucial to design a robust strategy that can handle
robot failures. This paper presents a strategy for multi-robot
coverage path planning that addresses these challenges by
introducing two methodologies, one is a dynamic workspace
allocation method and the second one for robot replacement
if such a replacement is available. The proposed method
aims to reduce the inequality in workspace allocation in such
scenarios.

In this paper, the partition and cover approach using
Manhattan Voronoi [15] is explored. This approach converts
a multi-robot coverage (MRC) problem into a set of
single-robot coverage problems. The authors propose a
method that divides the workspace into cells using the
Manhattan Voronoi partitioning technique. However, this
approach assumes that the obstacles in the workspace
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are known in advance since the partitioning process is
offline. Consequently, it may not be possible to accommo-
date obstacles during the partitioning process, leading to
non-uniform area allotment to the robots. Another algorithm
called MRSimEx, presented in [20], combines online and
offline coverage strategies. The robots in this algorithm
simultaneously explore and cover their allotted areas by
intermittently conducting exploration during the coverage
process. This intermittent exploration helps reduce power
consumption since the exploration sensors only need to be
active during the exploration phase. However, the offline
partitioning process used in MRSimEx does not account
for obstacle placement unless they are known a priori.
This limitation can affect the optimality of the coverage
as robots may have unevenly distributed areas due to
obstacles. If a large obstacle is present within a robot’s
allotted cell, that robot will need to cover a smaller area
compared to others, resulting in reduced resource utilization.
In contrast, offline MRC algorithms that employ Voronoi
partitioning can handle obstacle scenarios since the obstacle
placement is known beforehand. The main challenge in
such algorithms is ensuring that the partitioned cells are not
topologically disconnected, a problem addressed effectively
in [21]. Overall, the choice of partitioning approach in
multi-robot CPP algorithms can impact factors such as
optimality, obstacle accommodation, resource utilization,
and topological connectivity of the partitioned cells.The
proposed algorithm offers several advantages over existing
work in the literature. These advantages include achieving
non-overlapping complete coverage, reducing the time taken
to complete the coverage task, minimizing battery consump-
tion, and exhibiting robustness to the failure or addition of
robots.

The proposed algorithm optimizes the partitioning of the
workspace into distinct cells designated to individual robots,
using advanced Manhattan Voronoi techniques. This precise
partitioning ensures that each robot is responsible for a
unique area, eliminating the overlap that often occurs in less
sophisticated systems. Non-overlapping coverage is crucial
for efficiency as it avoids redundant passes over the same
area, which not onlywastes time but also consumes additional
battery power. Moreover, by ensuring complete coverage,
the algorithm guarantees that no part of the workspace
is left unattended, an essential factor for applications like
cleaning or mine-sweeping where missing an area could
have serious consequences. By effectively assigning robots to
specific partitions without overlap, the algorithm minimizes
the total time required for complete coverage. Each robot
operates independently within its designated area, optimizing
its path planning and coverage pattern without the need
to coordinate movements with other robots in real time.
This autonomy allows all robots to operate in parallel
at full efficiency, significantly speeding up the overall
coverage process. This is particularly beneficial in large-scale
operations where time efficiency translates directly to cost
savings and operational effectiveness. Efficient path planning

inherent in the algorithm contributes directly to reduced
battery consumption. By eliminating redundant coverage
and optimizing travel paths within each partition, robots
can minimize idle running and unnecessary long-distance
movements, thereby conserving energy. Furthermore, the
algorithm’s design allows for intermittent operation of
exploration sensors only during necessary phases of the
coverage process, which further helps in reducing the energy
expenditure that would otherwise be required for continuous
sensor operation. Also, one of the standout features of the
proposedmethodology is its robustness in the face of dynamic
changes to the robot fleet, such as failures or the addition of
new robots. The system is designed to dynamically reassign
coverage tasks and redistribute workspace partitions if a
robot fails, ensuring continuous operation without significant
disruption. Similarly, if additional robots are introduced
into the system, the algorithm can quickly integrate these
resources by re-evaluating and adjusting the partitioning
of the workspace. This flexibility is critical in practical
scenarios where robotic systems must maintain operation
despite hardware failures or when scaling operations.

The major contribution of this paper lies in advancing
the state-of-the-art in multi-robot coverage path planning
by addressing the under explored issues of dynamic allo-
cation and failure robustness. We demonstrate through
simulations on the V-Rep platform that our methodologies
not only improve coverage efficiency but also achieve
non-overlapping complete coverage, reduce the time taken
to complete coverage tasks, minimize battery consumption,
and exhibit robustness to the failure or addition of robots.
This work significantly extends existing methodologies by
optimizing resource utilization and ensuring continuous oper-
ation despite unforeseen disruptions, contributing valuable
insights and tools to the field of robotic coverage path
planning. The rest of the paper is organized as follows. The
problem statement is provided in section II. In section III, the
proposed algorithm is discussed followed by an illustrative
example in section IV. The analysis of the algorithm is
carried out in section V and provided results of simulation
experiments in sectionVI. The paper is concludedwith a brief
summary on the contribution.

II. PROBLEM STATEMENT
In this paper, the problem at hand involves a bounded and
contiguous workspace Q ⊂ R2 with known boundaries,
containing n unknown obstacles represented as Oi ⊂ R2,
where i ∈ 0, 1, 2, . . . , n. The task is to cover the regionQ\O,
where O =

⋃n
i=1Oi, using N robots, each equipped with a

square-sized coverage tool of size D. The robots are capable
of executing the MRSimExCoverage-STC algorithm [20] for
covering the workspace. The coverage is resolution complete
if all the free cells are visited by a robot and non-overlapping,
meaning each cell is visited at most once. The coverage is
achieved using approximate cellular decomposition schemes,
such as the one described in [9].
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In multi-robot coverage path planning, the initial allocation
and partitioning of the workspace among robots are typically
based on the Manhattan distance and centroidal Voronoi
partitioning schemes [15], [19], [20]. While these methods
effectively distribute the workspace under ideal conditions,
they face significant challenges when unexpected scenarios,
such as robot failures, occur. For instance, as depicted
in figure1, a scenario with three robots where Robot 1
(R1) fails leads to uncovered regions within its assigned
Voronoi cell. The Voronoi partition boundaries are shown in
thick black lines. The shaded region represents uncovered
regions in the Voronoi cell of R1. This situation necessitates
a dynamic reallocation of the workspace to ensure that
coverage continuity is maintained. The primary challenge
here lies in the ability of the system to adaptively redistribute
theworkload among the remaining operational robots without
causing overlaps or leaving gaps in coverage. The system
must not only reassign the failed robot’s area but also ensure
that the reallocation does not disrupt the efficiency and path
optimization of the other robots. Moreover, the need for a
rapid adjustment is crucial to prevent any delay in coverage,
which is particularly important in time-sensitive applications
like mine-sweeping.

This paper aims to propose an enhanced methodology
for the efficient reallocation of the workspace during the
MRSimExCoverage process, which dynamically adjusts the
partition boundaries between healthy robots to achieve uni-
form workspace distribution. By integrating robust mecha-
nisms for adaptive re-partitioning, the proposed methodology
seeks to ensure that all available robots are utilized to their
best potential, thereby maintaining complete coverage of the
workspace even in the event of robot failures. Achieving
this level of adaptability and robustness enhances the overall
efficiency and reliability of multi-robot systems engaged in
critical tasks such as cleaning, mine-sweeping, and structural
inspection. These tasks require not only complete coverage
of the accessible workspace but also the generation of a
comprehensive map of the area as a by-product, further
underscoring the need for an effective and flexible coverage
strategy.

III. PROPOSED METHODOLOGY
In this section, we introduce our proposed algorithm for
the online allotment of workspace during the MRSimEx-
Coverage [20] process, specifically designed to address
scenarios such as robot failures. While MRSimExCoverage
is efficient in terms of power usage, it does not guarantee
uniform workspace allocation when facing dynamic changes
in the robot configuration. To overcome this challenge,
we adopt a ‘‘Partition and Cover’’ strategy using Manhattan
distance-based Voronoi partitioning [15] for the initial
workspace partitioning. However, during the re-partitioning
stage, we implement geodesic distance-based Voronoi parti-
tioning [21], which offers an effective distance measurement
technique, particularly in the presence of obstacles.

FIGURE 1. A three robot scenario in which robot 1 (R1) failed is shown.
The Voronoi partition boundaries are shown in thick black lines. The
shaded region represents the uncovered regions in the Voronoi cell of R1.
White area represents the covered sections by individual robots.

This approach transforms the multi-robot coverage prob-
lem into individual single-robot coverage problems, leading
to improved efficiency in task (workspace) allotment and
ensuring uniformity in allocation. Communication require-
ments are kept to a minimum, with only a few messages
related to robot availability, task completion, final map,
robot health status, etc., exchanged between the robots.
Below, we provide a concise overview of the underlying
geodesic distance-based Voronoi partitioning, Manhattan
distance-based Voronoi partitioning, and the MRSimExCov-
erage process

A. GEODESIC VPC
The underlying partitioning scheme utilized in the partition-
ing process is known as Geodesic distance-based Voronoi
partitioning (Geodesic VPC) [21]. The geodesic distance
between any two points is defined as the length of the
shortest path between them while avoiding obstacles on a flat
surface. In the context of mobile robots navigating on a flat
surface with obstacles, the geodesic distance-based Voronoi
partitioning calculates the shortest paths between points,
taking into account the obstacles’ presence. This approach
ensures that the partitioning is based on the decomposition
of the free space rather than the entire region. The geodesic
distance-based Voronoi partitioning is given by [21]

VG
i (P) =

{
q ∈ Q \ O|dG(q, pi) ≤ dG(q, pj), ∀j ∈ IN

}
(1)

Here, dG(q, p) is the geodesic distance between points q and
p and Q is the workspace being partitioned.

The advantage of the Geodesic VPC over the standard
Voronoi partition using the Euclidean distance metric lies
in its ability to decompose the free space, resulting in
contiguous cells that are always topologically connected.
This ensures that each cell assigned to the robots for coverage
remains connected and accessible, even when obstacles are
present. By adopting the Geodesic distance-based Voronoi
partitioning scheme, our methodology guarantees more
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robust and efficient allocation of workspace among multiple
robots, maintaining contiguity in the assigned cells, and
addressing the challenges posed by obstacles in dynamic
environments.

B. MANHATTAN VPC
In the MRSimExCoverage process, the underlying partition-
ing scheme used is the Manhattan distance-based Voronoi
partitioning (Manhattan VPC) [15]. This scheme improves
the efficiency of the coverage algorithm by representing
the entire workspace as a union of cells with a size of
2D × 2D, where D corresponds to the square coverage tool
footprint of the robots. By dividing the workspace into cells
of size 2D × 2D, the coverage algorithm ensures that the
robots can efficiently cover the entire area without leaving
any pockets or gaps. In some cases, if this provision is
not made in the coverage algorithm, robots may need to
retract and restart coverage to cover left-out pockets [8]. This
retracing and restarting process can lead to inefficiencies
and additional time consumption. Since most of the robot
motion in coverage applications predominantly occurs in
horizontal or vertical directions, the use of the Manhattan
distance metric in computing Voronoi cells is logical. The
Manhattan distance metric considers the sum of horizontal
and vertical distances between points, as opposed to the
standard Euclidean distance, which considers the straight-
line distance. Considering the nature of robot motion
in coverage tasks, the Manhattan distance-based Voronoi
partitioning proves to be more effective and efficient, leading
to improved coverage results.The Manhattan distance-based
Voronoi partitioning is given by [20]

Vi(P) =
{
q ∈ Q|dm(q, pi) ≤ dm(q, pj), ∀j ∈ IN

}
(2)

Here, dm(q, p) is theManhattan distance between points q and
p and Q is the workspace under consideration.
After the partitioning process, the robots proceed to exe-

cute single-robot coverage algorithms to cover their allotted
regions. In this paper, the Spanning tree-based coverage
(STC) algorithm [9] is utilized as the underlying single-robot
CPP algorithm. The STC algorithm is an effective method
for a single robot to efficiently cover its assigned region.
It involves constructing a spanning tree over the free space
of the given region. The robot then follows the edges of the
spanning tree to traverse and cover all the cells in its allocated
area. This approach ensures that the robot explores the
entire region systematically without any overlap or omission,
leading to complete coverage.

C. MRSimExCoverage PROBLEM
In the multi-robot simultaneous exploration and coverage
(MRSimExCoverage) problem [20], both exploration and
coverage tasks are combined to harness the benefits of
both online and offline coverage algorithms. The robots are
equipped with relatively longer-range sensors, which can
cover the entire workspace size. The process begins with the
robots generating a coverage path under the assumption that

no obstacles are present, utilizing the STC algorithm. During
the exploration and coverage phases, the robots activate
their exploratory sensors only when they reach boundary
cells between explored and unexplored regions, known as
exploration windows. The intermittent exploration phases
provide information to update the map, which is then used to
generate the coverage path. This iterative process continues
until the entire workspace is covered, leading to a complete
coverage of the area, along with obtaining a map of the region
as a byproduct.

However, as the robots start the coverage process using
the MRSimExCoverage STC algorithm, there can be robot
failure scenario which can lead to non-uniform coverage
loads for the robots, as the obstacle-free regions within the
Voronoi cells may differ depending on the obstacle scenario.
To eliminate this issue and to achieve a more uniform
workspace allocation, a portion of the uncovered Voronoi
cells of the failed robot must be allotted to the remaining
‘healthy’ robots or replace the ‘dead’ robot with a new
healthy one, while ensuring the contiguity of the assigned
cells. The detailed procedure for achieving this more uniform
workspace allocation is provided in the following section.

D. THE PROPOSED METHODOLOGY
Let us consider a multi-robot scenario consisting of N robots
covering a workspace. There are some assumptions made as
follows.

1) After the initial Manhattan Voronoi partitioning all the
major cells are given identification numbers. (The major
cells can be easily calculated provided the workspace
boundaries are known.)

2) All the robots have a priori information about the
total number of major cells in the workspace and its
corresponding id numbers.

3) Each of the robots knows which and how many cells are
allotted to itself as well as to others in the system after
the initial Manhattan Voronoi partitioning.

4) Each robot separately stores the Voronoi boundary cells
of itself and of others.

5) All robots send ‘‘I am alive’’ signal periodically to all
other robots and

6) All robots send the cell numbers covered by it and
occupied by obstacles detected by it periodically.

Figure 2 illustrates a scenario with three robots engaged
in the MRSimExCoverage STC algorithm [20]. An obstacle
free workspace is considered for simplicity. In the event of a
robot failure, let’s say Robot 3 (R3) fails, the remaining robots
become aware of this failure due to the absence of the ‘‘I am
alive’’ signal from R3. To address such scenarios, this paper
presents two solutions:

1) Voronoi Cell Reallocation: This approach involves
redistributing the Voronoi cells initially assigned to the
failed robot among the remaining robots. This reallo-
cation ensures a more balanced coverage distribution.
The pseudo-code detailing the steps for this process for
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each robot is provided in algorithm 4. Eventhough the
major process here is repartitioning and re allocating
the major cells of Voronoi cells of the failed robot, the
underlying algorithms are 1,2 and 3. Let us first explain
these algorithms and then proceed to algorithm 4.
Initially, the workspace, denoted as ‘Q’, is partitioned
into areas assigned to each robot using a Manhattan
Voronoi partitioning method based on the robots’ initial
positions. This strategic division ensures that each robot
has a clearly defined area to monitor or maintain,
facilitating efficient and non-overlapping coverage.
Once the initial setup is complete, the system enters
a continuous operational loop, indicating it’s designed
for tasks requiring uninterrupted monitoring, such as
surveillance or environmental management. Each cycle
of this loop begins with reinitializing the robots’
positions, workspace boundaries, and communication
channels to ensure all elements of the system are
perfectly synchronized for the tasks ahead.
During active coverage, each robot performs its duties
within its assigned area using a method referred to
as MRSimEx Spanning Tree Coverage (STC) (algo-
rithm 3). The MRSimex STC process begins with
exploration, where each robot systematically surveys
its environment to identify obstacles, free spaces, and
unknown areas(algorithm 2). The initial step involves
scanning the environment using the sensor, which
provides a comprehensive view of the surroundings in
all directions. This scan allows the robot to distinguish
between areas that are occupied by objects or obstacles
and those that are free and unobstructed. Upon complet-
ing the scan, the robot updates multiple lists based on
its observations. The ‘occupied cell’ list is updated with
information about areas identified as being occupied
by objects or obstacles. This list serves as a record
of the locations of obstacles within the environment,
enabling the robot to navigate around them effectively.
Conversely, the ‘free cells’ list is updated with informa-
tion about areas identified as being free and unoccupied.
These areas are essential for the robot’s navigation and
movement through the environment, as they provide
clear pathways for the robot to traverse without encoun-
tering obstacles. Additionally, the algorithm maintains
an ‘unknown cell’ list, which includes areas where
the sensor data is inconclusive or ambiguous. These
areas may require further investigation or verification
to determine their true status, ensuring that the robot’s
map of the environment remains accurate and up-to-
date. Finally, the ‘frontier cell’ list is updated, which
comprises the boundary between known and unknown
areas. These frontier cells represent areas adjacent to
both occupied and free spaces and are prioritized for
further exploration or observation. By updating this list,
the robot can systematically expand its knowledge of the
environment, ensuring thorough coverage and accurate
mapping of the area.This initial exploration phase allows

the robot to gather data about its surroundings, creating
a foundational map of the workspace.
Following exploration, the robot generates a Spanning
Tree (ST) over the explored and not-covered ‘free’
major cells. This ST likely serves as a roadmap
for the robot’s subsequent coverage path, guiding its
movements through the free areas of the workspace
while ensuring comprehensive coverage. Once the ST
is established, the robot generates a Coverage Path (CP)
through sub-cells, circumnavigating the edges of the ST
on their right side. This CP is designed to systematically
traverse the free major cells within the robot’s assigned
area, ensuring thorough coverage while minimizing
redundant movements. Throughout the exploration and
coverage process, the robot periodically checks for
an ‘exploration window’, likely a predefined area
or condition that prompts the robot to reinitiate the
exploration phase. This periodic reassessment ensures
that the robot continues to update its map and adapt its
coverage strategy as needed.
Finally, the robot terminates its coverage path and
exploration efforts when it returns to the starting
sub-cell, signaling the completion of its assigned
task. This systematic approach enables each robot to
autonomously partition its designated area, explore its
surroundings, and generate a comprehensive coverage
path, contributing to the overall efficiency and effective-
ness of the multi-robot system in achieving complete
coverage of the workspace. The MRSimEx STC is
approach maximizes area coverage while minimizing
overlaps and gaps. To maintain system integrity, robots
periodically send an ‘‘I am alive’’ signal to confirm
their operational status, enhancing the system’s fault
tolerance by enabling early detection of any robot
failures. If a robot fails, the system is designed to
respond immediately: the failing robot sends a ‘‘Hault’’
message to its neighbors, likely to prevent any actions
that might interfere with reallocation efforts. From here,
the system can either redistribute the failed robot’s area
among the remaining functional robots or replace the
failed robot if a spare is available. This dual-option
recovery mechanism ensures that the coverage task
continues smoothly without significant interruptions,
thereby maintaining overall system efficiency and
reliability.
If during robot failures, the Voronoi cell reallocation is
chosen as per1, then the algorithm 4 will be executed.
Initially, the ‘‘RESTRUCTUREVORONOI’’ procedure
is invoked to adjust the Voronoi boundaries based on
specific criteria. This involves calculating Manhattan
distances from uncovered cells to Robots 1 and 2 within
Robot 3’s Voronoi cell, utilizing the ‘‘CALCULATE-
MANHATTANDISTANCES’’ procedure. These dis-
tances inform the adjustment of Voronoi boundaries via
the ‘‘ADJUSTVORONOIBOUNDARIES’’ procedure,
ensuring an optimized allocation of cells among the
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robots. Subsequently, the ‘‘ALLOTMAJORCELLS’’
procedure allocates major cells to each robot according
to predefined rules. Uncovered cells, excluding those
already covered by major cells, are prioritized, while
unknown cells not occupied by known obstacles are
considered. The allocation prioritizes cells close to
Voronoi boundaries, avoids coverage overlap, allocates
common boundary cells, and favors cells at the inter-
section of Voronoi boundaries, ensuring comprehensive
coverage without redundancy or gaps. Once the Voronoi
boundaries are adjusted andmajor cells allocated, cover-
age resumes seamlessly using the MRSimEx Coverage
STC algorithm through the ‘‘RESUMECOVERAGE’’
procedure. Concurrently, unnecessary coverage tools
and sensors are switched off for each robot to conserve
energy, facilitated by the ‘‘SWITCHOFFCOVERAGE-
TOOLS’’ procedure. For navigation within the allocated
cells, the ‘‘EXECUTEMANHATTANPATH’’ procedure
executes a geodesic Manhattan path, allowing robots
to efficiently traverse the workspace while adhering
to the defined Voronoi boundaries. This systematic
approach ensures optimized coverage allocation, effi-
cient resource utilization, and coordinated navigation
within the multi-robot system, ultimately enhancing
overall coverage efficiency and effectiveness.

2) Replacement of the Failed Robot: In this solution,
a new robot is introduced to replace the failed one.
This new robot takes over the coverage responsibilities
of the failed robot. The pseudo-code outlining this
process for each robot is presented in algorithm 5.
Initially, the ‘‘REPLACEFAILEDROBOT’’ procedure
is invoked upon detection of a failed robot, with its
cell location provided as input. The procedure begins
by identifying a minor cell within the failed robot’s
major cell, achieved through the ‘‘GETMINORCELL’’
procedure. This minor cell serves as the starting point
for the replacement robot. Subsequently, a new robot
is initialized at the minor cell location obtained in the
previous step. The replacement robot is then directed
to move to the cell previously occupied by the failed
robot, facilitated by the ‘‘MOVETOCELL’’ procedure.
Throughout this process, the replacement robot trans-
mits an ‘‘I am alive’’ signal to all other robots, ensuring
continuous communication and coordination within
the system via the ‘‘TRANSMITSIGNAL’’ procedure.
Additionally, the replacement robot shares Voronoi cell
data obtained from the failed robot with the other robots,
enabling them to update their maps and adapt their
coverage strategies accordingly. This data sharing is
crucial for maintaining consistency and accuracy within
the multi-robot system and is achieved through the
‘‘SHAREVORONOICELLDATA’’ procedure. Once the
replacement robot is in position and equipped with the
necessary information, the coverage process resumes
from the designated cell, ensuring uninterrupted cov-
erage operations within the workspace. This seamless

transition from the failed robot to its replacement
ensures operational resilience and continuity within
the multi-robot system, ultimately enhancing overall
efficiency and reliability.

These proposed solutions enable the multi-robot system to
adapt and efficiently manage scenarios of robot failure,
ensuring uninterrupted coverage of the workspace.

1) VORONOI CELL REALLOCATION
In the scenario of a robot failure within the system(see
figure 2), the ongoing coverage process comes to a halt. The
healthy remaining robots then assume responsibility for the
uncovered and unoccupied cells that were originally assigned
to the failed robot. To address this challenge, the following
steps are executed:
• Calculation of Manhattan Distances: The Manhattan
distances are calculated from the uncovered cells within
Robot 3’s Voronoi cell to the current positions of Robots
2 and 1.

• Restructuring of Voronoi Boundaries: Based on
these calculated distances, the Voronoi boundaries are
adjusted and restructured. The dotted lines in figure 2
represents the new Voronoi boundaries.

Let us now set some rules for the major cell allotment for the
i-th robot
1) Uncovered Cells: All known, uncovered cells that

were initially assigned to the failed robot(s) will be
considered. This excludes covered major cells to prevent
coverage overlap.

2) Unknown Cells: All unknown cells belonging to the
failed robot(s) will be taken into account. However, cells
occupied by known obstacles will not be allotted.

3) Boundary Proximity: Cells situated close to the
boundaries of the Voronoi cells are given priority for
allotment.

4) Avoiding Coverage Overlap: Cells that might lead
to coverage overlap, if they are unknown, will be
disregarded.

5) Common Boundary Cells: Only the major cells
positioned on the common boundary of the Voronoi
cells, between the i-th robot and its neighboring robots,
will be allocated.

6) Intersection Cells: Cells located at the intersection of
two boundaries of the Voronoi cells are preferred for
allocation, provided all preceding conditions are met.

Upon the completion of this reallocation process, the robots
will seamlessly resume the coverage of the region using the
MRSimEx Coverage STC algorithm. There can be situations
where the robot need to pass through the already covered cells
of the failed robot. If such a situation arises, the robot will
switch off its coverage tools and sensors. Now there are two
options. It can either use Manhattan path or can follow the
same path of R1 to reach the next closest uncovered cell in
it’s tree. But the second option is time consuming as well as
the battery usage will be more since the number of turns and

VOLUME 12, 2024 72995



V. G. Nair et al.: Robust Online Multi-Robot Simultaneous Exploration and CPP

FIGURE 2. The white regions represent the areas that have already been
successfully covered, while obstacles are omitted for simplicity. The
Voronoi cell boundaries are shown in thick black lines. The shaded
regions within Robot3’s Voronoi cell indicate the uncovered regions due
to the failure of R3.The newly assigned boundaries after the proposed
methodology is shown in dotted lines.

the path length is more.Somost preferably the first optionwill
be chosen. A practical example that illustrates this approach
is provided in section IV-A.

2) REPLACEMENT OF THE FAILED ROBOT
In this solution, when a robot experiences a failure, it is
promptly replaced by a new, fully operational robot. Given
that the cell number assigned to the failed robot is known,
the new robot can navigate precisely to the same cell
using a geodesic Manhattan path [18]. Upon arriving at
this designated cell, the new robot initiates communication
by transmitting an ‘‘I am alive’’ signal to all other robots.
Simultaneously, the remaining robots share data regarding the
Voronoi cell of the failed robot (R3) with the new replacement
robot (R3new). Once this information exchange is completed,
the coverage process resumes, ensuring seamless continuity.
The new robot can be initially positioned anywhere close to
the Voronoi cell of the failed robot. However, it’s advisable
to place this new robot, at the minor cell of the initial major
cell of the failed one, positioned on the opposite side of
the spanning tree. By employing this strategy, the new robot
can initiate coverage through the previously unexplored side
of the spanning tree, circumnavigating it on the other side.
A practical example that illustrates this approach is provided
in section IV-B.

IV. ILLUSTRATIVE EXAMPLE
An illustrative example of the proposed allocation method-
ology is given in this section. Voronoi cell reallocation is
illustrated initially followed by replacement of failed robot
scenario.

A. VORONOI CELL REALLOCATION
Let’s delve into the scenario depicted in figure 4, which
encompasses an area comprising 100 major cells, each
measuring 2D × 2D in size. This notion of 2D × 2D

Algorithm 1MRsimx STC in Robot Failure Scenario
1: Partition Q into V2Dmi(P(0)).
2: While 1 do
3: initialize robots’ positions, workspace, and communi-
cation channels
4: generate initial Manhattan Voronoi partitioning
5: assign major cell IDs to robots based on initial
partitioning
6: MRSimEx STC coverage
7: Send ‘‘I am alive’’ signal to other robots once in
5 minutes.
8: if Robot failure detected then
9: Send ‘‘Hault’’ msg to Neighbors
10: Choose reallocateMajorCells or
11: Choose replaceFailedRobot

Algorithm 2 Explore
1: Scan 360o sensor
2: Identify occupied/free space.
3: Update the ‘occupied cell’ list
4: Update the ‘free cells’ list
5: Update the ‘unknown cell’ list
6: Update the ‘frontier cell’ list.

cells is extensively elaborated in references such as [9]
and [20], and a representation is available in figure 3.
The cells marked with dotted boundaries represent sub-cells
with corresponding sub-nodes indicated as black diamonds.
Failure to integrate such a provision in the coverage algorithm
can compel the robot to withdraw and recommence coverage
to cover the leftover pockets, as demonstrated in [8]. In the
setting of figure 4, the task of coverage involves three
robots, namely R1, R2, and R3. The rectangular obstacle
occupies six major cells. The shaded black region illustrates
the segment of the obstacle known to R1 after the first
exploration. This knowledge reduces the obstacle-free area to
94 major cells.

Initial Voronoi partitioning is executed based on the
Manhattan distance metric, indicated by bold lines. Out
of the 100 major cells, 34 are assigned to R1, while
both R2 and R3 each receive 33 cells. This allocation is

Algorithm 3MR-SimExCoverage-STC
1: Partition Q into V2Dmi(P(0)) (P(0). Each robot follows

Steps:
2: Explore.
3: Generate ST over the explored and not covered ‘free’

major cells.
4: Generate a CP through sub cells circumnavigating the

ST edges on their right side.
5: When the robot reaches an ‘exploration window’ GOTO

Explore.
6: If the starting sub cell is reached - STOP.
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Algorithm 4 reallocateMajorCells
1: procedure RESTRUCTUREVORONOI(uncovered_cells,

unknown_cells, known_obstacles)
2: manhattan_distances ←

CALCULATEMANHATTANDISTANCES(uncovered_cells)
3: ADJUSTVORONOIBOUNDARIES(Manhattandistance)
4: ALLOTMAJORCELLS(uncovered, known_obstacles)
5: end procedure
6: procedure CALCULATEMANHATTANDISTANCES(

)uncovered_cells
7: Calculate Manhattan distances to Robots 1 and 2 from
uncovered cells in Robot 3’s Voronoi cell

8: end procedure
9: procedure ADJUSTVORONOIBOUNDARIES(

)manhattan_distances
10: Adjust Voronoi boundaries based on calculated Manhattan

distances
11: end procedure
12: procedure ALLOTMAJORCELLS(uncovered_cells,

unknown_cells, known_obstacles)
13: Allot major cells according to the specified rules:
14: Rule 1: Consider uncovered cells excluding covered

major cells
15: Rule 2: Consider unknown cells excluding cells occupied

by known obstacles
16: Rule 3: Prioritize cells close to Voronoi boundaries
17: Rule 4: Disregard cells that might lead to coverage

overlap
18: Rule 5: Allocate common boundary cells
19: Rule 6: Prefer cells at the intersection of two Voronoi

boundaries
20: end procedure
21: procedure RESUMECOVERAGE(robots)
22: Seamlessly resume coverage usingMRSimEx Coverage STC

algorithm
23: end procedure
24: procedure SWITCHOFFCOVERAGETOOLS(robot)
25: Switch off coverage tools and sensors for the robot
26: end procedure
27: procedure EXECUTEMANHATTANPATH(robot)
28: Execute geodesic Manhattan path to reach the next cell
29: end procedure

performed without considering obstacle-related information
during the partitioning phase. An approach to circumvent
this situation and optimally assign cells to each robot is
proposed in [23]. The shaded grey region signifies the
unexplored area due to the shadow cast by the obstacle. The
robots initiate the MRSimEx Coverage STC algorithm [20],
commencing the process of covering their respective Voronoi
cells. In this context, the interplay between cell allocation,
obstacle awareness, and coverage algorithms becomes pivotal
in ensuring efficient and comprehensive workspace coverage,
as demonstrated in this illustrative scenario.

Let’s now consider the scenario where Robot R1 experi-
ences a failure. The location of R1 at the time of the failure is
depicted as a red disc in figure 5, while the grey cells represent
the concurrent locations of R2 and R3. The ongoing coverage
process comes to a halt, initiating the process of reallocating
major cells.

Algorithm 5 replaceFailedRobot
1: procedure REPLACEFAILEDROBOT(failed_robot_cell)
2: new_robot_cell ← GETMINORCELL(failed_robot_cell)
3: new_robot ← ROBOT(new_robot_cell)
4: MOVETOCELL(new_robot, failed_robot_cell)
5: TRANSMITSIGNAL(new_robot)
6: SHAREVORONOICELLDATA(new_robot, failed_robot_cell)
7: RESUMECOVERAGE(new_robot)
8: end procedure
9: procedure GETMINORCELL(major_cell)

10: Calculate and return the minor cell of the given major cell
11: end procedure
12: procedure MOVETOCELL(robot, target_cell)
13: Move the robot to the specified cell using a geodesic

Manhattan path
14: end procedure
15: procedure TRANSMITSIGNAL(robot)
16: Transmit ‘‘I am alive’’ signal to all other robots
17: end procedure
18: procedure SHAREVORONOICELLDATA(robot,

failed_robot_cell)
19: Share Voronoi cell data of the failed robot with the new

replacement robot
20: end procedure
21: procedure RESUMECOVERAGE(robot)
22: Resume coverage process from the designated cell
23: end procedure

FIGURE 3. A major cell with sub-cells [9], [20].

The major cells located within the Voronoi cell of R1
are numbered for reference. The following categorization is
applied to these cells:

• Cells from one to nine are unexplored, unknown, and
uncovered by R1.

• Cells numbered from 10 to 14, as well as 19, 22, and 25,
are known and explored by R1 but remain uncovered.

• Cells numbered from 15 to 18, along with 20, 21, 23,
24, and 26 to 30, are partially covered. This coverage is
partial due to not all minor cells within these major cells
being covered.

This comprehensive classification of major cells accounts for
their exploration, coverage status, and the specific state of
each cell within the context of Robot R1.

The geodesic Manhattan distance [18] is determined from
each of the major cell nodes to the current positions of both
R2 andR3. The closest cells based on this distance calculation
are then allocated to these robots. All cells, excluding those
that are completely covered or occupied by obstacles (i.e.,
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FIGURE 4. The Manhattan Voronoi partitioned workspace encompasses
an area comprising 100 major cells, each measuring 2D × 2D in size. The
shaded black region illustrates the segment of the obstacle known to R1
after the first exploration. The shaded grey region signifies the
unexplored area due to obstacle shadow.

known cells), are taken into account for reallocation. This
process abides by the rules outlined in Section III-D1. The
resulting reallocated partitioning boundary is indicated by
the thick blue color line in figure 6 (a). Specifically, cells
numbered 4 to 14 are allocated to R2, while cells 15 to
30 are assigned to R3. This reallocation process ensures that
the remaining robots are assigned major cells in a strategic
manner, taking into account both the proximity and the
specific criteria for cell allocation.

After the completion of the partitioning process, the
robots promptly resume the execution of the MRSimEx
Coverage STC algorithm [20]. Spanning trees are regenerated
for each robot based on their current locations and are
subsequently merged with the existing ones. The newly
generated spanning trees are visually represented as thick
green lines in figure 6(b). The merger of the newly generated
spanning trees with the existing ones enables seamless
coverage continuity in the dynamically adjusted workspace
allocation.

Subsequent to the reallocation process, both robots, R2
and R3, recommence their coverage operations. The path
of their movements is depicted as thick arrowed lines in
figure 6(c). In this illustrative example, the positions have
been chosen in a way that facilitates a smooth coverage
path for R2. However, the case of R3 presents a more
intricate situation. As R3 resumes its coverage using the STC
algorithm, it follows a path akin to circumnavigating the
spanning tree, similar to R2. Eventually, R3 reaches a cell
that coincides with the initial cell of R1, represented as a blue
disc in figure 6(c).

Here, two options emerge to circumvent the issue of
coverage overlap or addressing already covered cells. The
first option involves utilizing the Manhattan distance metric
to navigate to the next closest uncovered cell in its spanning
tree. The second option entails deactivating its coverage

FIGURE 5. R1 failure scenario. The location of R1 at the time of the failure
is depicted as a red disc while the grey cells represents the locations of
R2 and R3.

tools and sensors and following the path taken by R1 to
reach the next closest uncovered cell in its spanning tree.
Although the second option is more time-consuming and
consumes more battery due to increased path length and
turns, R3 opts for the first option. It executes a Manhattan
path to reach the next closest uncovered cell in its spanning
tree. This choice optimizes both time and energy resources.
The path taken by R3 in this scenario is depicted as a red
arrowed line in figure 6(c). Upon reaching the uncovered cell
within its spanning tree, R3 resumes its coverage operations.
The final scenario, as depicted in figure 6(d), portrays the
successful exploration and coverage of the entire workspace.
This example aptly illustrates how the proposedmethodology
not only manages reallocation and robot failures but also
optimizes coverage paths and resource usage, ultimately
leading to comprehensive and efficient coverage of the
workspace.

B. REPLACEMENT OF THE FAILED ROBOT
Let’s consider a scenario analogous to the depiction in
figure 5. In this situation, the new replacement robot can be
initially positioned anywhere close to the Voronoi cell of R1.
However, it’s advisable to place this new robot, referred to
as R1new, at the minor cell of the initial major cell of R1,
positioned on the opposite side of the spanning tree.

By employing this strategy, R1new can initiate coverage
through the previously unexplored side of the spanning tree,
circumnavigating it on the other side. As R1new reaches
the current major cell location of the failed R1, exploration
is conducted, and a new spanning tree is generated. This
new tree, indicated by dashed lines, is then connected with
the existing tree structure of the failed R1. A portion of the
coverage path of R1new is illustrated in figure 7(a).
This iterative process continues until R1new reaches the

final covered minor cell of R1, which is the exact location
where R1 initially failed. This approach guarantees that
coverage overlap is entirely eliminated. The final scenario,
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FIGURE 6. Reallocation of partitioning boundaries. a) Reallocated partitioning boundary indicated by thick blue
color. Cells 4 to 14 are allocated to R2, while cells 15 to 30 are assigned to R3. b) The newly generated spanning
trees are represented as thick green lines. c) R3 reaches a cell that coincides with the initial cell of R1,
represented as a blue disc. The path taken by R3 is depicted as a red arrowed line. d) Final Scenario. The dotted
line shows the spanning tree generated and the arrowed lines represent the path of the robot.

depicted in figure 7 (b), portrays the successful exploration
and coverage of the entire workspace.This strategy ensures
efficient coverage continuation while mitigating redundancy
and overlap issues, thus maximizing the efficiency and
effectiveness of the multi-robot coverage process.

V. ANALYSIS OF THE PROPOSED ALGORITHM
In this section, an exploration of several properties inherent to
the proposed algorithm is presented. A key characteristic of
the algorithm lies in its dynamic nature, particularly in terms
of Voronoi partitioning, which is recalculated whenever robot
failures are detected. This dynamic partitioning approach
ensures adaptability to changing conditions and the accurate
allocation of tasks among robots. The following assumptions
are made.

1) The assumption that each of the initial Voronoi cells,
generated within a 2D × 2D workspace using the
Manhattan distance metric, is contiguous may not hold

in all practical scenarios. Situations can arise where
topologically disconnected Voronoi cells result from
the initial partitioning. Handling such cases necessitates
approaches provided in references such as [16], [17], and
[20].

2) In certain practical scenarios, the shape of the allocated
Voronoi cells may require certain robots to execute
more turns, potentially resulting in higher battery
consumption compared tomoving along straightforward
paths. It’s important to underline that in this paper,
the consideration of battery power required for turning
is excluded. Furthermore, it is assumed that the time
taken by the robots to cover a workspace using the STC
algorithm depends solely on the distance covered and
not on the number of turns performed

3) Spanning tree edges can be regenerated in scenarios
where some of the major cells, previously involved
in the creation of spanning tree edges, are reassigned
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FIGURE 7. a) The new spanning tree generated by R1new, shown as
dashed lines. b) Final Scenario. The dotted line shows the spanning tree
generated and the arrowed lines represent the path of the robot.

to neighboring robots. This reassignment occurs when
major cells are allotted to different robots due to
reallocation or other dynamic adjustments.

A. CHARACTERISTICS OF THE PROPOSED ALGORITHM
We list a few characteristics of the proposed algorithm
without formal proof.
• The algorithm is designed to handle robot failures
effectively. When a robot fails, it either reallocates its
unexplored and uncovered cells among the remaining
robots or replaces the failed robot with a new one.

• The algorithm ensures seamless continuity of coverage
operations after a robot failure. This is achieved by
redistributing tasks or introducing a new robot that takes
over the responsibilities of the failed robot.

• The algorithm dynamically adapts to changes in the
workspace due to robot failures. It recalculates Voronoi
partitions or introduces new robots to maintain efficient
coverage.

• It minimizes coverage overlap by considering previously
covered cells and using geodesic Manhattan paths to
navigate to the nearest uncovered cells.

• Robustness to robot failures can be easily included
without much changes in the algorithm.

• The algorithm takes into account battery consumption
by considering the reduction in exploration instances,
especially in comparison to online algorithms. It also
aims to reduce exploration time through reallocation,
potentially leading to lower battery usage.

• It aims for more uniform task allocation, distributing
major cells as evenly as possible among the functioning
robots, enhancing overall efficiency.

• In cases where reallocation is necessary, the algorithm
may take longer to complete coverage compared
to the original algorithm (MRSimExCoverage STC).
However, it still offers advantages over some other
algorithms, such as MSTC and MFC, in terms of
completion time.

• The algorithm is applicable in practical scenarios,
such as office-like environments, where robots need to
explore and cover areas efficiently.

• The algorithm can handle obstacles in the workspace
by excluding obstacle-occupied cells from reallocation,
ensuring efficient coverage around obstacles.

VI. RESULTS AND DISCUSSIONS
In this section, we present the outcomes of simulation
experiments conducted within the V-Rep simulation environ-
ment to showcase the efficacy of the proposed algorithm.
The simulation employs a differential-wheeled DR12 robot
model, equipped with an exploration sensor, and assumes that
the robot possesses localization capabilities. Localization can
be achieved through various techniques, including the use
of Bluetooth, gyroscopes, odometry, or algorithmic methods
like SLAM (Simultaneous Localization and Mapping). For
the purposes of this study, we simulate an office-like
environment, and the experiments involve five robots. The
multi-robot simulation begins with the initialization of the
digital workspace, where each robot is assigned an initial
position and the boundaries of the environment are defined.
Utilizing the Manhattan Voronoi partitioning method, the
workspace is then divided into distinct areas allocated to
each robot. This strategic division ensures that every robot
has a clearly defined region to monitor within the simula-
tion environment, facilitating efficient and non-overlapping
coverage. Operating in a continuous loop, the simulation
replicates tasks requiring uninterrupted monitoring, such as
surveillance or environmental management. At the start of
each cycle, the positions of robots, workspace boundaries,
and communication channels are reset to synchronize all
elements of the system, simulating real-time operational
conditions. Within the simulation, each robot autonomously
explores its designated area using the MRSimEx Spanning
Tree Coverage (STC) algorithm. Beginning with systematic
environmental scans using simulated sensors, the robot
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FIGURE 8. Snapshots of various stages of coverage with five DR2 robots in V-rep simulation environment. Obstacles are shown with
black rectangles, black thick lines represent the partition boundaries and the coloured lines represents robot path. (a) Initial
partitioning. (b)The robots starts the coverage process. One of the robot (red) failed after some time and the location of the same at
that instant is shown as a red disc. (c) New partitioning. The uncovered cells are allotted to both yellow and green robots. New
partitioning boundary is shown in thin black line.(d) Final scenario after Voronoi cell reallocation methodology. (e) Final scenario
after robot replacement methodology. White lines shows the path of the newly added robot.

gathers data on obstacles, free spaces, and unknown areas.
This data is then used to update lists of occupied, free,
unknown, and frontier cells, establishing a foundational
map of the workspace. Using the generated data, the
simulation constructs a Spanning Tree (ST) over unexplored
and not-covered free major cells, serving as a roadmap
for subsequent coverage paths. The robot then generates
a Coverage Path (CP) through sub-cells, systematically
traversing free major cells to ensure comprehensive coverage
while minimizing redundant movements. To simulate real-
world scenarios, the simulation includes mechanisms for
fault tolerance and recovery. Periodic ‘‘I am alive’’ signals
confirm the operational status of robots, enabling early
detection of failures. In the event of a robot failure,
simulated actions are taken based on proposed solutions:
Voronoi Cell Reallocation or Replacement of the Failed
Robot. Simulated algorithms redistribute uncovered cells of
failed robots among remaining robots or introduce a new
simulated robot to replace the failed one. These actions
are guided by rules governing the allotment of major cells
to ensure comprehensive coverage without redundancy or

gaps, prioritizing uncovered cells, avoiding overlap, and
favoring boundary and intersection cells for allocation among
robots. After reallocation or replacement, simulated robots
seamlessly resume coverage, conserving simulated energy
and ensuring efficient navigation within allocated cells

Figures 8(a)-(e) depict various stages of exploration and
robot coverage paths, accompanied by the updated Voronoi
cell boundaries as the robots failure is detected. Initially,
the workspace is partitioned, visualized by black thick lines
representing partition boundaries. Obstacles are denoted by
black rectangles, while colored lines illustrate robot paths.
As the coverage process commences, robots dynamically
navigate through their assigned areas, systematically explor-
ing and mapping the environment. As time progresses,
a scenario unfolds where one of the robots, depicted in
red, experiences a failure. At this point, the simulation
marks the location of the failed robot with a red disc,
signaling the interruption in the coverage process. To address
this challenge, the simulation invokes the Voronoi cell
reallocation methodology. In the subsequent stage, marked
by a new partitioning configuration, uncovered cells are
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redistributed among the remaining robots, indicated by
yellow and green. The new partitioning boundary is depicted
by a thin black line, reflecting the adjusted allocation
of cells to ensure comprehensive coverage. Following the
Voronoi cell reallocation, the simulation reaches its final
scenario, where coverage resumes seamlessly. Each robot
efficiently covers its designated area, minimizing redundancy
and gaps in coverage. Additionally, the simulation presents
an alternative scenario where the failed robot is replaced by
a new one. In this case, the path of the newly added robot
is illustrated by white lines, demonstrating its navigation to
assume the coverage responsibilities of the failed robot.

The proposed methodology demonstrates the systematic
exploration and coverage of the entire workspace, ensuring
an equitable distribution of workspace areas among the robots
without any coverage gaps or overlaps. This achievement
underscores the effectiveness of the proposed algorithms in
facilitating comprehensive coverage tasks. Importantly, the
performance of the algorithm remains consistent regardless
of the number of robots in the system, owing to its distributed
nature. This scalability aspect is crucial for real-world
deployment scenarios, where the number of robots may vary
based on task requirements or environmental complexity.
Overall, the proposed methodology highlights the robustness
and reliability of the approach in achieving efficient cov-
erage in multi-robot systems. In addition to the promising
results, this paper introduces several novel contributions
in the domain of multi-robot systems and coverage tasks.
It introduces a dynamic partitioning approach using the
Manhattan Voronoi method to efficiently allocate coverage
areas to robots based on their initial positions, thereby
ensuring non-overlapping coverage. The inclusion of fault
tolerance mechanisms, such as Voronoi cell reallocation and
replacement of failed robots, enhances the adaptability of the
system to recover seamlessly from robot failures. Moreover,
the proposed methodology emphasizes efficient resource
utilization, including energy conservation and minimizing
redundant movements, addressing practical concerns in
real-world deployment scenarios. The validation of proposed
methodologies in the V-rep simulation environment bolsters
the novelty by offering a realistic platform for testing and
evaluating multi-robot systems. Collectively, the integra-
tion of innovative algorithms, fault tolerance mechanisms,
resource efficiency strategies, and validation in a realistic
simulation environment contributes to the novelty of the
proposed methodology in advancing the field of multi-robot
systems and coverage tasks.

VII. CONCLUSION
This paper introduces a methodology designed to address
robot failures within multi-robot systems engaged in cover-
age path planning using theMRSimExCoverage strategy. The
initial partitioning of the workspace is established through
a Manhattan distance-based Voronoi partitioning approach,
assuming an obstacle-free environment. As robots undertake
both coverage and exploration tasks simultaneously, the

possibility of robot failures is considered. In response, the
paper presents two key strategies: reallocation of Voronoi
cell boundaries to ensure contiguous Voronoi cells and
the replacement of failed robots. A notable outcome of
this methodology is the achievement of a uniform online
workspace allocation scheme for multi-robot systems, pro-
moting equitable task distribution among the robots. The
simulations were conducted in V-Rep simulation envi-
ronment, employing the DR12 robot model. Importantly,
the robots effectively accomplish coverage and exploration
tasks, eliminating coverage gaps or overlaps. In summary,
this methodology provides an effective solution for han-
dling robot failures within multi-robot systems engaged
in coverage path planning. It ensures efficient workspace
allocation, maintains partitioning integrity, and guarantees
comprehensive coverage in the presence of robot failures.

In considering future developments for the methodology
introduced in this paper, several promising directions emerge.
First, extending the methodology to handle dynamic obsta-
cles in the workspace would significantly enhance its applica-
bility in real-world scenarios, ensuring continuous coverage
despite environmental changes. Additionally, exploring adap-
tive partitioning techniques that dynamically adjust Voronoi
cell boundaries based on evolving environmental conditions
or task requirements could further optimize workspace allo-
cation and improve coverage efficiency. Integrating learning
techniques to enable robots to adaptively improve their
coverage and exploration strategies over time could lead to
more adaptive and efficient multi-robot systems. Finally the
implementation of the algorithm in real Multi robot systems
also provide a challenging problem. Addressing these future
research directions promises to advance the state-of-the-art
in multi-robot systems for coverage path planning, leading
to more robust, efficient, and adaptable solutions for various
applications.
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