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ABSTRACT While modern deep learning methods have made significant progress in medical image
segmentation, some challenges remain, including accurately capturing features at multiple scales, limited
ability to detect critical regions, and susceptibility to noise and background interference. To address these
challenges, a new neural network called HMSAM-UNet is introduced in this work. A novel module,
the Hierarchical Multi-Scale Attention Module (HMSAM), was designed in HMSAM-UNet to improve
the precision and accuracy of CT image segmentation significantly. Specifically, HMSAM integrates
the Hierarchical Attention Mechanism and Inception Module via residual connections. The Hierarchical
Attention Mechanism can highlight important regions by learning attention weights, dramatically enhancing
the model’s ability to perceive critical areas for more accurate localization and segmentation of target
structures in CT images. Meanwhile, incorporating the Inception module effectively strengthens the
network’s capacity to capturemulti-scale features, substantially improving themodel’s ability to comprehend
the structural characteristics of CT images. The results show that the average loss achieved by the proposed
model has a 50.04% reduction compared to the original U-Net architecture. Furthermore, compared to other
deep learning models such as FCN, DeepLabV3, PSPNet, Unet, UNet++, and SegNet, the model proposed
in this work attains an average Dice coefficient of 98.72, and an average IoU score of 97.46 on the three
datasets, both of which are the highest among all compared models.

INDEX TERMS CT image segmentation, hierarchical attention mechanism, inception module, multi-scale,
critical region perception.

I. INTRODUCTION
Accurate segmentation of lesion regions in CT images is
crucial for diagnosis, treatment, and assessment of efficacy in
medical image analysis. While exact results can be achieved
through manual segmentation by experts, this approach is
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typically costly and requires many trained professionals
for large-scale clinical applications [1]. Therefore, the
development and application of automated medical image
segmentation technology have become a hot spot in current
research [2], [3], [4]. Compared with manual segmentation,
automated segmentation technology can provide a reliable
diagnostic process for large-scale clinical applications and
effectively reduce the risk of human error. Therefore, there is
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an urgent need for an automated medical image segmentation
technique in the current CT image segmentation field.

In recent years, deep learning methods, particularly
convolutional neural networks (CNNs), have been widely
applied in medical image segmentation, outperforming con-
ventional algorithms for computer vision tasks and CT image
segmentation. Fully Convolutional Networks (FCNs) are one
of the most advanced techniques to generate pixel-level
image labels at full resolution. In addition, many works have
used FCN as a starting point to develop more profound
and complex segmentation architectures such as the SegNet,
FPN, PSPNet, U-net, and DeepLab families. These methods
perform well in natural images but have some challenges in
medical images [5], [6], [7].

Compared with natural images, CT images have some
complexity, similar tomedical images, but they still face some
challenges in the segmentation task. First, CT images are
acquired in a way that is quite different from natural pictures,
usually by volume sampling of the subject’s body. This
sampling method may lead to many laminated structures,
overlapping organs, and irregular shapes in the image,making
it difficult to accurately recognize and segment the region of
interest [8], [9]. Second, parts of interest in CT images usually
consist of organs, lesions, or other medical entities, and their
boundaries are often ambiguous. This ambiguity complicates
the localization and boundary extraction of the region of
interest, requiring the model to have strong perceptual ability
and accurate location localization.

Meanwhile, the homogeneity of areas of interest in CT
images, i.e., their diversity in shape, colour, size, etc., makes
it more challenging for algorithms to identify and segment
these regions. For example, specific lesions may present
irregular shapes in the images, and organs may vary among
individuals, which requires the model to be flexible enough
to adapt to different feature representations. Furthermore,
CT images often contain substantial noise and artifacts,
which can impact the accuracy and reliability of segmenting
the region of interest. To address this issue, dedicated
image enhancement and denoising techniques are required to
optimize the quality of medical images, thereby improving
the model’s recognition and segmentation of regions of
interest.

U-Net, a commonly employed technique for image
segmentation tasks, predicts pixel labels in images based
on training data [10], [11], [12]. In the field of medical
imaging specifically, U-Net has become one of the leading
segmentation tools for various image modalities, including
CT scans, MRI, X-rays, and microscopy. The method makes
effective use of training data for image segmentation and
generates high-quality segmentation maps even with limited
labeled data.

Although U-Net performs well in medical image seg-
mentation, it has some drawbacks and limitations. For
example, when segmenting small objects in an image, U-Net
is prone to detail loss and excessive smoothing, affecting

FIGURE 1. Overall Roadmap.

accuracy, especially when dealing with small things in
segmented images. To overcome these problems, researchers
have proposed improved schemes such as U-Net++ and
SegNet; however, they still need to overcome challenges
such as high computational effort, memory footprint, and
uneven category distribution. In addition, traditional deep
learning methods such as FCN and DeepLabv3 also suffer
from relatively weak processing of complexity in medical
images [13], [14], [15]. Therefore, there is a critical need
for new and improved solutions in the current medical image
segmentation field to enhance the accuracy and efficiency of
medical image segmentation tasks. Based on the preceding,
this paper proposes an original convolutional neural network,
HMSAM-UNet, with the goal of increasing the performance
and precision of medical image segmentation. The overall
layout of this paper is depicted in Figure 1.

To validate the efficacy of the newly proposed HMSAM-
UNet, three datasets - kidney stone, tuberculosis, and
ultrasound - are generated in this paper. These datasets
encompass various medical image segmentation challenges
and possess authentic medical image data with high reference
values. Leveraging these datasets, this paper compares and
validates the new model against existing benchmark models,
demonstrating the superior performance and efficiency of the
proposed model. The main contributions of this paper are as
follows:
(1) In this paper, a novel network model named

HMSAM-UNet was designed, which demonstrates
superior performance in CT image segmentation tasks
with higher precision and accuracy than other modern
deep learning networks. In addition, HMSAM-UNet
also shows good robustness and can maintain excellent
performance in different CT image segmentation tasks.

(2) A new module, HMSAM, is designed to innovatively
integrate the Hierarchical Attention Mechanism and
Inception model with the U-Net network to realize the
effective fusion of multi-scale features. Through this
design, the model can focus and emphasize more on the
critical regions in CT images, thus effectively solving
the problem of insufficient ability of the traditional
model to perceive the key areas.

(3) The performance of the proposed HMSAM-UNet
model is analyzed in comparison with other seman-
tic segmentation models, including U-Net, U-Net++,
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UNetr, COTR, SegNet, DeepLabV3, PSPNet and FCN.
The results of the evaluation experiments demonstrate
that the algorithm proposed in this work achieves
higher efficiency and accuracy in medical image
segmentation compared to the other methods.

The rest of this paper is organized as follows: Section II
presents related work in the field of medical image seg-
mentation. Section III presents three new datasets and the
methodology for constructing the HMSAM-UNet model.
Section IV outlines experimental evaluations designed to val-
idate the effectiveness of HMSAM-UNet for medical image
segmentation and provides discussion. Finally, Section V
concludes the paper.

II. RELATED WORKS
Medical image segmentation has seen many noteworthy
research results emerge in recent years. To present these
research advances comprehensively, this paper will take a
three-pronged approach. Firstly, this paper will introduce
U-Net and its improved methods and explore their appli-
cations and performance in medical image segmentation
tasks. Second, this paper will focus on enhanced networks
for other classical deep learning networks and innovative
models that improve segmentation accuracy and efficiency
by introducing new mechanisms and strategies. Finally,
this paper will explore the promise and potential of a
creative research direction - novel deep learning-based
network models for medical image segmentation. By cat-
egorizing these three aspects, readers will gain a more
comprehensive and profound grasp of the current research
status and future trajectory in medical imaging.segmentation
[16], [17], [18], [19].

U-Net, as a classical deep-learning method in the field
of medical image segmentation, is widely utilized for
segmentation tasks involving CT images, MRI, and other
medical modalities. In a recent study, Yin et al. [20] proposed
a method named SD-UNet for the problem of segmenting
lung infection regions in COVID-19 CT images. This method
combines the self-attention mechanism (SA) and the dense
space pyramid pooling module (Dense ASPP), which can
fuse global and multiscale information and effectively solve
challenges such as fuzzy boundaries and low contrast.
In addition, Li et al. [21] investigated automatic liver and
tumor segmentation in CT images and proposed a method
called Hybrid Dense Connected U-Net (H-DenseUNet) in
their paper. The technique combines 2D and 3D modules
to extract features efficiently and aggregate contextual infor-
mation. On the MICCAI 2017 dataset and the 3DIRCADb
dataset, H-DenseUNet exhibits segmentation results superior
to other methods. Additionally, Kushner et al. [22] probed
the significance of automated liver and tumor segmentation
in the clinical interpretation and treatment planning of
hepatic diseases and put forward a multiscale approach. The
method effectively improved the segmentation performance

by enhancing the sensory field of the convolutional neural
network (CNN). In a study by Geeta Rani et al. [23],
the authors proposed a KUB-UNet model for solving the
problem of semantic segmentation of kidneys, ureters, and
bladder in KUB X-ray images. The model utilizes the ability
of adaptive local receptive fields and feature reuse, which
enables effective capture of specific details and structures in
medical images, thus significantly improving the accuracy of
segmentation of urinary system organs. However, as stated
above, while these methods have made some headway
on medical image segmentation tasks, they still encounter
challenges when applied to complex and variable CT images.
Specifically, they are prone to issues like loss of detail, fuzzy
boundaries, and limited ability to identify critical regions,
which impacts the accuracy of segmentation outcomes.

In addition to U-Net and its improved methods, other
classical deep learning models, such as SegNet, PSPNet,
FCN, and DeepLabV3, have also received extensive attention
and improvements from researchers. These models intro-
duce new strategies, such as null convolution, attention
mechanism, feature fusion, etc., to improve segmentation
accuracy and performance. In the paper by Xing et al. [24],
in order to achieve accurate segmentation of medical
images with different modalities, they proposed a deep
learning-based automatic segmentation model called CM-
SegNet. The model adopts multi-scale input and encoding-
decoding ideas and consists of a multilayer perceptron
and convolutional module, which can effectively extract
global and local image information to realize the accurate
segmentation task. The experimental results show that the
CM-SegNet model outperforms other methods with better
segmentation performance and shorter training time, which
has high clinical application value. In another piece of work,
Yamanakkanavar and Lee [25] introduced MF2-Net, a mul-
tipath feature fusion CNN encompassing multiple encoder
paths to seize layer-specific multiscale information. Each
encoder path employs a stacked asymmetric kernel module
termed SGC to efficiently encode contextual particulars
in high-level features and accurately conflate neighboring
feature cues. At the bottleneck layer, the encoded elements
are connected to capture the rich semantic features of
the input image. Furthermore, the segmentation boundaries
are honed at the decoder phase through the bootstrap
block mechanism. Their experimental results demonstrate
that the SGC module significantly improves segmentation
accuracy, and MF2-Net outperforms existing methods on
medical image segmentation tasks. By effectively conflating
multiscale feature cues and honing segmentation margins,
their proposed approach attains state-of-the-art performance.
In a paper [26], Srivastava et al. proposed a Multiscale
Residual Fusion Network called MSRF-Net specifically for
medical image segmentation. This network can efficiently
handle the segmentation task for objects of different sizes
and is especially suitable for small biased datasets. MSRF-
Net employs a Dual-Scale Dense Fusion (DSDF) block for

VOLUME 12, 2024 79417



N. Liu et al.: HMSAM-UNet: A Hierarchical Multi-Scale Attention Module-Based CNN

exchanging multiscale features of other receptive fields for
multiscale fusion while preserving the resolution, improving
the information transfer and being able to propagate high
and low-level features, thus achieving accurate segmentation
results. Extensive experiments have shown that MSRF-Net
outperforms other methods on several medical datasets and
obtains improved results. Cheng et al. [27] proposed an
efficient and precise expansive fully convolutional network
(FCN) for biomedical image segmentation termed Fully Con-
volutional Attention Network (FCANet). FCANet combines
two attentional modules to aggregate long-range and short-
range contextual information. The spatial attention module
can aggregate features at each location, thus spatially pro-
moting similar characteristics. The channel attention module,
on the other hand, emphasizes the channel dependency
between any two channels. FCANet integrates two attention
modules to weight and combine their output features. This
improves feature representation and segmentation accuracy
for biomedical images. Experiments demonstrate FCANet’s
ability to substantially enhance biomedical image segmenta-
tion performance. However, despite these enhanced models
boosting the accuracy and efficiency of medical image seg-
mentation to some degree, they still have some performance
and robustness constraints when confronting intricate and
variable medical images. In particular, these models may
need to perform better when dealing with images with solid
interference or noise or when facing unbalanced datasets
with few categories and samples, resulting in imprecise
segmentation boundaries or mis-segmentation. Furthermore,
existing models need improvement in perceiving critical
regions to better capture intricate details and structures in
medical images. This can enhance segmentation accuracy and
robustness. Advancing medical image segmentation requires
continued optimization of deep learning models to address
the growing complexity and diversity of medical images.

In recent times, Transformer-centered approaches have
garnered substantial attention for medical image segmen-
tation, with mounting researcher interest. Capitalizing on
the triumph of Transformers in natural language process-
ing, these methodologies exhibit formidable global feature
modeling capabilities for medical images. For example,
Ma et al. [28] proposed a Hierarchical Contextualized Atten-
tion Transformer Network (HT-Net) to achieve excellent per-
formance in medical CT image processing, which effectively
learns the relationship between remote pixels and captures
rich semantic information through the fusion of multiscale
and Transformer. Meanwhile, the algorithm of Pan et al. [29]
successfully combines a U-shaped Convolutional Neural Net-
work (CNN) with a Visual Transformer (VIT) in multi-organ
segmentation of male pelvic CT images, which facilitates
long-range dependency through a self-attentive mechanism
to achieve the delivery and prediction of high-resolution
feature maps. However, while Transformer-based methods
have made significant progress in global feature modelling,
they still need to improve in perceiving details and local

information. Given the large number of complex structures
and subtle features in CT images, local information is
crucial for accurate segmentation results. Moving forward,
an important research direction involves developing new
network architectures that can better fuse local and global
knowledge. This will enable more precise detail perception
and improved segmentation performance for medical images.

Based on the above, the primary objective of this paper
is to enhance the precision and robustness of CT image
segmentation, with a particular emphasis on approaches to
refine several classical and innovative models. However,
these methods have limitations in discerning details and local
information, especially when facing complex and variable CT
images. To conquer these challenges, this study put forward
a network model called HMSAM-UNet, which dramatically
strengthens the capacity to glean insights from critical regions
whilemaintaining excellent performance and robustness, thus
demonstrating superb competency in CT image segmentation
tasks.

III. MATERIALS AND METHODS
A. HMSAM-UNET
The current U-Net model has a particular application
basis within medical image segmentation. Limited by its
sensory area and the problem of segmentation accuracy, its
performance in some specific application scenarios could be
more satisfactory. To address the limitations of the U-Net
model, this work proposes a new network, HMSAM-UNet,
a novel CNN based on the U-Net architecture that integrates
the hierarchical attention mechanism and Inception module.

B. INTRODUCTION TO U-NET
U-Net networks are characterized by symmetric encoder
and decoder structures for pixel-level semantic segmentation.
The encoder can progressively reduce the image size and
extract feature representations at different scales, while
the decoder can restore the feature map to its original
dimensions by upsampling, thereby enabling pixel-level
semantic segmentation.

The U-Net network has been extensively applied in
medical image segmentation, for instance, in segmenting
organs such as liver, lung and heart. Compared with the
traditional manual feature extraction and segmentation meth-
ods, the U-Net network can automatically learn the features
and patterns in medical images with higher segmentation
accuracy and better robustness. In addition, the U-Net
network can handle medical images with multiple channels
(e.g., multi-sequence MRI) and improve the segmentation
effect by combining various information.

C. MODULE INTRODUCTION
1) HIERARCHICAL ATTENTION MECHANISM
The Hierarchical Attention Mechanism (HAM) is a critical
technique introduced in deep learning models to enhance the
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model’s attention to the input data. The mechanism aims to
implement a cascading attention architecture that selectively
focuses on crucial information in the input data through a
hierarchical structure from global to local. At each hierarchy,
the adaptive weighting of different features is achieved by
learning parameterized attention weights, calculating the
importance distribution of the input data, and applying the
consequences to the input feature map. Subsequently, the
weighted features from different layers are fused to obtain
a more discriminative feature representation.

Recent studies shed light on the efficacy of hierarchical
attention mechanisms in various domains. For instance,
in medical image segmentation, the work by Ding et al.
[30] introduces the Hierarchical Attention Network (HANet)
for this purpose. This approach presents an innovative
method that reconstructs the self-attention mechanism from
the perspective of high-order graphs. By embedding a
Hierarchical Attention (HA) module within HANet, context
information from multiple levels of neighbours is captured,
effectively mitigating noise and enhancing segmentation
accuracy, as demonstrated in experiments across tasks such
as optic disc/cup segmentation, vessel segmentation, and lung
segmentation on medical datasets.

Similarly, Wang et al. [31] propose a Hierarchical Atten-
tion Network (HANet) in image captioning. This network
synchronously computes attention over features at different
semantic levels, enabling the prediction of other words
based on distinct features. The Multimodal Residual Module
(MRM) is introduced to learn joint representations from
various modalities, facilitating adaptability to diverse image
contexts. Experiments on the MSCOCO dataset validate the
effectiveness of HANet, surpassing state-of-the-art methods
in terms of BLEU and CIDEr scores.

These studies collectively underscore the adaptability and
robustness of hierarchical attentionmechanisms across differ-
ent domains. The hierarchical attention mechanism’s ability
to dynamically allocate attention based on varying features
enables models to adapt to diverse contexts effectively. This
adaptability is crucial for enhancingmodel generalization and
robustness, as evidenced by experimental validations across
different scenarios and tasks. Thus, the hierarchical attention
mechanism improves performance and enhances the model’s
ability to handle changes in various environments, ultimately
contributing to its applicability and efficacy.

2) INCEPTION MODEL
The Inception module is a means of efficiently extracting
features and reducing the number of parameters. The module
is specifically designed and implemented as follows.

Firstly, the Inception module employs a multi-branch
network structure, where each branch uses a different-sized
convolutional kernel to capture multi-scale information in
the image. This is consistent with how the human eye
perceives scene information in other sensory domains. Larger
convolutional seeds extract global features, while smaller

FIGURE 2. HMSAM structure diagram.

seeds are better at learning local features. The multi-branch
structure allows for both international and regional features.
Second, a 1 × 1 convolutional kernel is introduced in the
module for channel compression. This reduces the number
of parameters on one hand and accelerates the computation
process on the other. After the channel compression, 3 ×

3 and 5 × 5 convolutions are added, which act as a channel
decomposition and improve the expressive power of the
model.

Again, the maximum pooling branch enhances the stability
and robustness of the model to geometric transformations
of the image. Pooling allows features to remain invariant to
position and rotation transformations.

Finally, the width of each branch of the Inception module
can be customised. The structure is robust and easily
scalable. The branch width can be adjusted according to the
task requirements and computational resources to achieve
efficient feature learning.

Overall, the Inception module extends the width and depth
of the network with the same number of parameters and
improves the model’s feature expressiveness and computa-
tional efficiency through multi-scale convolution, channel
decomposition, compression, pooling and other technical
means.

D. HMSAM STRUCTURE
The HMSAM module consists of two main components: the
multiscale Inception module and the Hierarchical Attention
Mechanism. Its structure is shown in Figure 2. The multiscale
Inception module utilizes four parallel path structures to
extract different scale features: the first path is a 1 ×

1 convolution to capture spatial correlation; the second path is
a 1×1 convolution followed by a 3×3 convolution to obtain
local parts; the third path uses a 1 × 1 convolution followed
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FIGURE 3. HMSAM-UNet structure diagram.

by a 5 × 5 convolution to aggregate elements from a broader
region; and the last path undergoes max pooling followed by
a 1×1 convolution to obtain high-level semantic features. All
four paths apply the ReLU activation function.

After obtaining the features from the four paths, they are
concatenated as the output of the Inception module. This
produces a feature representation that incorporates different
scale features.

Next, the feature map is fed into the hierarchical attention
mechanism. Here, 1 × 1 convolution is utilized to generate
spatial attention weights and dot products with the feature
map to obtain spatial attention features. Concurrently,
channel attention weights are also produced using global
average pooling for channel scaling. Finally, the spatial
attention features and channel attention features are summed
to acquire the feature representation with fusion attention.

The final output of the HMSAM module is the residual
concatenated features, i.e., the above-described attention
features are added to the module’s input features. This further
enhances the feature representation.

E. HMSAM-UNET STRUCTURE
HMSAM-UNet is a fully convolutional network (FCN)
designed with an encoder-decoder architecture for the seman-
tic segmentation of medical images. The entire network can
be divided into the encoder part and the decoder part. Its
structure is shown in Figure 3.
The encoder part of the network uses convolutional layers,

batch normalization, activation functions, and max pooling
for feature extraction. In order to enhance the feature repre-
sentation capability of the encoder, the network introduces a
newly proposed HMSAM module after each downsampling
layer, which first utilizes a multi-scale Inception structure to
capture feature information at different scales. The HMSAM
module first captures feature information at different scales
using a multi-scale Inception structure. Then, it incorporates
a hierarchical attention mechanism into the Inception output
to enhance the feature representation of critical regions by
learning the attention weights. Finally, the production of the
HMSAM module is channel-adjusted by 1 × 1 convolution

FIGURE 4. Example of a dataset.

and combined with the output of the encoder through residual
concatenation to form an enhanced feature representation.

In the decoder part, the network uses upsampling to recover
the spatial size of the encoder output. At the same time,
the feature maps of corresponding scales in the encoder
are concatenated to the upsampled features through skip
connections so that the decoder can utilize richer feature
information. After the decoder gradually restores the spatial
resolution, the last layer outputs the category prediction of
each pixel through 1 × 1 convolution to complete the image
segmentation.

IV. EXPERIMENTS AND RESULTS
A. EXPERIMENT SETTINGS
1) IMAGE DATASET
This paper used three image datasets for model training,
which are lung, liver, and kidney stone CT image datasets.
Specific examples are shown in Figure 4.

2) TRAINING, VALIDATION, AND TEST DATA SETUP
For the lung CT dataset, 2100 images were used for training
and 500 for testing. The liver CT dataset consisted of
400 training and 100 test images. Similarly, the stone CT
dataset had 400 training images and 100 test images. Data
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augmentation through rotation, noise injection, cropping etc.
was applied to the original and labeled images to increase
diversity and volume, improving generalization. During
training, a validation set enabled model adjustment and opti-
mization to ensure effectiveness. The multi-dataset approach
with augmentation and validation helps improve and verify
the HMSAM-UNet model’s segmentation capability.

To summarize, data augmentation and validation sets
were utilized during HMSAM-UNet’s training process. The
training set updated model parameters, the validation set
tuned hyperparameters and monitored performance, and
the test set evaluated final generalization capability. This
approach of partitioning the data into training, validation, and
testing sets facilitated efficient model training, tuning, and
performance appraisal. The proof set, in particular, assisted
optimization and verification of the model by furnishing
an unbiased means to analyze hyperparameters and track
progress discrete from the test set. This rigorousmethodology
ensures HMSAM-UNet is properly trained and validated for
optimal medical image segmentation [32], [33], [34].

3) LAB ENVIRONMENT
In this study, NVIDIA GeForce RTX 3080 Ti GPU was used
as the deep learning computational gas pedal and CUDA
11.2 was installed as the parallel computing platform and pro-
gramming model. In addition, Python 3.8 was chosen as the
primary programming language, and TensorFlow 2.9.0 was
installed as the deep learning framework for implementing
various neural network models for training and inference.
Together, these components build an experimental environ-
ment that provides mighty computing power and a flexible
programming environment for deep learning research, thus
making it possible to conduct complex and meaningful
experiments. Such a configuration enables the performance
and effectiveness of different deep learning algorithms on
diverse tasks to be explored in experiments [35], [36], [37].

4) HYPERPARAMETERS
This paper proposes a new loss function called Boundary
Dice Loss for CT image segmentation. It comprises three
components: Categorical Cross-Entropy Loss, Dice Loss,
and Boundary Loss. Collectively, these facilitate pondering
the similarity between predicted and ground truth seg-
mentations in conjunction with boundary constraints to
refine accuracy. By holistically accounting for segmentation
similarity and boundaries, Boundary Dice Loss allows
improving model segmentation performance on CT images.
The multi-component design provides comprehensive opti-
mization to enhance segmentation precision.

To elucidate, Categorical Cross-Entropy Loss gauges
the disparity between the model’s predicted outputs and
the ground truth segmentation labels for the multi-class
segmentation undertaking. It computes the cross-entropy loss

TABLE 1. Confusion matrix example.

for semantic segmentation. Its formula is as Equation 1.

Categorical_Cross− EntropyLoss = −

C∑
c=1

y(c)true log(y
(c)
pred)

(1)

where C is the total number of categories, y(c)true is the actual
binary split pixel value (0 or 1) of sort c in the label, and y(c)pred
is the pixel value of category c in the predicted output of the
model (taking matters between 0 and 1).

Dice Loss utilizes the Dice Coefficient to measure
similarity between the predicted and ground truth segmen-
tations. It provides a loss function based on this common
segmentation evaluation metric. Its formula is as Equation 2.

DiceLoss = 1.0 −
2 · intersection + smooth

union + soft
(2)

where corner is the intersection of the predicted segmentation
and the accurate segmentation; union is the concatenation of
the predicted segmentation and the accurate segmentation;
smooth is a smoothing term, usually taken as a minimal
number, such as 1e−7, to prevent the denominator from being
zero.

Boundary Loss constrains the similarity between the
boundaries of the predicted and actual segmentations.
It achieves this by calculating the difference in boundary
gradients. Its formula is as Equation 3.

BoundaryLoss =
1
HW

H∑
i=1

W∑
j=1

∣∣∣∣∣∣∇y(ij)true − ∇y(ij)pred

∣∣∣∣∣∣
1

(3)

where H and W are the height and width of the image,
respectively; y(ij)true and y(ij)pred are the pixel values in the
actual boundary and the predicted boundary of the model,
respectively; ∇ denotes the gradient operator; ||·||1 indicates
the L1 paradigm, which is used to compute the absolute sum
of the gradient differences.

In addition, this uses the Adam optimizer that can
dynamically adjust the learning rate to 3 × 10−4 during the
training process and sets the batch size to 32. Considering
the computational performance of the workstation, this paper
finally sets 100 rounds for training.

B. EVALUATION INDEX
To evaluate the proposed model’s performance, this work
utilizes several common segmentation metrics: Dice coef-
ficient, Jaccard index, Precision, Recall, F1 score, and
Pixel Accuracy. Together these provide a comprehensive
quantitative assessment. The confusion matrix involved in
this paper is shown in Table 1.
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The Dice coefficient measures the similarity between two
sets and is widely used to evaluate segmentation. For binary
tasks, it assesses the overlap between predictions and ground
truth labels. It provides a quantitative measure of how well
the segmentations match. The Dice coefficient is calculated
using the Equation 4.

Dice =
2 · |A ∩ B|

|A| + |B|
(4)

where A is the set of predicted results, B is the set of proper
labels, |A| denotes the number of elements in set A, |B|

represents the number of factors in set B, and |A∩B| indicates
the number of elements in the intersection of A and B.

Jaccard Index (also known as Intersection over Union,
IoU): Similar to Dice coefficient, the Jaccard index measures
similarity between two sets and is commonly applied in
segmentation and detection tasks. For binary problems,
it assesses the similarity between predicted and true labels.
It provides another metric to quantitatively evaluate the
correspondence between segmentations. The formula for the
Jaccard index is Equation 5.

Jaccard =
|A ∩ B|

|A ∪ B|
(5)

where |A ∪ B| denotes the number of elements of the
concatenated set of A and B.

Precision measures the proportion of predicted positive
samples that are actually positive. In other words, it calculates
the percentage of samples the model predicts as positive that
are genuinely positive. Precision evaluates how many of the
model’s optimistic predictions are correct. The formula for
Precision is Equation 6.

Precision =
TP

TP + FP
(6)

Recall measures the proportion of valid positive samples
that are correctly predicted as positive. In other words,
it calculates the percentage of positive examples that the
model correctly identifies out of all actual positive cases.
Recall evaluates how many relevant instances are captured
in the predictions. Memory is calculated using Equation 7.

Recall =
TP

TP + FN
(7)

Accuracy measures the overall proportion of correctly
classified samples out of all samples. It evaluates the total
predictive accuracy of a classification model. Accuracy is
computed as Equation 8.

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

C. EXPERIMENTAL RESULTS
Figure 5 shows the training results for the three datasets.
Observing the figure, when using the lung lesion region
segmentation dataset, the prediction results of U-Net++,

UNetr, SegNet, DeepLabV3, and PSPNet can roughly
describe the contour range of the lesion region. However,
the prediction results of these models have some bias and
inaccuracy compared with the actual areas.

Especially in the edge part of some delicate or complex
lesions, the segmentation effect of these models could be
better; FCN performs more poorly, and its prediction results
lose a lot of detailed information, which leads to many
delicate areas of lesion regions being ignored. On the other
hand, the segmentation results of U-Net and COTR are
relatively good and can have a high degree of overlap
with the natural region. Especially, COTR has better detail
information grasping ability than U-Net, making it slightly
better in segmentation results. However, there needs to be
more clarity in the boundary segmentation of U-Net and
COTR, and effective boundary recognition is impossible
for some large segmented regions. In contrast, HMSAM-
UNet has the most apparent segmentation of the boundary
area while ensuring the ability to acquire detailed detail
information, and this difference is more evident in those
other two datasets. Overall, the overall segmentation area of
HMSAM-UNet is closer to the actual situation and has a
higher practical application value.

D. MODEL EVALUATION
This paper evaluates the proposed model and six comparative
models, and the results are shown in Figure 6 and Table 2.

Firstly, the training process of the seven models was
comprehensively analyzed, including the variation of Dice
coefficients, IoU coefficients, and loss functions. Figure 6
shows the interpretation of these training metrics.

From the figure 6, it can be learned that COTR, FCN,
PSPNet and DeepLabV3 showed a gradient explosion phe-
nomenon when training with Dataset 1. This is because these
two models encountered too many parameters during the
training process, which caused the gradient values to become
abnormally large, thus causing the model’s parameters to
deviate from the optimal solution and leading to unstable
training. In contrast, the other models maintained a normal
training state during the training process without the problem
of gradient explosion. In addition, U-Net and HMSAM-UNet
show better robustness throughout the training process. They
have nearly the same convergence speed while keeping
the training curve smooth. This indicates that U-Net and
HMSAM-UNet can perform well for different training
data and parameter settings, with strong adaptability and
generalization ability.

Table 2 shows the training results of each model on the
validation set, and the results show that HMSAM-UNet
scores better than other models on the vast majority of
evaluation functions.

The experimental results show that the HMSAM-UNet
model achieves the lowest Loss coefficient among all the
comparative models, with an average Loss of 7.34 in 3 train-
ing sessions, which is 50.04% lower than the average Loss
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FIGURE 5. Segmented image.

TABLE 2. Test set results.

of 15.27 of U-Net. The Dice coefficient of HMSAM-UNet
is also higher than the other models, with 98.72 in 3 training
sessions, while the averageDice coefficient of U-Net is 96.49,
which is 2.31% higher than the other models. Regarding
the IoU coefficient, HMSAM-UNet has an average score
of 97.46, maintaining the highest IoU coefficient in all
three training sets. Regarding moderate accuracy, HMSAM-
UNet scored close to COTR in dataset 1 while keeping the
highest score in all other datasets, with an average score of
98.82, which is an improvement of 0.47 compared to U-Net.
In addition, HMSAM-UNet also performs well in terms of

average recall and accuracy, which are 99.43 and 99.44,
an improvement of 0.03 and 0.06, respectively. Overall,
HMSAM-UNet shows better results in segmentation tasks,
indicating that it can effectively handle different datasets and
charges.

E. HAM EVALUATION EXPERIMENT
This experiment compares two deep learning models, the
traditional U-Net and the U-Net, with the introduction of
the Hierarchical Multiscale Attention Mechanism (HAM)
(UNet-HAM). Both models were tested on three different
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TABLE 3. HAM Evaluation Experiment.

FIGURE 6. Changes in training process indicators in Dataset 1.

datasets to evaluate their performance fully. As shown in
Table 3, the experimental results show that UNet-HAM
outperforms the traditional U-Net on either dataset. Specif-
ically, UNet-HAM significantly improves two important
performance metrics, Dice and IoU. At the same time, UNet-
HAM has a lower loss value than U-Net. This result verifies
that HAM can effectively improve the model’s performance
and adapt it to different data distributions better.

TABLE 4. Ablation experiment.

F. ABLATION EXPERIMENT
To further assess the impact of introducing different modules
(e.g., Inception module, Hierarchical Attention Mechanism,
and Residual Connection) into the U-Net model on the
model performance, an ablation experiment is designed
in this paper. The ablation experiment uses a modified
U-Net model, HMSAM-UNet, as the baseline model. This
model integrates the HMSAMmodule in each downsampling
layer of the encoder, which contains the Inception module,
the Hierarchical Attention Mechanism, and the Residual
Connection.

This research set up two comparisonmodels to evaluate the
effect of these new modules individually and in combination.
The first comparison model, UNet-Inception, is a regular
U-Net model with the Inception module added after a regular
convolutional layer. The second comparison model, UNet-
Inception-HAM, adds an Attention Mechanism module
to UNet-Inception. All four models were validated on
Dataset 2.

The experimental results are shown in Table 4, where
the HMSAM-UNet model outperforms the other three
models in all evaluation metrics. This indicates that the
simultaneous introduction of the Inception module, the
hierarchical attention mechanism and residual concatenation
can significantly improve the model performance, and the
fact that the UNet-Inception-HAM model outperforms the
UNet-Inception model confirms that the introduction of
the hierarchical attention mechanism alone can also bring
about a certain degree of performance improvement. On the
other hand, the plain U-Net model performs the worst. The
results of this ablation experiment validate that introducing
these novel modules (e.g., Inception, Attention Mechanism,
Residual Connection, etc.) into the U-Net model helps
improve the model performance and that a combination of
these modules works best.

G. MODEL TRAINING TIME EVALUATION
Table 5 shows the training time of each model, and the
results show that HMSAM-UNet has a faster training
speed than other models. This short training advantage is
mainly because HMSAM-UNet adopts feature splicing in the
decoder part, which is used to realize the fusion of multi-
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TABLE 5. Model inference times.

scale information. Compared to the fully connected or fully
convolutional layer approach, the feature splicing approach
has less computational effort, which is conducive to speeding
up the training process. Overall, HMSAM-UNet has high
practicality.

V. DISCUSSION
In this study, an innovative model, named HMSAM-UNet,
is designed to enhance the model’s ability to capture mul-
tiscale features and focus on critical regions by introducing
the Hierarchical Multiscale Attention Module (HMSAM),
which incorporates the Inception module, which acquires
feature representations at different scales in parallel, and the
hierarchical attention mechanism, which focuses on critical
regions through adaptive weighting. The latter focuses the
model on important areas of the input data through adaptive
weighting. This design enables HMSAM-UNet to efficiently
extract multi-resolution semantic and detailed information
from CT images and focus on key structures such as lesions
and organs, thus achieving more accurate segmentation.

Compared with the original U-Net, the experimental
results show that HMSAM-UNet reduces the average loss
value on the three datasets by 50.04%, mainly attributed to
the multi-faceted optimisation design. Firstly, the multiscale
feature fusion of HMSAM makes the feature representation
richer, and the model can portray the target structure more
accurately; secondly, the attention mechanism enables the
model to adaptively focus on the key regions, which reduces
the risk of misclassification; furthermore, the structure
of 1 × 1 convolution and residual linkage improves the
effectiveness of the model and avoids information loss
and gradient problems. Together, these innovative designs
enhance the performance of HMSAM-UNet, enabling it to
excel in processing complex, detail-rich CT images and in
segmenting clear boundaries and small critical regions, which
are essential for clinical diagnosis and treatment planning.

In addition, HMSAM-UNet shows good adaptability
and generalisation ability, achieving the best segmentation
accuracy on different datasets (e.g., lung, liver, kidney stones,
etc.), which proves that the model is promising to be applied
to a wide range of medical image segmentation scenarios,
e.g., lesion and thorax segmentation in CT images of the
lungs, organ segmentation in CT images, and renal stone
segmentation in CT images of the kidneys.

However, despite the excellent achievements of HMSAM-
UNet, there is still room for further improvement in future
iterations. For example, introducing more diverse data can
improve the model’s generalisation. In addition, increasing
the interpretability of the model and reducing the number of
parameters are also directions that need to be worked on to

improve the interpretability and deployment friendliness of
the model.

When extending HMSAM-UNet to other medical imaging
domains (e.g., MRI, ultrasound, etc.), it is necessary to focus
on the special challenges of different imaging modalities.
For example, MRI often suffers from strong noise and
offset fields, while ultrasound images are characterised by
significant speckle noise and low contrast. To address these
challenges, the preprocessing, loss function and other aspects
of HMSAM-UNet may need to be specially designed to
ensure good segmentation performance. Different imaging
modalities typically require stronger attentional focus and
more detailed feature capture capabilities than CT images.

VI. CONCLUSION
To enhance the precision of CT image segmentation, this
paper puts forward a new convolutional neural network
model named HMSAM-UNet. The unique characteristic of
HMSAM-UNet is the design of a new module, the Hier-
archical Multi-Scale Attention Module, which ingeniously
combines the Hierarchical Attention Mechanism and the
Inception module to actualize multi-scale feature fusion,
which dramatically refines the model’s segmentation effect
on the critical regions. By bringing in the layer attention
mechanism, HMSAM-UNet can adaptively concentrate on
features at different levels. This enables the model to seize
better details and structures at various scales in medical
images. In themeantime, by employing the Inceptionmodule,
HMSAM-UNet can extract features efficiently, effectively
reducing the number of parameters of the model and bettering
the computational efficiency. To verify the performance of
HMSAM-UNet, a series of evaluation experiments are con-
ducted in this paper, compared with the other six models. The
experimental results demonstrate that HMSAM-UNet has
made significant advancements in CT image segmentation
tasks and is markedly superior to other methods. Its ability
to accurately segment complex CT images is impressive and
brings new prospects to medical image segmentation.

Although HMSAM-UNet shows superior performance in
simulation experiments, it still needs further improvement
and validation due to the limitations of research capabilities
and environmental conditions. In this paper, HMSAM-UNet
mainly focuses on scenarios applicable to CT image seg-
mentation and does not fully consider other types of medical
images. Future research plans include further optimizing
HMSAM-UNet for a broader range of medical images and
further enhancing the utility and adaptability of the model.
Through continuous efforts and improvements, HMSAM-
UNet is expected to become an essential innovation in
medical image segmentation, providing more reliable and
efficient solutions for medical image diagnosis and treatment.
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