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ABSTRACT This study focuses on enhancing the quality of video images in coal mines under challenging
conditions such as dust and low illumination. Existing algorithms often suffer from poor generalization and
low accuracy. To address these limitations, we propose an unsupervised image enhancement method based
on the HSV color space transformation, incorporating the Retinex theory into the luminance component
(V channel). A disturbance technique is employed to perturb the luminance, and a reflectance estimation
network based on U-Net is designed to ensure consistency between the original reflectance and the disturbed
reflectance within the same scene. Additionally, residual multiscale and attention mechanism modules are
introduced to improve accuracy while reducing the network’s parameter count. The saturation component
(S channel) is adaptively adjusted based on the correlation coefficient. The final enhanced image is obtained
by recombining the original hue (H channel), luminance, and saturation before converting to the RGB
color space. Importantly, our algorithm does not require training on normal light images. The experimental
results indicate that our algorithm outperforms other state-of-the-art algorithms in terms of objective quality
metrics, namely Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM). Additionally,
our algorithm exhibits superior performance in subjective visual analysis compared to the comparative
algorithms, demonstrating its efficacy in improving the visual quality of low-light images in mining
environments.

INDEX TERMS Coal mine images, Retinex, U-Net, random disturbance.

I. INTRODUCTION
With the continuous advancement of information construc-

light sources. These factors result in low illumination, color
distortion, and loss of detail in the image data captured by

tion in high-tech coal mines [1], traditional coal mining
operations are gradually transitioning towards automatic
unmanned mining. In this context, the intelligence level of
digital video monitoring systems [2] in coal mines is also
improving, providing reliable data support for downstream
tasks such as target detection [3], [4], special area early
warning [5], and target tracking [6]. However, underground
coal mines face challenges such as high dust and fog
concentrations, as well as low brightness from artificial
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underground camera devices. Therefore, there is a need to
enhance low illumination images in coal mines [7] in order
to improve image quality.

Traditional low-light image enhancement algorithms
encompass histogram equalization [8], [9], dark channel prior
enhancement [10], and Retinex algorithms [11], [12]. Among
these, Retinex algorithms, including Single-Scale Retinex
(SSR) [13], Multi-Scale Retinex (MSR) [14], and Color
Restoration Retinex (MSRCR) [15], are widely applied.

Nevertheless, traditional methods often exhibit disadvan-
tages such as high computational complexity and poor
generalization performance. To address the limitations of
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traditional enhancement methods, in recent years, numerous
scholars have employed deep neural network methods for
enhancing low-light images. Depending on the approach,
these methods can be classified into supervised and unsuper-
vised methods.

In the realm of supervised learning-based approaches,
Zhang et al. [16] proposed KinD, a neural network designed
for enhancing low-light images. The method effectively
addresses significant visual issues and allows for flexible
contrast adjustments, leading to improved image quality.
Expanding on this work, Zhang et al. [17] introduced an
enhanced version called KinD++-, which incorporates an
additional mapping function to better align the enhanced
images with real-world conditions. In a different vein,
Wang et al. [18] introduced a novel enhancement tech-
nique based on normalized flow. Through the utilization
of a normalized flow model, they successfully learned
the correspondence between low-light and normal-light
images, resulting in improved contrast and effective noise
reduction. Jiang et al. [19] introduced a novel Degradation-
to-Refinement Generative Network (DRGN) that focuses on
enhancing fine image details while maintaining naturalness
in the visual enhancements. Xu et al. [20] proposed
HFMNet, a hierarchical feature mining network that extracts
lighting and edge features at different network layers.
Lu et al. [21] presented a multi-branch topological residual
network that utilizes topological residual blocks to enhance
the network’s learning capacity and improve image quality.
Zhuang et al. [22] introduced a dual-branch dilated network
with phase-aware Fourier convolution for low-light image
enhancement. Fan et al. [23] developed an illumination-
constrained multi-scale low-light image enhancement net-
work, leveraging Res2Net [24] to extract deep multi-scale
features and mitigate color distortion, resulting in more
natural visual effects. Wu et al. [25] proposed Retinex Net,
a deep unfolding network based on the Retinex theory, which
combines an implicit prior regularization model with the
Retinex theory to effectively suppress noise and preserve
image details. Lu et al. [26] addressed these challenges
by proposing a dual-branch exposure fusion network for
low-light image enhancement. Furthermore, the Deep Light-
ing Network (DLN) [27] treats low-light image enhancement
as a residue learning problem and incorporates the inverse
projection module from the image super-resolution domain
into low-light image enhancement for the first time.

However, acquiring fully paired datasets for low-light
image enhancement presents significant challenges, which
restrict the practical effectiveness of supervised learning
models. To address this issue, an increasing number of
unsupervised and zero-shot learning models have been
proposed. Jin et al. [28] addressed the issues of excessive and
insufficient enhancement in low-light image enhancement
by introducing an unsupervised enhancement method. This
method incorporates a layer decomposition network and
a light effect suppression network to further suppress
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FIGURE 1. An example of mine low-light image enhanced by current
unsupervised learning-based methods and the proposed method.

highlights and enhance dark regions, ensuring optimal
contrast. Fu et al. [29] introduced LE-GAN, a novel
unsupervised low-light image enhancement network based
on generative adversarial networks trained using non-paired
low-light images. Ni et al. [30] proposed CIGAN, a cyclic
interactive generative adversarial network for unsupervised
low-light image enhancement. This network comprises
three components and incorporates attention mechanisms to
improve image quality. Wang et al. [31] presented MAGAN,
a mixed attention-guided generative adversarial network that
employs a hybrid attention layer to capture the relationships
between pixels and images, achieving image enhancement
while reducing noise.

Qiao et al. [32] proposed a generative adversarial network
(GAN) approach based on the reverse attention mechanism.
Xu et al. [33] introduced a novel quality-aware loss to
further enhance image quality. Jiang et al. [34] presented
an unsupervised decomposition and correction network and
incorporated a noise removal network to eliminate noise. Tak-
ing inspiration from CycleGAN [35], Bhattacharya et al. [36]
proposed D2BGAN, an image enhancement model that
effectively removes artifacts by combining geometric and
illumination consistency, contextual loss, and multi-scale
color, texture, and edge discriminators. EnlightenGAN [37]
and Zero-DCE [38] offer two innovative approaches: the
former utilizes an attention-guided U-Net [39] as the gener-
ator and employs a global-local discriminator, demonstrating
the ability to perform unsupervised training using unpaired
data and achieving impressive results and generalization. The
latter transforms the low-light image enhancement problem
into a curve estimation problem and iteratively enhances the
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image using a network-simulated curve. It also meticulously
designs a set of non-reference loss functions for unsupervised
training. Li et al. [40] further introduced Zero DCE++,
an accelerated and lightweight version of Zero-DCE. These
deep convolutional neural network-based algorithms have
shown significant advancements in performance compared
to traditional methods. However, they still have limitations:
as depicted in Figure 1, EnlightenGAN introduces color
biases in the enhanced images, and Zero-DCE may result
in blurry images with a lack of details and sharpness. The
unsupervised methods have potential for improvement in
terms of enhancement effectiveness.

In summary, both supervised and unsupervised methods
exhibit certain limitations:

1)Supervised methods rely on paired datasets, which are
often challenging to acquire. The scarcity of paired data
hampers the training process and limits the availability of
suitable datasets.

2)Supervised methods may lack generalization capabil-
ities. Since they heavily rely on paired data for training,
they tend to perform well on specific datasets but struggle
when applied to different scenarios. The models may fail to
effectively adapt to new and unseen data.

3)Unsupervised methods often face challenges in achiev-
ing optimal enhancement results. In complex lighting condi-
tions, such as those encountered in underground mines, the
lighting varies across different regions of captured images.
This makes it difficult to strike a balance between preserving
details in darker regions and avoiding overexposure in
brighter areas, as observed in Figure 1. Consequently, there
is a risk of losing information in overexposed regions while
still failing to adequately enhance darker areas.

In view of the problems existing in the above algorithms,
this paper proposes an unsupervised lightweight network
model, which converts the downhole RGB image into HSV
space and enhances it with Retinex theory. The main works
are as follows:

1) an unsupervised neural network model that combines
a U-Net network, residual multi-scale convolution, and
attention mechanism is proposed. The model takes U-Net as
the backbone network structure and consists of three parts:
encoding path, attention module, and decoding path. Firstly,
the image is sampled by residual multi-scale convolution and
coding downsampling. at the same time, the characteristic
tensor output of each level is copied to the decoder of the
corresponding level through the attention module, and then
the feature tensor obtained by downsampling is superimposed
and upsampled. Finally, V-channel enhancement is realized
through the loss function.

2) based on the improved U-Net model, a depth reflectivity
estimation network is designed, and a loss function is
designed to prevent the model from being over-fitted, and
regularized by the consistency of luminance in the form of
original picture and random disturbance.

3) A new random luminance disturbance method is
designed, which is helpful in capturing the reflection changes
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that may occur in the actual scene under different illumination
conditions. This method can improve the robustness and
generalization of the model.

4) optimize the borehole wall image saturation and
boundary blur after enhancement. While the luminance
component is enhanced, the saturation component is also
adaptively adjusted according to the correlation coefficient.

In conclusion, our proposed approach presents an unsuper-
vised lightweight network model for enhancing Mine images.
By incorporating U-Net, residual multi-scale convolution,
attention mechanism, and Retinex theory, we demonstrate
notable improvements in image quality and address specific
challenges encountered in underground scenarios.

Il. IMAGE ENHANCEMENT NETWORK MODEL BASED ON
HSV SPATIAL TRANSFORMATION

A. OVERALL MODEL ARCHITECTURE

Aiming to address the limitations of existing mine image
enhancement algorithms in terms of their poor enhancement
effect and generalization ability, this paper proposes an image
enhancement model in the HSV color space, as illustrated
in Figure 2. The approach involves converting the mine
image from the RGB color space to the HSV color space,
extracting the hue (H), saturation (S), and luminance (V)
components. The hue component (H) remains unchanged,
while the Retinex theoretical model is combined with
the luminance value to enhance the luminance component
(V) using an improved U-Net network. To improve the
generalization of the model, a random perturbation method
is applied to the luminance component, yielding a perturbed
component (V). By enforcing consistency between the
original reflectance and the randomly perturbed reflectance
within the same scene, the model’s ability to generalize is
enhanced. Moreover, the random perturbation method allows
the network model to achieve better image enhancement
without relying on normal reference images. The enhanced
luminance components (V. and V/) are obtained through
the improved U-Net model while ensuring consistency
with the perturbed luminance components (V. and V).
Simultaneously, the saturation component is adaptively
adjusted based on the correlation coefficient to obtain the
corrected saturation component (S.). Finally, the enhanced
HSV results are converted back to the RGB color space to
output the enhanced image. This comprehensive approach
aims to overcome the limitations of existing algorithms by
effectively enhancing the luminance, saturation, and overall
quality of mine images.

B. HSV COLOR SPACE

In this article, we use HSV color space, HSV is a color system
more commonly used in people’s lives, it is more in line
with the way people describe colors, that is, what color the
object is, how dark the color is, how bright the color is. H is
hue, or called hue, and it describes the color in degrees; S is
saturation, that is, the depth of the color; and V is hue, which
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FIGURE 2. Overall model of mine image enhancement.

is the brightness of the color. The formula for converting an
image from RGB color to HSV color space is as follows:

[ 0° A=0
G -PB
60° x +0) ,Cmax =R’
H = B — R 1
60° x +2) ,Cmax =G’ M
R -G
60°x( —|—4) ,Cmax =B
A
0 Cmax =0
S = A (2)
Cmax # 0
C max
V = C max 3)

Among them, R, G’,and B’ normalize the values of R, G,
and B to 0~1.C max is the maximum value in R’, G’, B’,and
A is the difference between C max and C min. Compared
to the RGB color space, the HSV color space offers several
advantages in the mine image enhancement:

1) Intuitive expression of color information: Unlike the
RGB channels, which do not accurately represent the color
information of objects, the HSV color space provides a
more intuitive representation of lightness, darkness, hue, and
other color-related information. This facilitates better color
comparison and analysis.

2) Preservation of color information: Converting the image
to the HSV color space helps preserve the color information
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of the image during the enhancement process. It enables
the effective recovery of color details in darker regions of
the image and reduces the complexity of processing for the
enhancement network.

3) Utilization of luminance channel (V): In an unevenly
illuminated image, the luminance channel (V) in the HSV
color space represents the largest channel. Each pixel value
in this channel corresponds to the maximum value among
the corresponding pixels in the three RGB channels. This
characteristic provides a significant amount of information
that can be leveraged to enhance mine images effectively.

C. RANDOM LUMINANCE DISTURBANCE

In order to capture the reflection changes that may occur
in real-world scenes under varying lighting conditions, this
paper introduces a random disturbance method for lumi-
nance. This method is implemented using a power function
with a random exponent (the value to which the variable is
raised) to generate an altered form of brightness within the
same scene. It ensures that the disturbed form maintains the
same reflectivity as the original form. Nonlinear functions,
such as the one described in formula 4, offer several
advantages:

1) Input and output range: The power function used in the
random disturbance method has an input and output range of
[0,1]. This range is chosen to avoid information loss caused
by overflow truncation, ensuring that the enhanced image
retains as much detail as possible.
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FIGURE 3. Improved U-Net reflectance estimation models.

2) Monotonically increasing function: The power function
chosen for the disturbance method is monotonically increas-
ing. This property helps maintain the consistency of the
gradient direction between the original luminance form and
the perturbed form. It ensures that the enhancement process
preserves the overall structure and relationships within the
image.

3) Random exponent for diversity: The use of a random
exponent in the power function enhances the diversity of
disturbances generated. By introducing randomness, the
method can capture a wider range of reflection changes,
making the model more robust and adaptable to different
lighting conditions.

V(@) = V) )

where V(x) denotes pixel values of original V channel,V’(x)
is the disturbed V channel, d is a random value with its
range determined by the average value of the original V
channel. If the average value is less than 0.5, the range of d
is [0,1], indicating that we use smaller d values to perturb
the image. This is done to maintain subtle variations in
the perturbation and avoid excessive impact on reflectivity.
Conversely, if the average value of the original V channel
is greater than or equal to 0.5, we choose a range of d
as [1,4], meaning that we use larger d values to introduce
more pronounced perturbation effects. This design allows
us to adjust the intensity of the perturbation based on the
average brightness level of the image, catering to the needs
of different images. It is important to note that the purpose of
this perturbation method is not to expand the training dataset,
but rather to constrain the consistency of reflections. We aim
to constrain the reflection characteristics in the image through
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perturbation, rather than increasing the training samples
by increasing the data volume. This method effectively
constrains reflection consistency and enhances the model’s
robustness to different reflection conditions.

D. REFLECTANCE ESTIMATION NETWORK BASED ON
IMPROVED U-NET

Most networks based on the Retinex theory initially undergo
training in the decomposition network to learn the process
of separating the illumination component from the reflection
component.However, this approach often introduces errors in
the reconstruction of the image. The network generates an
interfering luminance for a given disturbance, utilizing the
same network architecture and shared parameters. According
to the Retinex theory, an image can be divided into two
distinct parts: the luminance and the reflection. The reflection
component is expected to remain unchanged under different
illumination conditions. Therefore, the aforementioned chan-
nel and its disturbance channel can be effectively decomposed
into the following two parts.

V=RxL

5
V' =R xL' ©)
where R is the reflection component and L is the illuminance
component. If L is regarded as an intermediate variable for
calculating R, the above formula can be changed to:

1
R=V=x—
L, (6)
R =V %—
L/
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Because this does not have to calculate the difference
between V and Runl, it can avoid losing information when
reconstructing the image [41].

Based on the Retinex theory, we propose a U-Net-based
network for reflectance estimation. In the same scene,
the U-Net network demonstrates powerful capabilities in
image enhancement tasks by estimating reflectance through
enforcing consistency between the original reflectance and
the reflectance perturbed by random noise. With its unique
structure and design, the U-Net preserves image details,
extracts and integrates context-aware features, resulting in
enhanced images that are more accurate and natural. The
adoption of skip connections allows information propagation
between low-level and high-level features, enabling the
U-Net to adapt to features at different scales and strike a
balance between handling details and global information.
Moreover, the flexibility and scalability of the U-Net make
it applicable to various image enhancement tasks while
maintaining efficient training and inference speeds.

Compared to other algorithms, the low-light image
enhancement algorithm based on U-Net exhibits significant
advantages. The classical U-Net consists of more than
31 million network parameters, making it time-consuming to
fine-tune these parameters during network training using the
gradient descent method. In this study, to cater to our specific
application requirements and ensure better preservation of
image information in the enhanced results, we propose a
lightweight multi-scale residual attention U-Net model. This
model combines the foundational structure of the traditional
U-Net network with the benefits of inception multi-scale fea-
ture extraction, residual networks, and attention mechanisms.
The model’s architecture is depicted in Figure 3.

In the classical U-Net and its improved models, the
convolution layers of the image are stacked, with smaller
convolution kernels at the lower layers and larger convolution
kernels at the upper layers, thereby increasing the network’s
depth. However, this approach not only escalates computa-
tional complexity but also tends to cause gradient vanishing.
In our network, we replace the 3 x 3 convolution module
in the U-Net model with residual multi-scale convolutions
(indicated by the red arrow in Figure 3). This modification
expands the network’s width and enhances its adaptability
to multi-scale targets. To address the issue of redundant
information or noise being transmitted to the decoding layer
simultaneously with the key detail features via the skip
connections in the U-Net model, we introduce an attention
mechanism into the network model (such as the CBAM
module depicted in Figure 3).

E. RESIDUAL MULTI-SCALE CONVOLUTION BLOCK

At each level of the network illustrated in Figure 3, the
feature tensor undergoes two consecutive residual multi-scale
convolution blocks (indicated by the red arrow in Figure 3).
The residual multi-scale convolution block is formed by
combining the residual network and the inception module.
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FIGURE 5. Inception structure.

The structure diagram of the residual (ResNet) network is
presented in Figure 4. The residual module comprises two
convolution layers, each consisting of a 3 x 3 convolution,
batch normalization (BatchNormalization, BN) processing,
and a modified rectified linear unit (ReLU). Following the
two convolution layers, the input feature tensor is added to
itself, and then passed through a ReLU activation function
to yield the output feature tensor. The inclusion of a
residual network significantly accelerates the convergence
of the overall network. To enhance the local geometric
details and generate more comprehensive high-level semantic
information, the 3 x 3 convolution module in the residual
structure is replaced by a multi-scale convolution Inception
structure. This structure is illustrated in Figure 5. In this
structure, the input feature tensor passes through four
branches. In the first branch, the input tensor undergoes a 1 x
1 convolution. In the second branch, the output tensor is
obtained by applying a 1 x 1 convolution in one branch
and a 3 x 3 convolution in another branch. Similarly, in the
third branch, the input tensor is sequentially convolved with
a1 x 1 convolution and a 5 x 5 convolution to obtain the
output tensor. The fourth branch involves applying a 3 x
3 convolution and then a 1 x 1 convolution to the input
tensor. The output tensors from the four branches are then
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concatenated along the channel dimension to obtain the final / . ™
output tensor of the multi-scale convolution. This integration Attention module
of the output tensors from different branches allows for the Channel
extraction of more diverse and comprehensive features. aiention
Figure 6 illustrates the residual multi-scale module, which 7

combines the residual network and the inception module.
In this module, the 3 x 3 convolution in the residual network
is replaced by the Inception structure, enabling deeper infor-
mation mining and feature extraction. By incorporating the
multi-scale convolution and the integration of features from
different branches, the proposed network aims to capture both
local details and high-level semantic information, resulting in
enhanced performance for the given task.

F. ATTENTION MODULE

In the traditional U-Net network, the decoder is easy to
loses some important details in the process of decoding,
so the skip-connection connection is used in U-Net to
map the feature information extracted from the encoder
to the decoder through skip-connection. However, such a
structure will cause some redundant information extracted
in the encoder part to affect the feature fusion effect of the
decoder part. In order to solve this problem, an attention
mechanism can be used to solve this problem. The attention
mechanism is added to the structure of the algorithm, which
is similar to the human selective attention mechanism,
which suppresses some irrelevant features in the learning
process and strengthens the relevant features in the learning
task. In this paper, we improve the skip-connection part
of the U-Net network and introduce the CBMA module
architecture. As shown in Figure 7, we can pay attention
to the important features by using the attention mechanism,
while suppressing the redundant features. The process of
extracting information features by convolution operation is
as follows: firstly, the module applies the channel attention
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module to learn the local feature information on the channel.
Secondly, the spatial attention module is applied to learn
the location feature information in space, so as to help the
information flow in the network more efficiently. Given the
feature map F € RE*H*W as input, CBAM will calculate
one-dimensional channel attention map M¢ € R€*'*! and
two-dimensional spatial attention map M; € RW*H in
turn, and the whole attention process can be summarized as
follows:

F'=M.(F)®F @)
F'=M,FHYQF' ®

In this context, let ® denote element-wise multiplication.
Firstly, the input feature map is multiplied with the channel
attention map to obtain F’. Subsequently, the spatial attention
map of F’ is computed, and finally, the two are multiplied
together to yield F”. Here, F” represents the refined feature
map.

IIl. DESIGN OF LOSS FUNCTION

To enhance low-light images in underground coal mines,
we employed four sets of loss functions for model opti-
mization: exposure loss function, reflectance consistency loss
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function, spatial structure loss function, and illumination
smoothness loss function. These loss functions were designed
to address specific aspects of the image enhancement process,
ensuring improved visibility and quality in challenging
lighting conditions.

1) consistent loss of reflectivity. According to Retinex
theory, the reflectivity of V and V' should be consistent, so the
consistent loss of reflectivity L; can be defined as:

L= [r-r[} ©

where R and R are the reflectivity generated by V and V’
respectively, and |||, is the norm of L.

2) exposure loss. To control the brightness of the generated
reflectivity map, the difference between the average bright-
ness of the reflectivity and the exposure value of a given
normal image is calculated. If E is 0.7, the exposure loss Ly
can be defined as:

Ly=|R—El3 (10)

3)Space structure loss. To ensure that the spatial structure
of the input image can be retained on the reflectivity map,
the loss of spatial structure is introduced, which calculates
the difference between the horizontal and vertical gradients of
each pixel between the input image and the reflectivity map.
The loss of spatial structure L3 can be defined as:

Ly = |VRy — VVall3 (11)

R,, and V,, represent the generated reflectance and the
average pooling result of the input, respectively. V represents
the first-order difference operation in the horizontal and
vertical directions.

4) Illumination smoothness loss. According to the Retinex
theory, illumination should be smooth so that the details of
the image can be preserved in the reflectance map. Using S to
represent % the 1llumination smoothness loss can be defined
as follows:

2
Ly = IVSI5 + | VS| (12)
5) The total loss of the network can be defined as follows:
L=Li+L+L3+aly (13)

where « is the weight of the illumination smoothness loss.

IV. S CHANNEL ENHANCEMENT DESIGN

After enhancing the luminance component (V), the enhance-
ment of luminance can also affect the saturation component
(S). Therefore, it is necessary to correct the saturation compo-
nent S. Common methods for saturation enhancement include
linear stretching and histogram equalization. However, these
methods can often lead to image distortion when correcting
the saturation component. To address this issue, a method
that corrects the saturation component for enhancement is
employed:

Se=S+1(Ve—V)e (14)
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In the equation, S; and V. represent the enhanced saturation
component and luminance component, respectively. ¢ is a
constant, and ¢ is an adjustment coefficient, which can be
expressed as:

ZQ (V. j) = Val. )| |(SG. j) — Sal. )]
ije
v (x, y)ds(x, y)

15)

In the equation, (x,y) represents the enhanced point
position. Vq(i,j) and Sq(i,j) represent the average lumi-
nance and saturation values of all points within an N*N
neighborhood centered around the enhanced point. §y(x, y)
represents the luminance variance of the enhanced point, and
ds(x, y) represents the saturation variance of the enhanced
point. (i, j) represents the coordinates of the pixels within the
neighborhood.

V. EXPERIMENTAL SETUP AND ANALYSIS

To validate the effectiveness of the proposed algorithm
for enhancing images in underground mines, quantitative
and qualitative comparisons were conducted between the
proposed HSV-based enhancement network and existing
state-of-the-art algorithms. Additionally, extensive ablation
experiments were performed on the network model to
demonstrate the improvements brought by the residual
multi-scale module and CBAM module, as well as the
effectiveness of the designed random luminance perturbation
and loss function.

A. EXPERIMENT DETAILS

1) DATASETS

The low-ligh image data in this study was collected from
the monitoring footage of the Xieqiao Mine Intelligent Mine
System in Huainan City. The dataset consists of a total of
1100 pairs of low/normal light images, which were resized
to 512*512 pixels and named the MINE dataset. It is worth
noting that we selected only 900 low-light images as the
training set and 200 images as the test set. The trained
network was also evaluated on seven other datasets, including
LOL [42](500 pairs of low/normal light images), LSRW [43]
(6650 pairs of low/normal light images, with 50 test images),
NPE [44] (8 low-light images), MEF [45] (17 low-light
images), LIME [46] (10 low-light images), DICM [47]
(69 low-light images), and VV (24 low-light images). LSRW
is a large-scale real-world paired low/normal light image
dataset, while the latter five datasets only contain low-light
images without paired normal light images for reference.

2) IMPLEMENTATION DETAILS

The algorithm in this study was implemented using the
PyTorch framework on a PC equipped with both a CPU
(Intel(R) Core(TM) 17-12700K) and a GPU (2080TT). The
network model was constructed with a batch size of 8. The
weight parameters of each layer’s filters were initialized
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FIGURE 8. Visual comparison among state-of-the-art low-light image enhancement approaches on a low-light image from the
mine dataset. Please zoom in for details.

(a)Input (b)Retinex (¢) LIME  (d)Retinex-Net (e) KinD (HDRBN

(2)SCI (h)RUAS (1)EnlightGAN  (j)ZeroDCE (k) SSIENet (D)Ours

FIGURE 9. Visual comparison among state-of-the-art low-light image enhancement approaches on a low-light image from the LOL
dataset. Please zoom in for details.

using the Xavier initialization [48]. The biases were ini- with default parameters and set the learning rate to 1074,
tialized as constants. We employed the ADAM optimizer To introduce brightness perturbations, we applied a weight
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FIGURE 10. Visual comparison among state-of-the-art low-light image enhancement approaches on a low-light image from the

LOL dataset. Please zoom in for details.

(b)Retinex  (c) LIME

(a)Input

(2)SCI (h)RUAS

(d)Retinex-Net

(1)EnlightGAN  (j)ZeroDCE

(k) SSIENet (1)Ours

FIGURE 11. Visual comparison among state-of-the-art low-light image enhancement approaches on a low-light image from the

DICM dataset. Please zoom in for details.

parameter w of 10. Our method was trained for 100 epochs,
and evaluations were conducted every 5 epochs. The best
model was selected as the final model for further analysis.

3) EVALUATION METRICS

In this study, two classic full-reference image quality metrics,
Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity
Index (SSIM) [49], were used to quantitatively evaluate the
enhancement results for datasets that had reference images
available, such as MINE, LOL, and LSRW. On the other hand,
for datasets that only consisted of low-light images without
reference images, two non-reference image quality metrics
were employed, including Natural Image Quality Evaluator
(NIQE) [50] and Lightness Order Error (LOE) [44]. Higher
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values of SSIM and PSNR indicate better image quality,
while for NIQE and LOE, higher values indicate lower image
quality.

4) COMPARED METHODS

The proposed method has been compared with five unsuper-
vised learning-based methods, two traditional methods, and
three typical supervised learning methods. The five unsuper-
vised learning-based methods are as follows: 1. EnlightGAN
[37]: This method is based on an unsupervised genera-
tive adversarial network with a global-local discriminator
structure. 2. RUAS [51]: It is built upon the Retinex
rule and discovers a low-light prior architecture from a
compact search space. SCI [52]: It utilizes a self-calibrating
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FIGURE 12. Visual comparison among state-of-the-art low-light image enhancement approaches on a low-light image from the VvV

dataset. Please zoom in for details.

illumination learning framework. 3. ZeroDCE [38]: This
method dynamically adjusts the brightness of images by
training a high-level curve. SSIENet [53]: It introduces
a constraint based on maximum entropy to enhance the
performance. The two traditional methods are: 1. Retinex
[11]: This method is based on the Retinex theory, aiming
to separate the illumination and reflectance components of
an image. 2. LIME [46]: It stands for ‘“Local Interpretable
Model-agnostic Explanations’ and provides explanations for
predictions of any machine learning model. The three typical
supervised learning methods include: 1. KinD [16]: This
method focuses on low-light image enhancement using a deep
learning framework. 2. Retinex-Net [25]: It employs a deep
neural network to enhance low-light images based on the
Retinex theory. 3. DRBN [54]: This method utilizes a deep
residual bidirectional network for image enhancement tasks.

B. QUALITATIVE EVALUATIONS

To compare the visual performance of different low-light
image enhancement methods, we conducted an extensive
evaluation. Figure 8 shows the enhanced results using
different methods on the MINE dataset. From Figure 8(a),
it can be observed that the original image is overall dark,
with low illumination, and unclear image details. Among
the traditional algorithms, the Retinex and LIME methods
enhance the overall brightness of the image, but the increased
brightness leads to overexposure of the overall image.
Among the supervised learning methods, the Retinex-Net
method lacks sufficient brightness improvement and has
low contrast. The KinD and DRBN methods result in
blurred texture, as seen in the red-boxed nut contour in
Figure 8(e). Among the unsupervised learning methods, the
SCI and SSIENet methods still produce dark-colored images
after enhancement. The RUAS, EnlightGAN, and ZeroDCE
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methods enhance the overall brightness and contrast of the
images, but the colors appear unrealistic, and the details
and contours become blurry. Our method, on the other
hand, avoids both underexposure and overexposure issues
and effectively restores details and colors, as evident in the
red-boxed nut contour in Figure 8(I), which is clearly visible.

Figures 9 and 10 provide visual comparisons of the
enhancement results for two real low-light images from
the LOL dataset. The experimental results demonstrate that
our proposed method exhibits the most natural and realistic
color tones, indicating that our model can better restore the
image colors. It is particularly noteworthy that the traditional
algorithms exhibit varying degrees of overexposure. Other
methods either lack sufficient brightness improvements, such
as SCI and SSIENet, or introduce color distortions, such as
KinD and RUAS. Some algorithms also suffer from blurriness
in the details.

Figures 11 and 12 provide visual comparisons of the
enhancement results for two real low-light images from the
DICM and VV datasets. These comparisons clearly show that
previous methods seem to exhibit incorrect exposure, color
distortion, noise amplification, or artifacts, which degrade
the overall visual quality. For example, the RUAS method
produces severe overexposure, ZeroDCE, and SSIENet
generate artifacts and amplify noise, while EnlightGAN
exhibits color distortion. In contrast, our method consistently
produces visually pleasing results, improving both color and
brightness without overexposure or underexposure.

C. QUANTITATIVE EVALUATION

Table 1 reports the comparison between our network and
other state-of-the-art methods on the MINE, LOL, and
LSRW datasets. For each low-light image to be enhanced,
there is a corresponding normal-light image available in the
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TABLE 1. Quantitative comparisons of different methods on three benchmark datasets.The optimal results are highlighted in red.

Dataset Metrics Conventional Methods Supervised Methods Unsupervised Methods
Reti Enligh Z
Retinex LIME SUNX | ginD | DRBN | SCI | RUAS | e % | SSIENet | Ours
-Net GAN DCE
MINE PSNR7T 13.32 15.38 16.56 17.62 17.34 16.55 16.11 18.46 16.64 19.15 20.49
SSIM?T 0.43 0.48 0.53 0.53 0.57 0.53 0.54 0.67 0.57 0.68 0.74
LOL PSNRT 14.31 15.76 16.21 17.38 17.55 17.44 16.37 17.65 16.11 19.37 20.31
SSIMT 0.46 0.57 0.51 0.55 0.61 0.62 0.52 0.59 0.54 0.71 0.72
LSRW PSNR?T 13.98 15.83 15.94 16.54 16.53 16.27 15.97 18.58 16.23 17.65 18.15
SSIMT 0.44 0.52 0.48 0.51 0.53 0.57 0.53 0.62 0.49 0.53 0.65
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213 s s
070
19
0.65
18
L3y 5 060
I ]
16 0.55
15 050
1
045
13
o e w‘\“ﬁ'\\e‘ I R @\\g‘\‘o““ 12@“‘ o o oo w““ﬂz‘ I @\\q‘@“ 7_g°°d‘ oo o®

FIGURE 13. PSNR values of the data test image enhancement results.

aforementioned three datasets, allowing us to calculate the
PSNR and SSIM values of the enhanced results concerning
the normal-light reference images. From Table 1, it can
be observed that our proposed model achieves the highest
PSNR and SSIM values among all the unsupervised learning
methods on the MINE and LOL datasets.

From Figures 13 and 14, it is easier to see that our
method achieves the highest SSIM measure on all four
datasets, indicating that our method has better structural
restoration capability. Additionally, in the LSRW real dataset,
the proposed method’s PSNR value ranks second, which may
be because the images in the LSRW real dataset are not as
dark, resulting in a slightly overexposed appearance in the
generated images by our method. In fact, our training data
mainly consists of darker images from underground mines.
To achieve better results, we can consider incorporating
a more diverse range of low-light images in the training
process. However, overall, the results indicate that our
algorithm can maintain high structural similarity and image
quality in image enhancement tasks.

Table 2 presents the quantitative results of two no-reference
quality assessment metrics, NIQE and LOE, on the NPE,
MEEF, LIME, DICM, and VV datasets. As shown in Table 2,
our proposed method demonstrates competitive performance.
Furthermore, although the objective numerical metrics of
our method might occasionally be lower than those of other
methods, its visual performance is actually superior. Visual
comparisons and quantitative analyses of NIQE and LOE
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FIGURE 14. SSIM values of the data test image enhancement results.

can be found in Figure 15. Our method effectively preserves
image details and exhibits distinct visual features.

D. REAL-WORLD APPLICATIONS

To evaluate the practicality of the algorithms, real-time
images were collected from the monitoring system of
the Xieqiao Mine in Huainan City for a comparative
enhancement experiment. The captured image is shown in
Figure 16(a), where the overall environment is relatively dark,
and there is low contrast between the personnel and the back-
ground. The experimental results are depicted in Figure 16,
where severe overexposure is observed in the Retinex,
LIME, and RUAS methods. The Retinex-Net and KinD
methods show minimal improvement in brightness after
enhancement. The DRBN, SCI, EnlightGAN, ZeroDCE, and
SSIENet methods exhibit varying degrees of detail blurring
(as indicated by the red boxed area in the image) and color
shifts, resulting in a decrease in realism and naturalness of
the images. In contrast, our method significantly enhances
the overall brightness level of the image, with noticeable
brightness improvements in specific regions. The enhanced
images exhibit no halo or shadow artifacts, maintain natural
and undistorted colors, preserve image information, and
exhibit clear details. Thus, our method effectively achieves
low-light image enhancement in underground conditions.

E. ABLATION STUDIES
To validate the effectiveness of the proposed improve-
ment method, this study conducted ablation experiments to
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(a)Input (b)KinD (¢)SCI (d)SSIENet (¢)Ours
NIQE/LOE 4.51/358.7 3.51/412.2 4.58/307.4 4.62/374

FIGURE 15. Visual comparison of a real-world image among state-of-the-art low-light image enhancement approaches. Please
zoom in for details. Compared to other methods, though the objective metrics of the proposed method are inferior, the visual

performance is better.
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FIGURE 16. Visual comparison among state-of-the-art low-light image enhancement approaches on a low-light image from monitoring

system of the Xiegiao Mine in Huainan city. Please zoom in for details.

compare and analyze the results. The experimental results
are presented in Figure 17, where (a) represents the low-light
input images, (b) shows the test results obtained using our
algorithm, (c) displays the test results obtained by removing
the consistency of reflectance, (d) shows the test results
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obtained by removing exposure loss, (e) illustrates the test
results obtained by removing structural consistency loss,
() presents the test results obtained by removing illumination
smoothness loss, (g) demonstrates the test results obtained by
removing the spatial-channel attention mechanism CBAM,
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TABLE 2. Quantitative comparisons of different methods on five benchmark datasets.The optimal results are highlighted in red.

. Conventional Methods Supervised Methods Unsupervised Methods
Dataset Metrics Retinex Enlight Zero
Retinex LIME KinD DRBN SCI RUAS SSIENet Ours
-Net GAN DCE
NPE NIQE| 4.06 4.15 4.68 4.58 4.36 3.99 4.88 3.94 4.02 4.52 3.75
LOE|] 535.1 872.5 593.4 346.4 4394 308.8 554.8 398.6 304.9 287.5 256.7
MEF NIQE| 4.78 4.62 4.65 4.01 4.58 4.52 4.35 3.88 4.23 4.48 3.98
LOE] 543.5 698.6 778.3 423.8 545.7 364.8 441.2 374.1 319.4 288.3 287.1
LIME NIQE| 4.54 4.13 4.32 4.62 3.94 4.54 433 4.11 3.98 5.14 4.01
LOE] 498.6 774.8 703.4 543.1 687.1 411.2 359.4 482.1 432.1 401.4 3324
DICM NIQEJ 4.68 4.87 4.57 4.03 4.12 4.33 4.12 422 4.32 5.05 3.87
LOE] 675.8 682.1 554.7 397.4 623.1 3974 345.6 345.8 384.1 3243 358.6
vV NIQE| 4.14 3.21 3.11 3.15 3.13 2.98 3.17 2.69 3.07 3.55 3.12
LOE] 485.6 3579 398.6 436.1 4123 2914 331.2 384.5 409.4 301.1 2249

(g)w/o CBAM

(h)w/o Residual Multi-scale

(j)w/o Disturbance

FIGURE 17. Visual comparison among state-of-the-art low-light image enhancement approaches on a low-light image from
monitoring system of the Xiegiao mine in Huainan city. Please zoom in for details.

(h) exhibits the test results obtained by removing the
multi-scale residual blocks, and (j) showcases the test results
obtained by removing random perturbation.

For the (c), (d), (e), and (f) groups, the experiment
maintained all modules in the network unchanged while
conducting ablation experiments on the loss functions. For
the (h), (j), and (k) groups, the experiment kept the loss
functions unchanged while conducting ablation experiments
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on various modules in the network. The test images used
for the selected evaluation metrics were obtained from the
MINE dataset, which consists of low-light images captured
in underground mines. The comparative experimental results
are depicted in the figure, and the objective metric evaluations
are summarized in Table 3.

From Figure 17(c), it can be observed that in the
experiment results where the reflectance consistency loss is
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TABLE 3. The ablation experiments correspond to the PSNR and SSIM
metrics.

Method PSNR | SSIM

Ours 20.39 | 0.672

w/o L1 13.48 | 0.379

w/o Lo 18.26 | 0.653

w/o L3 17.39 | 0.652

w/o Ly 15.77 | 0.562

w/o CBAM 20.14 | 0.669

w/o Residual Multi-scale 18.42 0.674
w/o Disturbance 18.41 0.642

removed, the overall color of the image becomes yellowish,
and there is abnormal overexposure in the upper-middle
region of the image. Despite the introduction of interference,
the absence of reflectance consistency loss leads to the
network essentially mapping the image-to-image instead of
image-to-reflectance. Figure 17(d) shows that after removing
the exposure control loss, the image appears globally darker.
In Figure 17(e), when the structural loss is removed, the
image exhibits some artifacts and loses certain texture details.
Figure 17(f) reveals color distortion and severe overexposure
near the white light when the illumination smoothness loss is
removed. However, Figure 17(g) demonstrates that removing
the CBAM module results in exposure issues and partial
blurring of details, as seen in the middle of the road in
the image. This indicates that the CBAM module allows
the network model to focus on important detailed features
while suppressing redundant features. Figure 17(h) shows
that the absence of the multi-scale residual module leads to a
decrease in the network model’s feature extraction capability,
resulting in an overall whitish appearance of the image.
From Figure 17(g), it can be observed that removing random
perturbation leads to excessive enhancement, causing halo
artifacts and significant distortion at the image edges.
According to the objective evaluation metrics in Table 3,
it is evident that regardless of which module is removed,
the PSNR and SSIM metrics of the image decrease. It is
only when all these modules are combined that the optimal
subjective visual effect and objective evaluation results are
achieved, thereby validating the effectiveness of each module.

VI. CONCLUSION

The article proposes a coal mine image enhancement method
based on the HSV color space, focusing on addressing the
impact of dust and low lighting conditions on the enhance-
ment of video images in coal mines. This method combines
the characteristics of the HSV color space and applies the
Retinex theory to the brightness (V channel). Specifically, the
article designs a U-Net-based reflectance estimation network,
which improves the algorithm’s generalization ability and
accuracy by enforcing consistency between the original
reflectance and randomly perturbed reflectance. To prevent
overfitting, the article designs corresponding loss functions
and regularizes the brightness. To further improve the
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algorithm’s performance, residual multi-scale and attention
mechanism modules are introduced, which not only enhance
the accuracy of the algorithm but also reduce the number
of parameters in the network model. During the image
enhancement process, the article also adaptively adjusts the
saturation (S channel) based on the correlation coefficient
to address issues such as reduced saturation and blurred
boundaries in the enhanced well wall images. Extensive
experiments demonstrate that the proposed method achieves
good image enhancement results and provides an effective
solution to the image quality issues caused by dust and low
lighting conditions in coal mines.

The article mentions the use of the U-Net architecture
for reflectance estimation and the incorporation of residual
multi-scale and attention mechanism modules. However,
regarding the choice of network structure, there are still
other possible options and improvement methods, such as
considering the use of other deep learning architectures
or introducing more complex modules. The algorithm was
designed and evaluated under specific conditions (low-light
mining images), but the diversity of the mining image dataset
created may be limited. If the dataset has a limited number
of samples or does not cover various lighting conditions
and image features, the training and evaluation results of
the algorithm may not be optimal, as mentioned earlier, our
proposed method achieved the second-highest PSNR value
on the LSRW real dataset.

In conclusion, this article proposes an unsupervised
image enhancement method in the HSV space and achieves
certain results in the application of low-light mining images.
However, in future work, the following aspects should be
considered:

I)Multi-modal image enhancement: In addition to
low-light mining images, there may be other types of image
data, such as infrared images or multi-spectral images.
Combining multi-modal image enhancement with low-light
mining image enhancement can provide more comprehensive
and accurate image enhancement effects.

2)Data augmentation and synthesis: Obtaining real
low-light mining images can be challenging and costly.
Therefore, data augmentation techniques or data synthesis
methods can be considered to generate more training samples.
This can improve the model’s generalization ability and
robustness.

3)Joint optimization and task correlation: Low-light min-
ing image enhancement may be closely related to other
tasks, such as object detection or image segmentation.
Future research can explore methods for joint optimization,
combining image enhancement with other tasks to obtain
more comprehensive solutions.
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