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ABSTRACT Rolling element bearing degradation prediction is an important issue in rotating machinery.
With the rapid development of artificial intelligence (AI), Al-based bearing degradation prediction has
aroused extensive attention. However, current methods rely on whole life cycle data, which is quite difficult
to acquire in real industrial scenarios. To solve this problem, a rotor-bearing dynamic model is built to
generate simulation signals for a range of spall sizes, and an improved domain adversarial neural network
is proposed to transfer degradation knowledge from simulation data to experimental data. To be specific,
complete simulation data is used to pre-train a network for learning comprehensive degradation knowledge,
and guides the extracted high-level features in the adversarial domain adaptation stage to align with it as
an additional optimization item. The proposed approach is verified on bearing degradation datasets under
different working conditions, and results show that the proposed approach can successfully predict bearing
degradation progress only with some early stage experimental data.

INDEX TERMS Bearing degradation prediction, domain adversarial neural network, rotor-bearing dynamic

model, prognostics and health management.

I. INTRODUCTION

Rolling element bearing (REB) is an important component of
rotating machinery, which is widely used in transportation,
manufacturing and electric power industry [1]. Due to con-
tamination, corrosion, poor lubrication, long-time operation,
etc., about 45~55% rotating machinery failures are caused
by REB [2]. Among them, race damage accounts for 90%,
whereas rolling element and cage damage accounts for only
10% [3]. The damage is first initiated by sub-surface fatigue
crack, with continuous load and impact between the rolling
element and the race, sub-surface fatigue crack extends to the
surface, resulting in a spall. Over time, the spall grows bigger
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in size, and eventually leading to catastrophic failure [4].
Premature replacement of REB may be quite expensive,
on the other hand, the safety of personnel and machines
cannot be risked. Therefore, degradation assessment of
current fault severity and prognostics of future revolution is
of great practical significance [5], [6].

At present, REB degradation prognostics methods can
be divided into three main categories, which are physics
model-based approaches, statistical model-based approaches
and artificial intelligence-based (Al-based) approaches [7].
Physics model-based approaches describe the degradation
process by establishing a comprehensive mathematical
model. The most common ones are Paris-Erdogan (PE)
model [8], [9] and Forman model [10], [11]. However, actual
physical system is usually complex, and there are random
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factors such as background noise, speed fluctuations, etc.,
which make it difficult to be built accurately. Statistical
model-based approaches achieve degradation prediction by
fitting the monitoring parameters into statistical models
such as autoregressive model [12], [13], wiener process
model [14], [15], [16] and gamma process model [17], [18],
which can describe the uncertainties of degradation process,
but they usually require a great deal of expert knowledge.
On the other hand, Al-based approaches attempt to find the
potential degradation trends from a large amount of historical
data, thereby reducing the reliance on physical and expert
knowledge. With the rapid development of Al, deep learning
has aroused extensive attention because they can extract
effective features from raw vibration data automatically.
Typical deep learning methods, including Convolutional
Neural Networks (CNN), Recurrent Neural Networks (RNN)
and their variants, have been used in predicting REB degra-
dation. According to literature research, most of current REB
degradation prediction study take remaining useful life (RUL)
as the evaluation standard for degradation state. Li et al. [19]
established a deep CNN to predict the RUL of REB, and
the input data are prepared by time window approach.
Wang et al. [20] proposed a framework with convolutional
attention mechanism and temporal convolutional network
(CAMTCN) to predict the RUL of REB, and Efficient
Adaptive Shrinkage (EAS) model is utilized to eliminate
the noise of vibration signal. Zheng et al. [21] proposed a
multi-layer Long Short Term Memory (LSTM) network to
predict RUL. As the LSTM processes time sequence only in
forward direction, feature extraction ability is relatively poor,
Jin et al. [22] employed bidirectional-LSTM (Bi-LSTM) to
predict RUL, which learned features of time sequence in
both forward and backward direction, and obtained better
capability in time series modelling.

Although the above Al-based approaches can predict
the remaining useful life of REB successfully, they have
two prerequisites: (1) sufficient labelled degradation data;
(2) training dataset and testing dataset meet the same
distribution. Unfortunately, these assumptions are often
unrealistic. Firstly, due to safety concerns, machines in real
industrial scenarios couldn’t be allowed to run with a severely
degraded REB, vibration data of severe degradation stage
could not be obtained. Moreover, REBs operating under
different working conditions (different rotating speed, load,
etc.) may occur data distribution differences.

To tackle these problems, domain adaptation has been
introduced [23], [24], whose principle is to learn mutual fea-
tures between the labelled source domain and the unlabelled
target domain, as a result, the degradation knowledge can be
transferred from one domain to another. Domain adaptation
include discrepancy metric-based domain adaptation and
adversarial training-based domain adaptation [25]. Discrep-
ancy metric-based domain adaptation adopts distribution
metrics such as Maximum Mean Discrepancy (MMD),
Correlation Alignment (CORAL), Wasserstein Distance, etc.
between source and target domains and minimizes them
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during training [26]. Xu et al. [27] established a domain
adaptation network based on Bi-LSTM, and MMD was
embedded to minimize the distribution difference between
the source domain and the target domain. Results showed that
domain adaptation based on MMD is effective for predicting
RUL of defect bearings under different working conditions.
In order to improve the robustness of the network, Rathore
and Harsha [28] used multi-kernel MMD (MK-MMD)
to realize domain adaptation, and verified the superiority
of this method by comparing it with existing methods.
In addition, adversarial training-based domain adaptation has
also received widespread attention, which consists of three
sub-networks, namely, feature extractor, RUL predictor and
domain discriminator. Its main concept is to extract domain
invariant features that confuses the domain discriminator,
so RUL predictor can achieve good prediction results in both
source and target domains [29]. Costa et al. [30] established
an adversarial domain adaptation network, in which the
feature extractor was LSTM, RUL predictor and domain
discriminator were both simple fully connected networks, and
has predicted the RUL of aero engine under different working
conditions successfully.

Although the above domain adaptation methods achieved
good prediction results on RUL cross different working
conditions, complete run-to-failure experimental data is still
required as the source domain. In addition, most of the current
Al-based REB degradation studies use RUL to evaluate the
degree of degradation, but there is no standard definition of
the end of bearing useful life, which makes it upon individual
explanation case by case.

To address these issues, a novel approach based on
rotor-bearing dynamic model and an improved domain
adaptation neural network (improved DANN) is proposed.
The overview of the proposed approach is shown in Fig. 1.
Main contributions are listed as follows:

1) To overcome the drawback of incomplete experimental
data, a rotor-bearing dynamic model is built to obtain
simulation signals of the whole life cycle.

2) To make neural network better learn the degradation
characteristics of vibration signals, signal processing
and segmentation is utilized to prepare appropriate
input.

3) Instead of RUL, spall size is used to represent the
degradation state more directly.

4) An improved DANN is proposed to address the issue
of data distribution difference between the simulation
data and the experimental data. Firstly, a Bi-LSTM
network is employed as a pre-trained model to learn the
whole life cycle degradation knowledge of the source
simulation data. Then, pre-trained feature serves as a
reference to guide the extracted high-level feature in
adversarial domain adaptation stage to align with it,
thus retaining the degradation knowledge and allevi-
ating the negative effect of incomplete experimental
data. The effectiveness of the proposed approach is
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verified on bearing degradation datasets under different
working conditions.

The rest of this article are organized as follows.
In Section II, dynamic modelling of rotor-bearing is
introduced, and simulation signal and experiment signal
are contrasted from time domain and squared envelope
spectrum. Section III introduces the signal processing and
segmentation method to obtain appropriate input data for
the subsequent neural network. Section IV introduces the
improved DANN, and Section V presents the experimental
results and discussion. Finally, conclusions are given in
Section VI.

Signal Processing

Data Acquisition

Degradation Prediction

- actual(measured)
— actual(interpolated)

61— Improved DANN

«

>
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FIGURE 1. Overview of the proposed approach.

Il. DYNAMIC MODELING OF ROTOR-BEARING SYSTEM
To simulate the vibration response of the defective bearing on
test rotor, rotor-bearing system dynamic model is established,
as is shown in Fig. 2, 3, where the former is the diagram
of rotor system, containing motor, rotor shaft, coupling, two
support bearings and a test bearing; the latter is the diagram
of the test bearing with an outer race defect.

Motor Coupling Support bearing

Test bearing

FIGURE 2. Diagram of rotor system.

A. ROTOR SYSTEM MODEL
Based on finite element method, the rotor is divided into
several beam elements, each has two nodes. Each node
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FIGURE 3. Diagram of test bearing with an outer race defect.

considers 6 degrees of freedom (6-DOF), which includes
3 directions of translations and 3 directions of rotations. The
motion equation of beam element can be expressed as:

Mg gs +Cs5 gs +ksqs = 0 (D

where ¢ is the generalized displacement vector of beam
element, my, kg and, ¢y are the mass, damping and stiffness
of the beam element, respectively.

qs
= {xs» Ys» s exs7 0)7S7 Hzx, Xs+15 Ys+15 Ls+1> exﬁ_] , 9y5+1 s 925+| }

@

Supporting bearings and coupling are considered as
springs with certain stiffness and damping, and their mass are
ignored. By assembling all elements, the overall equation of
motion can be expressed as:

Mq+Cq+Kq=F (3)

where M, C, K are the mass, damping and stiffness matrix
of the system, respectively, details can be found in [31].
The excitation of the system, namely, the bearing nonlinear
contact force, will be described in the next subsection.

B. BEARING MODEL
The test bearing is a deep groove ball bearing, simplified
to a 3-DOF model, namely, horizontal DOF, vertical DOF
and rotational DOF. The outer race is fixed on the bearing
housing, and the inner race is rotating with the shaft.
Nonlinear factors, including nonlinear contact force between
the rolling elements and race, time-varying stiffness and
radial clearance are considered [32].

Angular speed of the shaft is w; = 2nf;, then angular
speed of the cage is obtained according to the geometric

relationship:
D
wo=2(1-=22 4)
2 D,

where D), is the pitch diameter, D), is the rolling element
diameter.

N, rolling elements are uniformly arranged in the cage.
Considering the slippage of rolling elements, the angular
position of the ith rolling element at time ¢ can be expressed
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as [33]:
_2m(i—1)

0;
Np

+ wet + (0.5 — rand) x 0.01
(i=1,2,...,Np) (5

For the ith rolling element, the contact deformation
between the rolling element and race can be expressed as:

8i = xgcos0; +yssinf; —c—h (6)

where, x; and ys are the relative displacement of the inner
and outer race in x and y direction, respectively. c is the radial
clearance. & is the additional deformation introduced by outer
race defect, which changes with the angle position of the
rolling element [34]:

' min(ho, V;% - \/Vg — 0.25R2(6; — 6 + 0.5A65)%)
if 0y —0.5A0; < 6; <6

h = | min(ho, rj — \/ r? —0.25R2(6; — 6 — 0.5A6/)2)

if 6 < 6; < 6 +0.5A6¢

if 6 +0.5A6; < 6; < 6 —0.5A6f
(N

where hg is the depth of the defect, r; is the radius of the
rolling element, R, is the radius of the outer race, 67 is the
angle position of the defect centre, A6y is the span angle of
the defect.

Therefore, according to the Hertzian contact theory, the
contact force between the ith rolling element and the race can
be expressed as [35]:

F;=K8}? (®)

where K is the load-deflection factor, which is related to the
bearing geometry and material properties.

By projecting and summing up the Hertzian contact force
of each rolling element in x and y direction, the total bearing
Hertzian contact force in x and y direction can be expressed
as:

F =
el
Y Z F;sin6;

i=1

In addition, to simulate the randomness of the vibration
signal, Gaussian white noise is also added to the simulation
signal [32]. Simulation signals of different sizes can be
obtained by specifying the defect span angle Afy. The rotor-
bearing dynamic model is established by Matlab and solved
by the ordinary differential equation solver in Simulink.

C. SIMULATION RESULTS AND DISCUSSION

The acceleration responses and the squared envelope spec-
trum of the simulation signal and the experiment signal are
shown in Fig. 4, 5. It can be seen from Fig. 4 that both
experiment signal and simulation signal have periodic impact
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components, whose interval is the reciprocal of the Ball
Pass Frequency Outer race (BPFO). However, the impact
characteristics of the simulation signal are more significant
than that of the experiment signal, because the experiment
signal has a naturally extended fault, the entry/exit event are
weak, which is easily masked by the background noise. As is
shown in Fig. 5, for the simulation signal, the main frequency
component is the BPFO (21.5 Hz in theoretical) and its
harmonics, but for the experiment signal, besides BPFO,
there are other frequency components that may be aroused by
other components of the rotor system, which are neglected in
dynamic modelling. This also leads to a certain distribution
difference between simulation data and experimental data.

Acceleration(m/s?)

Acceierahon(m/sz)

|

[

1 o 005 01 015 02 025 03
Time(s) Time(s)

(a) dynamic (b) experiment

FIGURE 4. Acceleration responses.
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Frequency(Hz)
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FIGURE 5. Squared envelope spectrum.

Ill. SIGNAL PROCESSING AND SEGMENTATION

Before introducing the domain adaptation approach, time-
domain signal is pre-processed and truncated by ball-passing-
defect period to make sure that each signal section is of the
same length and contains spall size information to be used as
the input of the following neural network. This is different
from most previous studies, which directly cut raw vibration
signals into equal length segments without considering the
characteristics of the fault signals, resulting in an unclear
physical relationship between such input data and the severity
of degradation.

Since the experiment signal is a naturally extended
fault, the defect induced impulses are not clear, so it is
necessary to be filtered by the most impulsive frequency
band firstly. Then order tracking is employed to remove the
speed fluctuation of the shaft and the slippage of rolling
elements by resampling time-domain signal into angular-
domain. Specifically, squared envelope spectrum is obtained
and peak-search is employed to identify BPFO 44 near
the theoretical value of BPFO, then it is band-pass filtered
around BPFO c1,q1 With a tolerance of +£10% (to consider
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speed fluctuation) to construct a reference tacho signal, the
reference tacho signal is unwrapped to obtain the phase
angle, and the vibration signal with constant time interval
is interpolated and resampled by constant phase steps into
angular domain [36]. Moreover, to ensure proper angular
domain resolution, the angular signal is resampled (the
sampling number of each ball-passing-defect period is 200),
and is segmented by this period as input data for the following
neural network.

In addition, in order to make the input data with different
degradation degree to have the same vibration scale, so that
the neural network can converge quickly, the signal is
normalized to [—1,1]:

;o 2(X — Xmin) .
B (*max — Xmin)
The whole procedure of signal processing and segmenta-
tion is shown in Fig. 6:

x (10)

10° Frequency Spectrum 10% ‘Squared Envolope Spectrum
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FIGURE 6. Procedure of signal processing and truncating.

IV. THE IMPROVED DANN
A. PROBLEM DEFINITION
Since the dynamic model is a simplification of the actual
rotor-bearing system, inevitably, distribution differences exist
between the simulation data and the experimental data.
To eliminate its influence by the most extent, domain
adaptation is employed, which generalizes the knowledge
from simulation data to experimental data by learning
domain invariant features. To facilitate the narration, relevant
definition and symbolic expression are introduced firstly.
Let Dy, = {xi, y’s}ln;] denotes the source domain, which
is the simulation dataset, X} and y} represent the ith input
data and the corresponding spall size label, n; represents
the number of training samples of the source domain. Let
D, = {xf}:l;l denotes the target domain, which is the
experimental dataset, x| represents the ith input data, n,
represents the number of training samples of the target
domain. There exist distribution differences between source
domain and target domain, i.e., P (Xx;) # P (X;). It should
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be noted that the source domain contains whole life cycle
simulation data, whereas the target domain only contains
early degradation stage experimental data, making the target
domain incomplete.

B. DOMAIN ADVERSARIAL NEURAL NETWORK

Domain Adversarial Neural Network (DANN) is first pro-
posed by Ganin et al. [29]. The basic idea is to find
task-discriminative and domain-invariant features through
adversarial training, thereby achieving good prediction
results in target domain without knowing the label of target
data. DANN consists of three sub-networks, namely feature
extractor Gr(-; Of), with parameter 6f, spall size predictor
Gp(-; 6p), with parameter 0p, and domain discriminator
Gp(-; 6p), with parameter 6p. For source data and target
data, high-level features are firstly extracted by the feature
extractor, then spall size predictor is used to predict the
corresponding spall size from the source feature. On the other
hand, source features and target features are also mapped to
the domain label through the domain discriminator.

There are two goals in the training process of DANN. The
first one is that the spall size should be predicted precisely.
By optimizing the parameters of the feature extractor and the
spall size predictor, the regression loss is minimized to ensure
that the high-level features extracted by the feature extractor
can reflect the spall size, in other words, the extracted high-
level features are task-discriminative. The other goal is to
find domain-invariant features, which means that the high-
level features extracted by the feature extractor are the mutual
degradation features that the domain discriminator cannot
distinguish whether they are from the source domain or
the target domain. Thus, the feature extractor updates its
parameters by maximizing the domain discriminator loss,
in the opposite direction to the parameter update of the
domain discriminator. In order to simplify the model training
process, Gradient Reversal Layer (GRL) is introduced
between the feature extractor and the domain discriminator.
During backpropagation, the gradient is multiplied by a
negative constant through GRL before the feature extractor.
Whereas in the forward propagation, the parameters remain
unchanged. Mathematically, GRL can be treated as a pseudo-
function R, (x), its forward and backward propagation can be
described as:

Ri(X) = X (11)
R _ 4y 12
ax (12

where I is an identity matrix.
Therefore, the total loss function of DANN can be
expressed as:

L. 0p.0p) = D Lp(Gp(Gr(Xi: 0 ); 0p), yi)
X,’EDS (13)
A D Lp(Gp(Gr(xi: 0r); 0p), di)

X[E(DSUDt)
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where, Lp and Lp represent the regression loss of the spall
size predictor and the classification loss of the domain
discriminator, respectively. A is the weight factor that
balances these two losses. x; and y; represent the ith input
sample and the spall size label. d; represents the domain label,
where source domain is 0 and target domain is 1.

During training, the loss function L is optimized by seeking
a saddle point solution ép, ép, éD of the min-max problem,

(OF, Op)

Op = arg n;axL(éF, fp, Op) (15)
D

= arg min L(6F, Op, 6p) (14)
O ,0p

At the saddle point, the parameters of the spall size predictor,
ép, minimize the regression loss; the parameters of the
domain discriminator, ép, minimize the domain classification
loss; and the parameters of the feature extractor, ép, minimize
the regression loss and maximize the domain classification
loss simultaneously.

The saddle point can be found using gradient descent
method with a learning rate w, which can be described as:

8L’ oL

OF < O — u(— - xﬁ) (16)
Op <« Op — u£ (17)
d00p
8L’
Op < 0p — Mﬁ (18)

C. THE IMPROVED DANN

In real industrial scenarios, it is often unrealistic to collect
degradation data throughout its life time, especially for
safety-critical REB, where complete failure will lead to seri-
ous consequences. Therefore, to predict failure progression
only with some early degradation stage experimental data is
of vital significance. DANN directly aligns all training data of
the source domain and the target domain, the lack of severe
degradation stage target data may lead to wrong alignment,
as is shown in Fig. 7.

o oA et il

in SO target domain
dom?

n
~ = ot a‘/allable
» o for "almng
.‘..
source domain [
[ -0-0

degradation trend

ﬁclassical DANN

wrong alignment

FIGURE 7. Diagram of wrong alignment.
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To deal with this problem, an improved DANN is proposed,
which consists of two stages. Stage 1 is pre-training on
source domain, which is the whole life cycle simulation
dataset. A regression network is established by combing
the feature extractor and spall size predictor to learn the
mapping relationship between the input data and their
corresponding spall sizes. Thus, the pre-trained features cover
the degradation knowledge of the whole life cycle. Stage 2 is
the adversarial domain adaptation stage. Based on classical
DANN, a consistency-based regularization term is added to
force the high-level features to align with the source pre-
trained features. In this way, the domain adversarial neural
network not only learns domain-invariant features, but also
retains the bearing degradation knowledge of the whole life
cycle, thus reducing wrong alignment. The overview of the
improved DANN is shown in Fig. 8.

oL,

;v——" A

Stagel Eﬂ :> i l »
Source input

|
1 Feature Extractor

) [9AD]-YBIH

EITICRY
Ao

Source mpm

Stage2

Targ cun ut
L o cature Extractor

FIGURE 8. Overview of the improved DANN.

Stage 1 (Pre-Training): In Stage 1, whole life cycle
simulation data is used for training, the pre-training network
contains feature extractor G (-; 05),with parameter 67, and
spall size predictor G5(-; 6), with parameter 65. Obviously,
this is a classical regression network, the loss functlon L* 1s
mean square error (MSE):

1 & .
Lp= e Z Gi—90)* (19)

where, y; and J; are the spall size label and predicted spall
size respectively.

After training on source simulation data, the pre-trained
regression network learns the mapping relationship between
the input data and the spall size of the whole running cycles,
which can guide the feature alignment in the subsequent
adversarial domain adaptation stage.
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Stage 2 (Adversarial Domain Adaptation): In this stage,
degradation knowledge will be generalized from the source
simulation domain to the target experiment domain. It should
be noted that the experimental data lacks severe degradation
data, which may have a negative effect on the classical
DANN. Luckily, the pre-trained regression network learns
the regression relationship between the input data and the
corresponding spall size of the whole life cycle, which
means the pre-trained high-level features contain complete
degradation knowledge. Therefore, in Stage 2, the extracted
high-level features are forced to follow the pre-trained
features as an additional optimization objective, which
can be also described as consistency-based regularization.
To achieve this purpose, L1 loss is introduced to measure the
alignment between the extracted source features in Stage 2
and the pre-trained features:

1 n
Leons = ~ (3 f i) —f*(x)]) (20)
i=1

where f(x;) is the high-level features in Stage 2, f*(x;) is the
pre-trained feature, and 7 is the number of features.

Therefore, the total loss function of the adversarial domain
adaptation stage is given as:

Liotat = Lp — ALp 4+ aLcons (21)
1 & 5
Ly=- ; i) (22)
[ 1 1
Lp = (dilog — + (1 —d))lo —) (23)
ns+”t§ TR PR

where Lp is the spall size predictor loss, Lp is the domain
adversarial loss, A and « are the weight factors of domain
adversarial training and consistency-based regularization,
respectively.

V. EXPERIMENTAL STUDY
A. EXPERIMENTAL DESIGN AND SETUP
1) EXPERIMENTAL DESIGN
To validate the bearing degradation prediction performance
of the proposed approach, UNSW naturally extended bearing
defect dataset [37] is used in this study, since it is the few
public dataset that provides exact spall size labels during the
run-to-failure process. The test bench is shown in Fig. 9,
which illustrates that the shaft rotor is driven by a phase AC
motor through a jaw coupling, and two bearings are used to
support it. The test bearing is installed at the free end of the
shaft, and its outer race is held by a floating housing case,
which is loaded horizontally by a hydraulic system push rod.
Two accelerometers are mounted at the bearing housing case
in both horizontal and vertical direction, they are sampled at
51.2 kHz for 12 s periodically.

To speed up the degradation process and control the
position of the spall, a small round defect located at the
centre of the loading area is seeded on the outer race by
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electrical discharge machining, as is shown in Fig. 10 (a).
The test bearing is periodically disassembled to measure
the spall size and observe the surface morphology, and then
reassembled to continue the run-to-failure process until the
spall size is larger than 7 mm or other failure such as cage
fracture occurs, the extended spall at the end of the run-to-
failure experiment is shown in Fig. 10 (b). Therefore, signals
around the disassemble-reassemble point are with the spall
label, whereas other signals in between are unlabelled.

FIGURE 9. UNSW dataset test bench.

"~ (b)

FIGURE 10. Outer race defect: (a) initial seeded spall; (b) extended spall
at the end of the experiment.

TABLE 1. Domain adaptation tasks.

Task Working condition

load:10.5 kN, shaft speed 6 Hz
load:10.5 kN, shaft speed 12 Hz
load:10.5 kN, shaft speed 15 Hz
load:10.5 kN, shaft speed 20 Hz
load:7.0 kN, shaft speed 6 Hz
load:7.0 kN, shaft speed 12 Hz
load:7.0 kN, shaft speed 15 Hz
load:7.0 kN, shaft speed 20 Hz

[~ IEN I NNV, I SN US I S I

Eight groups of domain adaptation tasks with different
working conditions are employed, as detailed in Table 1.
Corresponding simulation data are generated for each task
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as the source domain, with horizontal experimental data
as the target domain (since the load is in the horizontal
direction). Simulation dataset and experimental dataset are
both divided into training set, validating set and testing set.
It should be noted that the experimental data of the severe
degradation stage (when the spall size is larger than 4.0mm)
is not available in training, which coincides with the need for
bearing degradation prediction in real industrial scenarios.

2) PARAMETER SETTING

For simulation and experiment signals, signal processing
methods in Section III are firstly employed to generate input
data for training. Each input data contains one ball-pass-
defect period, and its length is 200.

To better learn the mapping relationship between the
input data and the corresponding spall size, Bi-LSTM
network is employed for feature extraction. LSTM is a
variant of RNN. By introducing gating mechanisms (input
gate, forget gate, output gate), it solves the problem that
RNN is prone to incur gradient vanishing or exploding
when processing long time series [38]. Furthermore, Bi-
LSTM introduces backward LSTM to process the input
time series in a reverse direction, which can capture both
past and future information, thereby having stronger feature
extraction ability for time sequences [39]. Relevant studies
have proved that Bi-LSTM achieves good prediction in
bearing degradation prediction [22], [40], [41].

As for the network structure, for the feature extractor,
firstly two Bi-LSTM layers are adopted to perform feature
extraction, and the number of hidden layer units is 32.
To prevent overfitting, dropout rate is set as 0.3. Then, after
flattening the output through a flatten layer, the dimension
of high-level features is reduced to 128 through a fully
connected layer (FC layer). The spall size predictor receives
the output from feature extractor as the input and maps it
to a single output value, that is the spall size. The domain
discriminator consists of two FC layers, each with 128, 2
hidden units. All FC layers are followed by the ReLU
activation function. The detailed network structure is shown
in Fig. 11.

During training, Adam optimizer is utilized to find optimal
parameters, and the learning rate is set to le™*. Batch size
is set to 128, and the maximum number of iterations is
10000. For the weight factor, the domain adversarial weight
factor adopts a strategy that increases with the number of
iterations [29]:

2
=——1
1 4 exp(—10p)

where p is the ratio of current iteration to maximum iteration.

The consistency regularization weight factor is determined
by grid search. The experiments are conducted on a cloud
server with NVIDIA Tesla A100 GPU, and the codes
are implemented on the GPU-based PyTorch platform. All
experiments are carried out 5 times and the average prediction
is taken as the result.

(24)
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3) EVALUATION METRICS

To evaluate the spall size prediction performance of dif-
ferent approaches, commonly used evaluation metric in
regression network, Root Mean Squared Error (RMSE) is
employed [42]. Moreover, since the key subject in bearing
degradation prediction is to avoid security incidents, early
prediction is preferable compared with late prediction.
In other words, if the predicted spall size is smaller than the
actual spall size, it will get a higher penalty score [43]. RMSE
and Score function can be expressed as:

RMSE = (25)
N
Oi=yi) A
Ze_ - —1 ify, <y
— i=1
Score = | 'y o (26)
Ze =R —1 iff}iZy,-

where J; is the predicted spall size, y; is the spall size label.

B. EXPERIMENT RESULTS AND DISCUSSION

1) COMPARISON OF DIFFERENT FEATURE EXTRACTION
ARCHITECTURES

Spall size prediction performances of different feature
extraction architectures are firstly discussed. In our proposed
method, Bi-LSTM network is used for feature extraction.
Other popular feature extraction architectures are also
considered, including: Multi-Layer Perceptron (MLP), Con-
volutional Neural Network (CNN), and Recurrent Neural
Network (RNN). In other words, the feature extraction archi-
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tecture is replaced by MLP, CNN, RNN layers respectively,
the rest are consistent with the proposed one.

As for the spall size label, since only a limited number of
experiment signals has been measured for spall size, the rest
spall sizes are obtained by interpolation.

The comparison results of different architectures are shown
in Fig. 12, and the average performance are shown in
Table 2, 3, indicating that the simple MLP-DANN has
the worst feature extraction ability in vibration data, CNN-
DANN improves the prediction performance by learning
local features of the vibration data, but is not enough to
capture long-term dependence. On the other side, through
direct modelling of the vibration data, in general, RNN-
DANN provides better prediction, but RNN may incur
gradient vanishing or exploding problems. Whereas Bi-
LSTM-DANN introduces gating mechanisms and processes
input data from both forward and backward directions, the
long-term dependence can be captured more effectively, and
it has the best performance in all given working conditions,
which can prove that Bi-LSTM is a suitable feature extraction
network in this study.
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FIGURE 12. Spall size prediction results of different feature extraction
architectures.

2) COMPARISON OF DIFFERENT DOMAIN ADAPTATION
APPROACHES

Moreover, to verify the superiority of the proposed method,
different domain adaptation approaches are also employed for
comparison.

(a) Baseline: This method is training on the source domain
(simulation dataset) only, and is directly tested on the
target domain. The network structure is the same as the
first stage of the proposed method, which is a typical
regression network and the loss function is the spall
size prediction loss Lp. Since no domain adaptation
approach is employed, this method can be treated as
a baseline.
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TABLE 2. RMSE of different feature extraction architectures.

Task MLP- CNN- RNN- Bi-LSTM-

DANN DANN DANN DANN

1 2.1791 1.0267 1.5722 0.4676

2 2.1472 1.0443 0.9145 0.4586
3 1.5651 1.3912 0.8785 0.3799
4 1.3811 1.2356 1.0773 0.5378

5 1.2155 1.0505 0.6161 0.4899
6 1.6528 1.2236 0.9654 0.6532
7 1.8491 0.9377 0.8075 0.4037

8 1.7064 0.8482 0.9640 0.6833
Average 1.7120 1.0947 0.9744 0.5093

TABLE 3. Score of different feature extraction architectures.

Task MLP- CNN- RNN- Bi-LSTM-

DANN DANN DANN DANN

1 9.6226 4.0331 6.5033 1.9298

2 9.4834 4.2555 3.6781 1.6582

3 7.1081 5.7344 3.9179 1.5413
4 5.2246 4.8951 4.0043 1.9851
5 5.2768 3.6964 2.0566 1.7220
6 7.5339 5.3081 4.1344 2.7694
7 8.8580 4.2067 3.5259 1.5199
8 7.0186 3.0529 3.3706 2.2768
Average 7.5158 4.3978 3.8989 1.9253

(b) MK-MMD: This method is a discrepancy metric-
based domain adaptation. MK-MMD is employed
to calculate the distribution differences between the
source and target domain. The network structure of
feature extractor and spall size predictor are the same
as the proposed method, and the loss function includes
spall size prediction loss Lp and MMD loss.

(c) DANN: This method is the classical adversarial
training-based domain adaptation, and the network
structure of feature extractor, spall size predictor and
domain discriminator are the same as that of the
proposed one in the second stage, the only difference is
that consistency-based regularization is not considered.
The loss function includes prediction loss Lp and
domain discriminator loss Lp.

(d) Improved DANN: This method is the proposed
approach, which consists of two stages. Stage 1 is pre-
training on the whole life cycle source domain. Stage 2
is the adversarial training-based domain adaptation,
and consistency-based regularization is added as an
additional optimization item to force the extracted
high-level features to align with the pre-trained
features.

Fig. 13 indicates that the prediction performance of the
baseline is the worst, because there exits domain difference
between the simulation and the experimental datasets, thus
domain adaptation is necessary. Comparing MK-MMD and
DANN, in general, the RMSE and Score of DANN is
slightly smaller than that of MK-MMD, indicating that the
domain adaptation based on adversarial training is better
than domain adaptation based on MK-MMD in this study.
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FIGURE 13. Spall size prediction results of different domain adaptation
approaches.

TABLE 4. RMSE of different domain adaptation approaches.

Task Baseline MK-MMD  DANN Improved DANN
1 0.9599 0.5586 0.8068 0.4676
2 1.4409 1.1577 0.7202 0.4586
3 1.3937 0.5543 0.4545 0.3799
4 1.4563 0.9863 0.7989 0.5378
5 0.9143 0.6681 0.6399 0.4899
6 1.6905 1.2679 0.7450 0.6532
7 1.2366 1.0265 1.0336 0.4037
8 1.1603 1.0251 0.9708 0.6833
Average 1.2816 0.9056 0.7712 0.5093

TABLE 5. Score of different domain adaptation approaches.

Task Baseline ~ MK-MMD DANN Improved DANN
1 4.1391 2.4011 3.1560 1.9298
2 5.9742 4.1922 2.8243 1.6582
3 6.3882 2.3050 1.8435 1.5413
4 6.0814 3.5608 3.0396 1.9851
5 3.7798 2.5028 2.2638 1.7220
6 8.2896 5.2145 3.0184 2.7694
7 5.9971 4.3095 3.9792 1.5199
8 4.8991 4.1761 3.3930 2.2768
Average 5.6936 3.5828 2.9397 1.9253

However, the prediction error of the severe degradation
stage is larger than that of the early degradation stage.
It is because target domain training data only contains
early degradation stage experimental data, the prediction
effectiveness of the severe degradation stage cannot be
guaranteed. Whereas the proposed improved DANN pre-train
a regression network on simulation data to learn the whole
life cycle degradation knowledge, and guides the feature
extractor in adversarial domain adaptation stage to retain the
degradation knowledge, thereby capturing the degradation
trend of the severe degradation stage of the experimental data
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to the greatest extent. As seen from Table 4, 5, the proposed
method has the best performance, comparing with DANN, the
average RMSE and Score decreased by 33.96% and 34.51%,
respectively.

VI. CONCLUSION

In this article, a rolling element bearing degradation predic-
tion approach based on dynamic model and improved DANN
is proposed, which is proved to be able to predict the spall size
growth only with some early degradation stage experiment
data.

Firstly, the rotor-bearing dynamic model is constructed to
provide bearing simulation signals of a range of spall sizes.
Secondly, to have uniform input for the neural networks,
simulation and experiment signals are filtered and truncated
into ball-pass-defect segments. What’s more, since only
early fault stage experimental data is available for training,
which makes the target domain incomplete, a two-stage
improved DANN is proposed. Degradation knowledge of the
whole life cycle is learnt by training on labelled simulation
data in the first stage of pre-training, and the high-level
features are relatively aligned with the pre-trained features
in the second stage of adversarial domain adaptation. The
proposed approach is validated under different working
conditions, and is compared with different feature extraction
architectures and popular domain adaptation approaches,
proving its superiority on bearing degradation prediction.
In summary, this study gives an alternative option for bearing
degradation prediction when only early-stage degradation
data is available. It is applicable in real industrial scenarios to
avoid sudden breakdown and provides a guidance for making
maintenance plan.

Despite the promising results, there are still many short-
comings. From the perspective of method verification, the
proposed method is verified on rotor-bearing test bench,
fault impulses are relatively obvious, further verification
on defect bearing inside the rotating machinery is urgently
needed. In addition, from the perspective of the machine
learning model, a more advanced and lightweight model can
be considered, so as to balance the degradation prediction
performance and the time and resource cost of model training.
In addition, the alignment of the degradation features of the
simulation data and experimental data is relatively rough,
methods such as contrastive learning and local domain
discriminator can be further introduced to realize the fine-
grained alignment of the simulation data and experimental
data.
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