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ABSTRACT In recent years, several surrogate assisted evolutionary algorithms (SAEAs) have been proposed
to solve expensive optimization problems. These problems lack explicit expressions and are characterized
by high invocation costs. SAEAs leverage surrogate models to accelerate convergence towards the optimal
region and reduce the number of function evaluations. While Gaussian Processes (GPs) are widely used
due to their robustness and capability of providing uncertainty estimates, their applicability becomes limited
in scenarios involving a large number of samples or high-dimensional spaces. This is due to their cubic
time complexity in relation to the number of samples, which results in prohibitive computational demands
for large-scale problems. To address the challenge, this work presents an efficient surrogate model-assisted
estimation of the distribution algorithm (ESAEDA). This method employs a random forest as a surrogate
model and combines it with a GP-hedge acquisition strategy to ensure the efficiency and accuracy of
model-assisted selection. An improved EDA model called the variable-width histogram model with some
unevaluated solutions is used to generate new solutions. To demonstrate the benefits of the proposed
method, we compared ESAEDA with several state-of-the-art surrogate-assisted evaluation algorithms and
the Bayesian optimization method. Experimental results demonstrate the superiority of the proposed
algorithm over these comparison algorithms for two well-known test suites.

INDEX TERMS Artificial intelligence, optimization algorithm, random forest.

I. INTRODUCTION
In some real-world applications, the box-constrained problem
is computationally expensive and is considered a black-box
function because its inner workings are difficult to trace and
it can only be accessed based on its inputs and outputs.
The expensive evaluation cost, coupled with the lack of a
closed-form objective function, poses significant challenges
to traditional numerical and heuristic optimization methods.

Classical optimization methods, such as linear program-
ming and convex optimization, may not always be suitable
for addressing the aforementioned problems due to their
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reliance on favorable function properties [1]. As a result,
there has been growing interest in the use of derivative-free or
heuristic optimization methods [2], [3], [4], which do not rely
on strong assumptions or closed-form dependencies of the
optimization problem. Among these methods, evolutionary
algorithms (EAs) show promise due to their trial-and-error
strategies, but their effectiveness heavily relies on fitness
values (objective values) to guide the search [5]. Therefore,
frequent evaluations of the objective function pose challenges
in practice, especially in expensive black-box optimization
problems [6], [7].
In recent years, Surrogate-Assisted Evolutionary Algo-

rithms (SAEAs) have emerged as a promising approach to
tackling expensive optimization problems. In SAEAs, the
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surrogate model replaces the expensive real function evalua-
tions. Since surrogate modeling and prediction require much
less computational budget than directly using the expen-
sive real black-box function, the approach can significantly
reduce the optimization cost. SAEAs consist of two signif-
icant operators, namely the reproduction operator and the
model-assisted selection operator. The former is responsible
for exploring the search space, while the latter is accountable
for selecting promising offspring solutions. The two opera-
tors alternate their execution, driving the population towards
the optimal region.

In current research on SAEAs, a significant amount of
work has been focused on studying model-assisted operators.
Based on the type of model, this can be divided into three
categories. The first category is regression-based SAEAs,
which use a model to map a decision variable vector to
its corresponding objective value. Popular surrogate models
used for this type of SAEA include polynomial regression [8],
radial basis function (RBF) networks [9], and Gaussian
processes (GPs) [10]. The second category is classification-
based SAEAs, where solutions are assigned labels based
on their quality. Surrogate models used in this paradigm
include support vector machines [11], artificial neural net-
works [12], and fuzzy K-nearest neighbors [2]. The third
category is relation-based SAEAs. Loshchilov et al. [13]
argue that comparison-based optimization algorithms like
evolutionary algorithms require surrogate models that are
also comparison-based. This is because the relational model
is used to learn the comparative relationships between solu-
tions.While supervised learning methods can be used to learn
these relationships, the key difference is that the relations
between solutions (i.e., superiority or inferiority) are learned
as features, rather than features of a single solution. For exam-
ple, in [13] and [14], surrogate models are used to predict the
ranks of solutions. In another study [15], a convolutional neu-
ral network (CNN) is proposed to approximate the difference
in fitness function values between two solutions, rather than
directly approximating the fitness of a solution. Recently,
Hao et al. [5], [16] proposed a series of methods to learn the
relationship between pairs of solutions.

Among the various surrogate models highlighted in the
literature, GPs have emerged as the preferred surrogate model
for SAEAs due to their reliable modeling capabilities and
accurate estimation of model response uncertainty. The com-
bination of Gaussian Processes with acquisition functions,
also known as model management strategies [17], allows for
effective balancing of exploration and exploitation trade-offs,
enabling SAEAs to exhibit powerful global optimization abil-
ities when tackling expensive black-box optimization prob-
lems. However, due to the high computational cost of GPs
modeling, which is scaled cubically concerning the number
of data points [18], it is not suitable for medium-to-large scale
problems, which has limited the development of SAEAs.

In terms of reproduction operators, current SAEAs employ
methods such as genetic algorithms (GA) [12], differential
evolution (DE) [19], and particle swarm optimization (PSO)

[20] as operators for producing new solutions. These opera-
tors have all demonstrated good global search capabilities in
SAEAs. However, another type of population-based solution
generation operator has not been widely used in SAEAs,
namely the distribution estimation algorithm (EDA) [21].
This method models the current population and generates
new solutions through sampling. By utilizing global infor-
mation to guide population search, it exhibits stronger global
optimization capabilities, potentially enhancing the search
efficiency of SAEAs.

Cai et al. [22] explore event-triggered consensus in multi-
agent systems, highlighting efficiency in communication
and computation, crucial for cooperative control in dis-
tributed systems. He et al. [23] introduce the Dynamic
Opinion Maximization Framework (DOMF) for social net-
works, addressing the dynamic nature of user opinions and
challenges like non-monotonicity and non-submodularity.
They present a blockchain-based solution for secure data
offloading in healthcare, combining blockchain technology
with deep reinforcement learning for enhanced data privacy
and computational efficiency [24]. Cai et al. [25] focus
on adaptive control in heterogeneous systems, improving
real-time response and synchronization, essential for man-
aging multi-agent system behaviors. Zhong et al. [26] intro-
duce a surrogate ensemble-assisted hyper-heuristic algorithm
designed to tackle expensive optimization problems. It com-
bines multiple surrogate models to estimate the fitness of
potential solutions, enhancing the efficiency and accuracy of
finding optimal solutions. This method is particularly use-
ful in scenarios where traditional optimization techniques
fall short due to computational expense or complexity.
Pan et al. [27] present a hybrid optimization algorithm
that integrates surrogate models with evolutionary strategies.
It aims to reduce computational costs while solving expensive
optimization challenges, demonstrating significant improve-
ments in both speed and solution quality. The approach
provides a promising direction for addressing complex prob-
lems in various engineering fields. Chen et al. [28] detail a
surrogate model-assisted algorithm for multi-objective opti-
mization with an application in wind farm layout design.
By incorporating Sparse Gaussian Process models, the
algorithm achieves high accuracy and computational effi-
ciency, showcasing its capability to enhance wind farm
performance and its applicability to real-world engineering
problems. He et al. [29] present a reinforcement-learning-
based approach for competitive opinion maximization in
signed social networks. The authors develop a two-phase
model incorporating an activated dynamic opinion model and
a reinforcement-learning-based seeding process to identify
and influence key individuals in social networks, optimizing
the spread of opinions against competitive opinions. The
results confirm the method’s effectiveness in achieving supe-
rior opinion propagation across various datasets.

In SA-EDA [30], a GPs assisted EDA algorithm is pro-
posed, which utilizes a variable-width histogram (VWH)
to represent the distribution of the population. Due to its
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focus on the potentially optimal regions, this VWH exhibits
good performance on expensive black-box problems. How-
ever, due to the use of Gaussian processes as the surrogate
model, the algorithm still faces challenges related to the
curse of dimensionality and high computational complexity.
To address these issues, this paper proposes an efficient surro-
gate assisted EDA, called ESAEDA. The main contributions
of this algorithm are as follows:

• We introduce an efficient surrogate model-assisted
estimation of distribution algorithm (ESAEDA) that
employs a random forest as the surrogate model. This
choice is pivotal as it significantly reduces the train-
ing budget compared to traditional Gaussian processes,
thereby enhancing computational efficiency without
compromising accuracy.

• ESAEDA incorporates multiple acquisition strategies to
optimize model-assisted selection. This method lever-
ages the predictive power of the surrogate model to
select promising solutions from a pool of candidates,
thereby reducing the number of expensive function eval-
uations needed.

• A distinctive feature of our approach is the incorporation
of unevaluated solutions in the updating of the probabil-
ity model. This technique allows for a richer exploration
of the solution space, potentially uncovering superior
solutions that might not be immediately evident through
evaluated solutions alone.

• To improve the search capability on low-dimensional
problems, we integrate the Powell method, a derivative-
free optimization technique. This integration is specif-
ically tailored to enhance the exploration capabilities
of ESAEDA, particularly in scenarios where traditional
methods may falter due to limited solution evaluations.

Section II provides an overview of related works.
Section III presents a detailed description of the proposed
method. Section IV empirically studies the new method with
other comparisons on two widely used test suites. Finally,
Section V concludes this paper and discusses some future
works.

II. RELATED WORK
A. ESTIMATION OF DISTRIBUTION ALGORITHM
Estimation of distribution algorithms (EDAs) is a distinct
evolutionary computation paradigm that employs probabilis-
tic models to guide population search, unlike traditional
genetic operators such as crossover or mutation. In EDAs,
variable linkages are typically represented using Bayesian
networks, which are learned from data using statistical
and machine learning techniques. For EDAs to generate
high quality samples, it is imperative to have a suitable
Bayesian network model. Based on the variable linkages,
Bayesian network models in EDAs can be classified into
three categories [3]: univariate models, bivariate models, and
multivariate models. Univariate histogram marginal models
are a class of simple univariate histogram models that model

FIGURE 1. Illustration of random forest.

the distribution of the population using histograms. Decision
variables are assumed to be independent and the joint proba-
bility of the variables is fully factorized as:

P (x) =
n∏
j=1

P
(
xj

)
(1)

where is the jth variable of. In modeling, The data is divided
into several bins according to a certain method, and each bin
represents a probability interval. The probability weight of
each bin is calculated based on the ratio of the number of
samples it contains to the total number of samples. Four types
of histogram models can be used to model for each dimen-
sion [3], [31], [32], including equal-width histogram (EWH)
models, equal-height histogram (EHH)models, cluster-based
histogram (CBH) models, and variable-width histogram
(VWH) models. Among them, VWHmodels pay more atten-
tion to the potential optimal region in an EDA with cheap
and expensive local search methods (EDALS) [3], providing
stronger convergence speed and therefore serving as the basic
model for the generation operator in this paper.

B. SURROGATE MODEL
This study centers on the application of surrogate models in
machine learning, with particular emphasis on random forests
as a viable option due to their lower computational complex-
ity in comparison to Gaussian processes. Figure 1 illustrates
a schematic diagram of the random forest algorithm, which
involves averaging multiple decision trees to decrease vari-
ances in a given dataset. The decision trees are trained on
various subsets of the data, enabling robust and accurate
predictions. For dataset D = {x1, x2, . . . , xN }, The bagging
method is repeated (B times) to sample fromDwith put-backs
and then train the tree model on these samples. After training,
the prediction of a testing point x can be achieved by averag-
ing the predictions of all individual regression trees on x. The
predicted value is defined as follows.

f̂ (x) =
1
B

B∑
b=1

fb(x) (2)
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The predictions of all regression trees on x can be used as
an estimate of the uncertainty.

σ (x) =

√√√√ 1
B

B∑
b=1

(fb (x)− f ′′) (3)

Random forests have gained widespread popularity in various
practical fields due to their robust data fitting capabilities
and relatively lower computational complexity. As a result,
RF has been increasingly utilized as a surrogate model in
various areas such as trauma systems [33], deep neural net-
work optimization [34], and combinatorial optimization [35].
In this study, we utilize RF to fit black-box objective functions
and reduce computational costs, with the ultimate goal of
assisting the EDA in optimization.

III. PROPOSED METHOD
A. ALGORITHM FRAMEWORK
ESAEDA is presented in Algorithm 1. Its components are
explained as follows.

1) INITIALIZATION
N initial solutions are obtained by sampling from the
search space5n

i=1 [ai, bi] using the Latin hypercube sampling
method (LHS) [36]. Each of these solutions undergoes eval-
uation by the real expensive function f (·) and is subsequently
stored in the archive A. The count of evaluated solutions,
denoted by fes, is updated accordingly. Based on the current
population P , a probability distribution model PVWH (X ) is
constructed [3].

2) STOPPING CONDITION
The termination criterion is defined as the number of real
function evaluations exceeding the pre-specified maximum
limit, denoted by FEmax.

3) SURROGATE MODEL TRAINING
The surrogate modelM is trained using the archiveA. Given
the low complexity of the random forest, all solutions that
stored in the archive are utilized to train the model.

4) GENERATE SOLUTIONS
The new N solutions are composed of two parts, where
QI is generated by sampling from the PVWH (X ), while QII
is produced by local search on the current population P .
According to [3], this approach combines both global and
local population information to enhance the quality of the
offspring solutions.

5) SURROGATE ASSISTED SELECTION
The surrogate model M aids in two tasks. Firstly, utiliz-
ing a multiacquisition strategy based on the predicted value
f̂ (mathbfx) and uncertainty σ (x to select the optimal solution
Qbest . Secondly, relying on the model predicted values, the
top N /2 solutions are chosen as the unevaluated good solu-
tions.

Algorithm 1 Pseudocode of Main Framework
Input: N (population size); FEmax (maximum number of

FEs);
n′ (threshold for using the Powell method).

/ / Initialization
1 P← LHS(N ).
2 A← P.

3 fes← N .

4 PVWH (X )← EDA(P).
5 while fes← N ≤ FEmaxdo

/ / Surrogate model training
6 M← Training(A).

/ / Generate new solutions
7 QI ← Sample(PVWH (X )).
8 QII ← localsearch(P).
9 Q← Combination(QI ,QII ).

/ / Surrogate assisted selection
10 Qbest ,Q′← SA_Selection(Q,M).

/ / Update archive
11 A← A ∪ Evaluation(Qbest ).
12 fes← fes+ 1.

/ / Improve solution by Powell method
13 if improving and n ≤ n′ then
14 Q← Powell(A).
15 A← A ∪Q.

16 fes← fes+ |Q| .
17 end

/ / Selection for next generation
18 P ← A1:N .

/ / Update probability model
19 P(X )← Model(P,Q′).
20 end

Output: Abest (the optimum solution).

6) UPDATE ARCHIVE
The current best solution Qbest is evaluated using the real
fitness function and stored in the archive A.

7) IMPROVE SOLUTION BY POWELL METHOD
Powell method [37] is a derivative-free optimization
algorithm that can effectively improve the convergence of our
algorithm. Due to the significant fitness evaluation budget
required by this method, which increases with the search
dimension, we have devised a simple condition to acti-
vate it. Specifically, the Powell method will be used once
when the search space dimension is no greater than 20 and
there is no improvement in the A continuity for 10 iter-
ations. All solutions evaluated during this process will be
saved in A.

8) SELECT SOLUTIONS FOR NEXT GENERATION
The next population P is formed by selecting the opti-
mal N solutions based on the objective value
from A.
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9) UPDATE PROBABILITY MODEL
The new EDA model will be updated, and the population
will be derived from two parts. One part is the population P
selected based on the real function values, while the other part
is the population Q′ selected based on the surrogate model.
This approach can further accelerate the convergence of the
population towards the optimal region in next iteration.

The ESAEDA algorithm encompasses several principal
components: initialization, training of the surrogate model,
generation of new solutions, surrogate-assisted selection,
archive updates, and updates to the probability model. The
initialization phase predominantly utilizes Latin hypercube
sampling, manifesting a time complexity of O(n), where N
signifies the size of the population. In the training of the sur-
rogate model, a Random Forest method is employed, which
incurs an approximate time complexity of O(MN log(N )),
M being the number of trees involved. The generation of
new solutions hinges on the probability distribution model
of the current population, entailing a time complexity of
O(ND), with D representing the dimensionality of the prob-
lem at hand. For the surrogate-assisted selection phase, the
time complexity scales as O(MND). Meanwhile, the tasks of
updating the archive and the probability model are marked by
high efficiency, each showcasing a time complexity ofO(N ).
These integral steps collectively constitute the computational
backbone of the ESAEDA algorithm as outlined in this study.

Algorithm 1 and SAEDA [30] share some similar pro-
cesses, but to improve algorithm efficiency, we have the
following main differences: 1) utilizing a random forest as
a surrogate model to reduce modeling overhead, 2) using the
Powell method to compensate for the degradation of search
ability in low-dimensional spaces (compared to SAEDA),
and 3) using unevaluated solutions to accelerate the search
speed of the algorithm. In the following sections, we will
provide further details regarding the new solution generation
and offspring solutions selection techniques employed in our
proposed algorithm.

B. NEW SOLUTION GENERATION
In EAs, the quality of newly generated solutions directly
affects the efficiency of the algorithm search. In this work,
new solutions are generated through a combination of EDA
and local search, and the Powell method is used to further
improve the quality of low-dimensional spaces.

In this study, we utilize a variable-width histogram (VWH)
model, as proposed by Zhou et al. [3], to serve as a prob-
abilistic model. This approach focuses on identifying and
exploiting promising regions within the search space, which
is essential for achieving improved performance on expen-
sive optimization problems. Rather than utilizing traditional
crossover and mutation operators, the new population QI is
generated by sampling from the probability distribution P(X )
of the current population P . The VWH model represents a
univariate model, where the n dimensions of the solution
vector x = (x1, x2, . . . , xn) are assumed to be independent

FIGURE 2. Illustration of VWH model for population on early and late
search stage.

of each other. The model can be expressed mathematically
using (2), where Pj(xj) denotes the marginal probability func-
tion of the jth variable xj.
In modeling, to partition the search space [aj, bj] of the jth

variable, a total ofM bins are created, denoted by [aj,m, aj,m+
1),m = 0, 1, . . . ,M − 2 and [aj,M−1, aj,M ], where aj,0 = aj
and aj,M = bj. The bins from the 2nd to the (M − 1)th are of
equal width, focusing on the distribution of the current popu-
lation. The size of each bin is determined based on the number
of solutions falling in the current interval. The first and last
two bins of the search space without solutions still have a very
low probability to avoid premature convergence. Figure 2
illustrates the basic idea of VWH with different population

distributions. The probability defined by
n∏
j=1

[
aj,1, aj,M−1

]
is

higher than other no-solutions space, which focuses more on
the promising search areas, especially when the population
converges to a small area (see Figure 2 (b)).

To generate a new solution x, the probability distribution
P(X ) is used to sample each component xj, j = 1, . . . , n
independently. For each component, a bin is selected based
on its corresponding probability functionPj(xj). Then, a value
is randomly sampled within the boundaries of the selected
bin to obtain the current xj. This process is repeated for
each component to obtain a complete solution x. A variable-
width histogram (VWH) model, which partitions the search
space into bins, is used as the probability distribution model.
The size of each bin is determined by the number of
solutions falling within that interval, with the bins in the
middle focusing on the distribution of the current population.
This approach focuses more on promising search areas and
improves the performance of the SAEAs on expensive prob-
lems. In addition to using evaluated solutions in the archive
to update the VWH model, this work also uses unevaluated
solutions Q′ selected by the surrogate model to update the
probability model, which improves the quality of newly sam-
pled solutions and makes the VWH model work better in
SAEAs.

Another part of the solutions will be generated by local
search (Algorithm 1 line 8). This is achieved by using
the method proposed in EDALS [3], which constructs a
lightweight quadratic approximation model based on the
parent population P , and then generates QII based on the
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quadratic approximation model. Finally,QI andQII are ran-
domly combined with a certain probability, following the
ratio of 0.8 forQI and 0.2 forQII as proposed in [3] and [30].
Local search serves as a supplement to the EDA search.

In ESAEDA, we utilized RF as a surrogate model to
improve the algorithm execution speed. However, surpass-
ing the Gaussian process assisted EDA (SA-EDA) [30] in
low-dimensional space became a challenging task. Therefore,
we applied the Powell method (Algorithm 1 line 8) [37] to
further enhance the quality of solutions. Due to the con-
sumption of the evaluation budget required for this method
and its increase with the dimensionality of the search space,
we restricted its use to low-dimensional cases.

C. OFFSPRING SELECTION
This subsection outlines the methodology employed for
training and implementing a surrogate model for selecting
candidate solutions from the current offspring population Q
in the context of ESAEDA. The surrogate model is used to
replace the expensive function, as outlined in (3). The predic-
tion result obtained bymultiple trees is utilized to estimate the
modeling uncertainty of the current point, as denoted in (4).
To determine the final Qbest solution, multiple acquisition
functions’ selection results are aggregated using the GP-
Hedge method [38]. Additionally, top N/2 population Q′ is
selected based on the predicted value f̂ (·) by RF, which is
subsequently used to update the VWH model.

In this work, acquisition functions are utilized to balance
exploitation and exploration in the search process by selecting
a promising solution Qbest based on the mean (µ or f̂ ) and
variance (σ ) of the surrogate model predictions. To enhance
the robustness of surrogate-assisted selection, the GP-hedge
method is used to dynamically select a strategy from the
three typical acquisition functions: expected improvement
(EI), probability improvement (PI), and lower confidence
bound (LCB), formulated in (5), (6), and (7), respectively.
Here, x∗ represents the current best solution in the archive,
8(·) is the standard normal distribution probability density
function, and β balances the expectation and variance in
LCB. In the t-th generation, x∗EI , x

∗
PI , and x∗LCB denote the

optimal solutions that satisfy x∗EI = argmax(EI (x)), x∗PI =
argmax(PI (x)), and x∗LCB = argmin(LCB(x)), where x ∈ Q.
GP-hedge selects a solution asQbest based on the probability
of the gains obtained by the three strategies in the previous
t−1 generations.When t = 1, a solution is randomly selected
from the three candidates. The details of calculating the gains
can be found in GP-Hedge.

EI (x) = (µ(x)− x∗)8
(

µ(x)− x∗

σ (x)

)
+ σ (x)8

(
µ(x)− x∗

σ (x)

)
(4)

PI (x) = 8

(
x∗ − µ(x)

σ (x)

)
(5)

LCU (x) = −(µ(x)−
√

βσ (x)) (6)

Moreover, using the approximate value f̂ provided by the
surrogate model, the new populationQ is sorted in ascending
order, and the top half of solutions are selected as the promis-
ing candidates without real evaluation to update the VWH
model.

IV. EXPERIMENTAL COMPARISON
To evaluate the effectiveness of the proposed methods, exper-
iments were conducted on the LZG [27] and YLL [39]
test suites in both 20 and 50 dimensions, along with some
state-of-the-art methods, including surrogate model assisted
algorithms, Bayesian optimization algorithms, and general
evolutionary algorithms. The study included ablation experi-
ments on two crucial components of the ESAEDA algorithm,
called the Powell method and the VHW model with uneval-
uated solutions. Additionally, the runtime performance of
ESAEDA is compared with some GPs assisted algorithms.

A. EXPERIMENTAL SETTINGS
1) TEST SUITES
For the empirical study, two test suites were used. The first
was the LZG test suite, which includes four test functions,
namely Ellipsoid, Rosenbrock, Ackley, and Griewank. These
functions have unimodal, gully, and multimodal landscapes.
The second test suite used was the YLL test suite, which
contains functions f 1−f 4with unimodal landscapes, f 5, f 8−
f 13 with multimodal landscapes, f 6 with a step landscape,
and f 7 with random noise. The problems in both test suites
were evaluated in dimensions n = 20 for small-scale and
n = 50 for median-scale.

2) ALGORITHM IN STUDY
Six algorithms are chosen for empirical study, namely CMA-
ES [4], FCPS-CoDE [2], EDALS [3], SAMSO [28], Skopt,
GPEME [27], and SA-EDA [30]. These algorithms can be
divided into three categories:

• Basic EDA: CMA-ES and EDALS are two general
EDAs, that are not specially designed for expensive
optimization.

• Bayesian optimization: Skopt is an efficient global opti-
mization algorithm in the Bayesian optimization (BO)
framework. It applies GPs as the surrogate model.

• Surrogate assisted EAs: FCPS-CoDE uses a fuzzy K
nearest neighbor based classification model to evalu-
ate candidate solutions. GPEME uses GPs to evaluate
candidate solutions. SAMSO is a surrogate assigned
particle swarm optimization with RBF. SA-EDA is a
GPs assisted EDA.

3) PARAMETER SETTINGS
In the empirical study, we use the recommended parameters
in the original literature for each algorithm for a fair compar-
ison, and the details are given below.
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TABLE 1. Statistics of median results obtained by nine comparison algorithms on LZG and YLL test suites with n = 20.

• Termination condition: The maximum number of FEs is
adopted as the termination condition, set at 500 for all
instances.

• Population size: Set N = 30 for CMA-ES, EDALS and
FCPS-CoDE. Set N = 40 for SAMSO (default set in
PlatEMO [40]). Set N = 50 for GPEME, SA-EDA and
ESAEDA.

• Parameters of compared algorithms: default setting
according to the original version.

In addition, to demonstrate the effectiveness of the
ESAEDA components, two variants were designed as fol-
lows:
• ESAEDA∗: the Powell method was removed during the
iterative process.

• ESAEDA∗∗: the VWH model was updated without
using unevaluated solutions.

Each algorithm is executed on each test instance for
30 independent runs to overcome randomness. The first step
is to assess the independence of the results obtained by the
algorithms on each test instance by the Friedman test [41].
Then the Wilcoxon rank sum test [42] is used to compare
the results where ‘+’, ‘-’, and ‘∼’ in the tables indicate the
value obtained by an algorithm is smaller than, greater than,

or similar to that obtained by the ESAEDA based version at a
0.05 significance level. The value in the brackets denotes the
corresponding rank.

B. RESULTS AND ANALYSIS
Table 1 presents the statistical findings of 9 optimization algo-
rithms evaluated on two test suites. The results are provided
in terms of p-value by the Friedman test, mean ranks, and the
corresponding Wilcoxon rank sum test. The p-value obtained
from the Friedman test is much less than 0.05, indicating
a significant difference between the results. The analysis
indicates that ESAEDA achieves the best mean rank of 2.53,
outperforming the BO algorithm Skopt, which achieves a
mean rank of 6.71. The general evolution algorithms, CMA-
ES and EDALS, achieve mean ranks of 7.24 and 3.41,
respectively. Among the SAEAs, SA-EDA and GPEME
attain the first and second mean ranks in the four comparison
algorithms due to the Gaussian process, providing accurate
modeling. However, the increased computational overhead
associated with these approaches is discussed in the following
subsection. The Wilcoxon rank sum test also supports the
superiority of ESAEDA as it obtains better optimal solutions
than other algorithms in most instances. Importantly, the
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FIGURE 3. The median runtime performance of 6 algorithms on LZG and YLL test suites.
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TABLE 2. Statistics of median results obtained by six comparison algorithms on LZG and YLL test suites with n = 50.

Powell method applied in ESAEDA∗ effectively improves the
performance of EDA algorithms in low-dimensional prob-
lems. The results of Table 1 indicate significant differences
among the algorithms. ESAEDA consistently achieved the
best mean rank, outperforming the Bayesian optimization
algorithm Skopt and other general and surrogate-assisted
evolutionary algorithms. Specifically, ESAEDA showcased
superior convergence performance and optimal solution qual-
ity in most test instances, signifying its effectiveness over
conventional and contemporary approaches.

Due to the limitation of Gaussian process-based meth-
ods in median dimension space, we selected a subset of
algorithms for 50-dimensional problems, including CMA-
ES, FCPS-CoDE, EDALS, SAMSO, and SA-EDA. As the
Powell method does not apply to ESAEDA in 50 dimensions,
the variant ESAEDA∗ was not included in the experiment.
Table 2 presents the statistical results, indicating that ESAED
outperforms SAMSO, a specifically designed method for
large-scale expensive optimization problems, achieving the
best mean of 1.82 under 50 problems. Furthermore, ESAEDA
also achieved better results than GP assisted EDA, demon-
strating its competitive performance. The Wilcoxon rank
sum test supports these results, demonstrating ESAEDA’s

superior performance in most instances compared to other
algorithms. Figure 3 illustrates the convergence performance
of all algorithms, with results consistent with those in Table 2.
ESAEDA exhibits the best convergence performance on most
test instances.

ESAEDA outperforms several state-of-the-art algorithms
by demonstrating superior convergence performance on
widely used test instances. It achieves significantly better
median results compared to other algorithms. The algorithm
exhibits remarkable computational efficiency, achieving 10-
90 times efficiency improvements compared to Gaussian
Process-assisted algorithms on problems of varying dimen-
sions (20D and 50D). Besides demonstrating competitive
performance in tackling expensive optimization problems,
ESAEDA holds promise for extending its application to solve
expensive multi-objective optimization problems, thereby
presenting a versatile and practical approach for real-world
scenarios.

The novel aspect of ESAEDA lies in its unique combina-
tion of a random forest surrogate model with the estimation
of distribution algorithms, which is not commonly found
in existing studies. This combination offers a new pathway
to reduce computational costs while maintaining solution

78256 VOLUME 12, 2024



J. Shang et al.: Efficient Surrogate Model Assisted Estimation of Distribution Algorithm

FIGURE 4. The runtime performance of ESAEDA and its variant on LZG and YLL test suites over 30 independent runs.

quality. Additionally, the innovative use of unevaluated solu-
tions to update the probability model represents a significant
departure from conventional approaches, aiming to accelerate
convergence without excessive function evaluations.

C. ROLES OF ESAEDA
In this subsection, we will analyze the key characteristics of
the ESAEDA algorithm. First, we will analyze the benefits
of adding unevaluated solutions for the probabilistic model.
Second, we will analyze the efficiency improvement of using
RF as the surrogate model.

The importance of unevaluated solutions in the update of
the probability model in ESAEDA is verified in Figure 4.
The figure shows the convergence curves of ESAEDA and its
variants on some test instances over 30 independent runs. It is

observed that the convergence of the algorithm can be further
improved by incorporating unevaluated solutions in the VWH
model updating. These solutions, although not evaluated by
the real function, are still valuable as they are selected by
the surrogate model. These solutions have a positive impact
on the convergence of the population, thereby enhancing the
quality of the offspring solutions.

Next, the running time of different algorithms on LZG01 is
analyzed. Two Gaussian process based algorithms, SA-EDA
and GPEME, are selected as a comparator with ESAEDA.
All algorithms are run on the same hardware platform
(Apple M1pro and 32G Memory). We run each algorithm
on the LZG01 under the same function evaluations (fes) for
10 independent runs. The mean CPU time obtained by three
algorithms is recorded in Figure 5.
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FIGURE 5. Bar plot of running time of ESAEDA, SA-EDA and GPEME on LZG01 under 500 fitness evaluations.

Using the computational lightweight surrogate model (For
n samples, the complexity of RF is O(nlog(n)) and the
complexity of GPs is O(n3)), the ESAEDA has the lowest
computational overhead among all algorithms tested, when
executing the same number of iterations.

The proposed ESAEDA distinguishes itself with unique
features. It utilizes RF as the surrogate model, significantly
reducing computational demands compared to traditional
Gaussian Process-based approaches. This adjustment leads
to a more efficient resolution of expensive optimization
problems. Additionally, ESAEDA employs unevaluated solu-
tions to update its probabilistic model, thereby improving
the generation of new solutions and accelerating conver-
gence. Furthermore, the incorporation of the Powell method
enhances search capabilities in low-dimensional spaces,
addressing potential declines in search efficiency.

V. CONCLUSION
This paper proposes an efficient surrogate model-assisted
estimation of distribution algorithm (ESAEDA) which aims
to tackle expensive optimization problems. The use of
random forest as a surrogate model instead of Gaussian
processes results in significant reductions in computational
overhead. The surrogate model works in conjunction with the
GP-hedge strategy to identify promising solutions for real
evaluations. The improved EDA with unevaluated is used
to generate promising solutions. The VWH model focuses
on promising areas and accelerating algorithm convergence.
Additionally, the enhanced EDA with unevaluated samples is
used to generate promising solutions, while the VWH model
is utilized to focus on promising areas and accelerate the
convergence of the algorithm. Local search and the Powell
method are also incorporated to improve the quality of the
population.

ESAEDA is benchmarked against several state-of-the-art
algorithms on 17 widely used test instances, and the results

indicate that it performs well. Furthermore, the running time
of the algorithm is analyzed, and the new method is shown
to achieve 10-90 times efficiency improvements compared
to Gaussian process assisted algorithms on 20D and 50D
problems. This efficiency is a critical advantage in real-world
applications where evaluation costs are high. The algorithm’s
design allows for faster convergence compared to traditional
methods and some state-of-the-art algorithms, making it a
viable option for expensive optimization problems. Extend-
ing ESAEDA to solve expensivemulti-objective optimization
problems holds promise, and its application to real-world
problems is highly desirable.

It is worth noting that the Powell method has been sig-
nificantly enhanced through integration with contemporary
optimization technologies, such as cuckoo search, extending
its applicability beyond traditional domains. This synergy
has led to more accessible and efficient solutions for vari-
ous nonlinear optimization issues, as illustrated by initiatives
like PRIMA that aim to provide practical, derivative-free
optimization frameworks. Moreover, the innovative applica-
tion of the Powell method in evolutionary algorithms for
hyperparameter optimization showcases its extended utility
in the realm of machine learning and artificial intelligence.
This adapted version, aimed at meeting the specific require-
ments of hyperparameter tuning in complex computational
models, signifies the method’s adaptability and potential.
In future work, this enhanced Powell method could be
applied within ESAEDA to further enhance the method’s
performance.

The proposed ESAEDA exhibits certain limitations,
notably in handling high-dimensional problems due to
its reliance on the Powell method, which is primarily
effective in low-dimensional scenarios. To address this,
future work could explore integrating techniques that
enhance high-dimensional search capabilities. Additionally,
ESAEDA’s performance heavily depends on the accuracy of
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the Random Forest surrogate model. An adaptive approach
that selects the most suitable surrogate model based on
current performance metrics could improve robustness and
efficiency across diverse problem landscapes.
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