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ABSTRACT This study examines the challenges encountered when using wireless technologies based on
random multiple access for voltage monitoring in low voltage (LV) electrical grids. The introduction of
photovoltaic modules on the roofs of buildings creates the need to monitor the dynamics of the node voltages
of the grid.We consider two related objects – an LV electrical grid and a communication networkwith devices
in the nodes of the grid. The communication network carries out one-way transmission of monitoring data
from the devices to the LV grid operator and is based on LoRaWAN technology. Transmission is carried out
via a common data transmissionmedium.We presume that eachmessage contains information about the node
voltage. The messages from each node in the grid are sent to the grid operator at random time intervals and
independently of each other. If the airtimes of messages from two or more nodes overlap, a collision occurs
and none of the messages reach the operator. The operator has to monitor the random voltage behavior over
time to avoid exceeding a certain level (an upper voltage limit). Under the specifics of the voltage random
process, we study the problem of choosing parameters of message transmission to uniformly minimize the
probability of such excess among all nodes. The work precisely formulates the optimization problem and
proposes an algorithm for its solution for the particular case.

INDEX TERMS ALOHA, distributed energy sources, LoRaWAN, optimization problem, photovoltaic,
probabilistic approach, random multiple access, smart grid, spreading factor allocation, voltage monitoring.

I. INTRODUCTION
Nowadays, Low Power Wide Area Networks (LPWAN) are
becoming more and more widespread [1], [2]. They are used
to monitor the results of measurements at objects located over
a large area. Long Range Wide-Area Networks (LoRaWAN)
technologies, which are part of LPWAN, enable low-cost data
transmission and collection systems.

In this work we describe how the specifics of the
transmitted data might be used when the object of monitoring
is the low voltage (LV) power grid. At present, distributed
energy resources (DER) such as photovoltaic modules
(PV) on the roofs of buildings are becoming increasingly
common in many countries. However, random fluctuations
in distributed power generation, caused by stochastic solar
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generation and consumption at grid nodes, have a significant
impact on the voltage profile as compared to traditional
grids [3]. It becomes necessary to monitor the voltages of
the grid nodes.

Thus we consider two related objects – the communication
network and the LV grid. Devices of the communication
network, located in the nodes of the LV grid, send their data
to the base station, with the possible loss of messages. The
grid operator receives data from the base station on a reliable
channel without loss, so we assume the base station and the
grid operator act as one unit.

We consider low-cost monitoring systems (LoRaWAN
devices of Class A) [1], where the device itself initiates
transmission. Approaches in which devices of other classes
are used (that is, Class C, see [4]), we do not consider.
Therefore, a monitoring system in which a message is
transmitted when the upper voltage limit is exceeded does
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not guarantee successful delivery because of the possibility
of other nodes exceeding the limit at the same time because
the voltages in the grid are interconnected. Sending messages
at random intervals is used in similar cases in practice, which
means using the ALOHA algorithm [1], [5], [6], [7], [8] in
such system. So, each node in the grid sends messages to the
operator with information about the current node voltage at
random intervals. The operator monitors the voltage so that
it does not exceed the upper voltage limit, which can happen
during the interval between messages.

Most of the works investigating LoRaWAN optimization
do not take into account the specifics of the transmitted data
(see [5] and references in [1]), with the exception of a few.
The general aspects of building monitoring systems

based on LoRa technology were discussed in [9]. The
authors conducted experiments and noted that the stochastic
property was evident and cannot be neglected in wireless
environments. The features of LoRa technology were studied
in [10] and it was stated that class A devices have better
energy efficiency than other classes of devices. This paper
describes the results of a real experiment using class A
devices to monitor an electrical grid with solar energy
harvesting. The article discusses the type of data being
transmitted (electrical grid data), but does not discuss the
stochastic nature of the data itself. The impact of the
specificity of the transmitted data using LoRa technology on
the architecture of the communication system was studied
in [11] and [12]. These works considered the application
of LoRaWAN technology for smart cities. In [11], the
problem of minimizing the maximum probability of packet
loss due to conflict in communication systems based on
LoRa technology was formulated and solved. However, this
study did not consider the specificity of transmitted data.
The concepts of this study were further developed in [12].
The architecture of communication systems based on LoRa
technology for monitoring high voltage electrical grids was
described in [13]. A data transmission algorithm is proposed,
and its energy efficiency is studied, but the stochastic nature
of the transmitted data is not considered.

A survey of machine-learning methods for building
networks based on LoRa technology was presented in [14].
The use of machine learning for LoRaWAN link budget
analysis was studied in [15]. The works [16], [17] can provide
valuable insights into the application of machine learning
methodologies to improve data analysis within LoRaWAN.
They can potentially improve the predictive capabilities of
the system and offer the prospect of working with large-
scale data, which is important for managing the extensive data
generated in monitoring low-voltage grids.

In all the above-described studies of systems based
on LoRa technology, the impact of the specifics of the
transmitted data on the architecture of the monitoring
system is only partially considered, and the influence of
the quantitative characteristics of the processes monitored
on the parameters of the monitoring system is practically
ignored.

As a rule the problem of maximizing the probability
of message delivery is formulated and solved by cor-
rectly selecting the equal average length of the intervals
between transmissions without regard to the specifics of
the transmitted data. In our work we formulate and solve
a similar problem for the LV grid monitoring system
taking into account the specifics of the transmitted data by
selecting the various average lengths of the intervals between
transmissions. Note that we consider only the problem of
monitoring, not themanagement of parameters, because other
technologies are used for this purpose.

Our work is organized as follows: Section II begins with
a message transmission and voltage monitoring models,
which assume various message sending parameters for
different nodes. We choose these parameters depending on
the probability that the voltage exceeds the upper voltage
limit. Section III formulates the optimization problem. The
solution to the optimization problem is found in Section IV
for voltage described by a Brownian motion. Section V is
devoted to the problem of spreading factor allocation to
reduce the objective function for the case with a Brownian
motion. As an illustration, a numerical example is presented
in Section VI. The results of simulations are represented in
Section VII.

II. SYSTEM MODEL
A. MESSAGE TRANSMISSION MODEL
Consider a communication network with N > 0 nodes, each
of which sends messages to the operator with information
about the current value of some parameter, in our case, node
voltage. We will use a number of assumptions to build the
model.
Assumption 1: The intervals between messages of each

node have an exponential distribution with parameter λi > 0,
i = 1, 2, . . . ,N , and are independent for each node.
Then the stream of messages from the ith node forms a

Poisson process with intensity λi, i = 1, 2, . . . ,N . It means
that the total stream of messages from all nodes is Poisson
with intensity

3 = λ1 + λ2 + · · · + λN .

Assumption 2: All nodes (or devices in the nodes) use the
same spreading factor (SF) value with the airtime of one
message Q > 0 and the same frequency [1], [18]. If during
the time interval (−Q,Q) from the moment one node sends
a message, the other nodes do not send messages, then the
message is successfully delivered to the operator. Otherwise
a collision occurs and the messages are lost. This assumption
is fulfilled in practice when all nodes are approximately the
same distance from the operator. According to this distance,
the spreading factor is chosen so that in the absence of
collisions the messages are delivered successfully.

According to the standard [18] (see also [2]) airtime Q
must not exceed 1 % of the time between sent messages of
each node. To account for this constraint, we introduce the
following assumption on the average time betweenmessages:
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Assumption 3: Let
1
100

1
λi

≥ Q, i = 1, 2, . . . ,N . (1)

Based on these assumptions and by performing a series
of arguments [19] we consider a simplified model for
total stream of successfully delivered messages and use
the properties of the Poisson process. According to this
model the stream of successfully delivered messages from ith
node might be defined as Poisson with intensity λip, where
p = e−2Q3, and the total stream of successfully delivered
messages from all nodes is Poisson with intensity 3p.
Remark 1: If λi = λ, i = 1, 2, . . . ,N , then the intensity

of the total stream of successfully delivered messages 3p
reaches its maximum at 3 =

1
2Q min

{
1, N

50

}
. It easy to note

that with

λ =
1
2Q

1
max{N , 50}

(2)

the minimal average time between two successfully delivered
messages to the operator from every node is equal to

2Qmax{N , 50}e
min

{
1, N50

}
. (3)

B. VOLTAGE MONITORING MODEL
Consider a message transmission model for monitoring
voltages of LV electrical grids with DERs using the LoRa
technology. In addition to the uncertainty due to random
intervals between successfully delivered messages, the volt-
ages themselves depend on stochastic factors: solar radiation,
users’ energy consumption, etc. Therefore, we assume that
the node voltage is a random process Ui(t), t ≥ 0, i =

1, 2, . . . ,N . For brevity, we will sometimes omit the node
index i. Let U (t) be a Markov random process with paths in
the space of functions without second-order discontinuities.

The grid operator is required to monitor the risk of the
voltage exceeding the upper voltage limit (UL). So at each
moment of successful message delivery, the operator needs
to decide whether to take costly voltage reduction measures,
for example disconnecting the DER from the grid, or to wait
until the next successfully delivered message arrives. The
decision depends on the current voltage value of the node and
the probability that an excess UL will occur before the next
successfully delivered message from the same node arrives.
At the moment of receiving a successfully delivered message
from a particular node, it does not matter to the grid operator
what voltage was previously in this node. Therefore, due
to the Markov property, we can take this moment as the
initial t = 0 and assume that U (0) < UL. Let τ be an
exponentially distributed random variable with parameter λp,
for some λ > 0. By ‘‘risk’’ we mean the probability that the
pathU (t) crosses the thresholdUL during interval τ between
two successfully delivered messages:

P
(
U (τ ) > B

)
, (4)

where U (t) = sup0≤s≤t U (s), B = UL − U (0).

We argue that instead of relying on equal intensity λ,
each node sends messages with various parameters λi, i =

1, 2, . . . ,N , which we can choose based on minimizing the
maximum risk (probability of exceeding the upper voltage
limit among all nodes given they have the same initial
value). Formulating such an optimization problem is not
straightforward. Therefore, we first formulate the problem
under some constraints before finding its solution for the
particular case.

III. FORMULATING THE OPTIMIZATION PROBLEM
It is known that obtaining an explicit distribution of U (t)
is a very difficult problem (see [20]). However, under some
general constraints, it is more feasible to obtain only its
Laplace transform over the time component. Note that the
relation (4) can be rewritten as:

P
(
U (τ ) > B

)
=

∫
∞

0
λpe−λptP

(
U (t) > B

)
dt.

Assumption 4: LetU (t) be a spectrally negative Lévy pro-
cess, i.e., a homogeneous random process with independent
increments and without positive jumps.

We believe this assumption to be quite realistic since, from
the practical point of view, we are interested in the behavior
of the Markov process U (t) near point (upper voltage limit)
UL during a finite time interval τ .
The Laplace transform EeµU (1) (reminder that EeµU (t)

=(
EeµU (1)

)t
) for spectrally negative processes is defined for all

µ ≥ 0 and the equation

logEeµU (1)
= s, s > 0, (5)

has a non-negative solution µ = µ(s) ≥ 0, where µ(0) =

q ≥ 0 (see [20], [21]). It is then well known that the
Laplace transform on the time component of the supremum
distribution has a simple explicit form (see [20], [21]):

s
∫

∞

0
e−stP

(
U (t) > B

)
dt = e−µ(s)B,

which can be presented as:

P
(
U (τ ) > B

)
= e−µ(λp)B.

Let us first formulate the optimization problem: we
have independent exponentially distributed random variables
τ1, τ2, . . . , τN with parameters λip and we need to find(
λ∗

1, λ
∗

2, . . . ,λ
∗
N

)
at which, for any B > 0

max
{
P
(
U1(τ1) > B

)
, . . . ,P

(
UN (τN ) > B

)}
→ min .

Then under Assumption 4 the optimization problem is
formulated as

min{µ1 (λ1p) , . . . , µN (λNp)} → max, (6)

where µi(·) is the solution to the equation (5) for the voltage
Ui(t) of node i and p = e−2Q3.
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IV. SOLUTION TO THE OPTIMIZATION PROBLEM FOR A
BROWNIAN MOTION
As an example, let us find a solution of the optimization
problem for one particular case of spectrally negative Lévy
process.
Assumption 5: Suppose that the voltage of each node

is described by a standard Brownian motion Wi(t), i =

1, 2, . . . ,N , (see [22]):

Ui(t) = Ui(0) + σiWi(t), σi > 0. (7)

Then the solution to the equation (5) is µi(s) =

√
2s

σi
(see [21]). So, the problem (6) can be reformulated as:

min

{
λ1

σ 2
1

e−2Q3, . . . ,
λN

σ 2
N

e−2Q3

}
→ max.

That is, instead of searching for equal minimal intervals
between messages (3) we are looking for equal minimal
probabilities of exceeding the upper voltage limit. So,
we need to find

λ1

σ 2
1

e−2Q3
→ max, (8)

subject to the constraints (1) and

λi

σ 2
i

=
λj

σ 2
j

, i ̸= j.

If we denote h =
λi

σ 2
i

then

3 = h× S,

where S =
∑N

i=1 σ 2
i , and due to Assumption 3

h ≤
1
2Q

1
50

1

max σ 2
i

.

The optimization problem (8) might be rewritten as

he−2QhS
→ max.

It is easy to note that if

S ≥ 50max
i

σ 2
i

then at h∗
=

1
2Q

1
S

λ∗
i =

1
2Q

σ 2
i

S
,

max
h
he−2QhS

=
1
2Q

1
S
e−1. (9)

If

S < 50max
i

σ 2
i

then at h∗
=

1
2Q

1

50maxi σ 2
i

λ∗
i = σ 2

i h
∗, max

h
he−2QhS

= h∗e−2Qh∗S .

Let us summarize this section. According to our model,
we have the parameters of the LV electrical grid – the
number of nodes N and the value of σi for each node –
and the parameters of the communication network – the
number of nodes N and airtime Q. As a result of the risk
minimization problem for the communication network with
the optimal intensity of message transmission λ∗

i for each
node is obtained.

V. SF ALLOCATION
The LoRa technology uses distributed spectrum modulation
with 6 orthogonal spreading factors (SF = 7, 8, . . . , 12).
Messages with different SF can be transmitted simultane-
ously. A smaller SF provides a higher data rate. A larger SF
increases the receiver’s sensitivity and therefore the range of
the system [1], [2], [25].

There are many works (see, for example, [25], [26]), where
the problem of SF allocation is consideredwithout taking into
account the specifics of the transmitted data.

We can reduce our risk by allocating nodes to different
SF . We need to split the set of indices of all nodes G =

{1, 2, . . . ,N } into 2 ≤ k ≤ 6 subsets to reduce maximal
risk among nodes with SF = 13 − k, 13 − k + 1, . . . , 12. It
means to divide G into k sets G13−k ,G13−k+1, . . .G12, such
that G = G13−k ∪ · · · ∪ G12, Gi ∩ Gj = ∅, i ̸= j, where
Gi – node indices with SF = i and Gj – node indices with
SF = j. We assume that message transmission in each of the
SF occurs independently of the nodes with other SF .
Let Qj be airtime for SF = j, j = 7, 8, . . . 12, and

Sj =

∑
i∈Gj

σ 2
i .

The optimization problem for allocating nodes among k
sets might be written as

F = min {F13−k ,F13−k+1, . . . ,F12} → max, (10)

where

Fj = h∗
j e

−2Qjh∗
j Sj , j = 13 − k, 13 − k + 1, . . . , 12,

h∗
j =

1
2Qj

1

max{50maxi∈Gj σ
2
i , Sj}

.

The optimization problem (10) implies an optimal partition-
ing of the node indices, which is rather difficult to find.

The idea is that nodes with large values of σi should send
messages more often than others. For convenience, we index
the nodes in ascending order such that

σ1 ≤ σ2 ≤ · · · ≤ σN .

Since the message airtimes for different spreading factors
satisfy the ratio:

Q7 ≤ Q8 ≤ · · · ≤ Q12
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let us not consider all possible partitions, but only ‘‘sequen-
tial’’ ones:

G12 = {1, 2, . . . , i12},

G11 = {i12 + 1, i12 + 2, . . . , i11},

. . . ,

G13−k = {i13−k+1 + 1, i13−k+1 + 2, . . . ,N },

where indices

i12, i11, . . . i13−k+1 ∈ G,

i12 ≤ i11 ≤ · · · ≤ i13−k = N .

It is easy to find numerically the solution F∗
s of the

optimization problem (10) with sequential partition of G and
it is clear that

F∗
s ≤ F∗,

where F∗ – optimal solution of (10) without restriction on
sequential partition of the set G.
Note that without condition (1)

Fk =
1

2Q13−kS13−ke

and the objective function is of the form:

max {2eQ13−kS13−k , . . . , 2eQ12S12} → min .

If we define

ν = max
13−k≤j≤12

QjSj,

then

ν ≥ QjSj, j = 13 − k, 13 − k + 1, . . . , 12,

and we can perform our task as a well known linear integer
programming problem.

Let x be a vector from N × k elements

x = (x1, x2, . . . , xkN ), xi ∈ {0, 1},

where

xi + xN+i + · · · + x(k−2)N+i

+ x(k−1)N+i = 1, i = 1, 2, . . . ,N .

Put

s13−k = (σ 2
1 , σ 2

2 , . . . , σ 2
N , 0, . . . , 0),

s13−k+1 = (0, . . . , 0, σ 2
1 , σ 2

2 , . . . , σ 2
N , 0, . . . , 0),

. . . ,

s12 = (0, . . . , 0, σ 2
1 , σ 2

2 , . . . , σ 2
N ).

For brevity, we can rewrite Sj =
∑

i∈Gj σ
2
i = sjxT , j =

13−k, 13−k+1, . . . , 12,where xT is a transposed vector x.

It is to formulate the optimal SF allocation problem:

ν → min,

ν − QjsjxT ≥ 0, j = 13 − k, 13 − k + 1, . . . , 12. (11)

xi ∈ {0, 1}, i = 1, 2, . . . , kN ,

xi + xN+i + · · · + x(k−2)N+i + x(k−1)N+i = 1,

i = 1, 2, . . . ,N . (12)

Remark that integer programming is quite a consuming
procedure. Therefore, if we replace condition (12) with
condition

0 ≤ xi ≤ 1, i = 1, 2, . . . , kN ,

it is easy to obtain solution ν∗ of linear programming
problem (11).
If we put F∗

lp = 1/(2eν∗), then we can obtain that

F∗
s ≤ F∗

≤ F∗
lp.

This means that if we consider the solution F∗
s of the

optimization problem (10) with sequential partitioning, this
solution differs from the optimal F∗ less than the difference
between F∗

s and the solution to the linear programming
problem F∗

lp, i.e.

F∗
− F∗

s ≤ F∗
lp − F∗

s .

VI. NUMERICAL EXAMPLE
As an example, we consider an LV grid with N = 150 nodes.
Each node has a LoRaWAN communication network device
of Class A. Suppose that due to technical limitations (distance
to devices, interference) the transmission can be carried out
using spreading factor SF = 11, which ensures successful
message delivery in the absence of collisions.

Airtime Q ≡ Q11 = 0.8233 sec. Next, we show how
to calculate σi parameters for our LV grid and compare
the risk values (4) of our model with equal probabilities
with respect to the message transmission model with equal
message intervals (2).

Consider a grid, each node of which has PV module.
We denote the vector of voltages of the grid nodes as

U (t) = (U1(t),U2(t), . . . ,UN (t))T , t > 0,

given that initial node is balancing, i.e. U0(t) = U0 is known
constant. Define also the current vector

I (t) = (I1(t), I2(t), . . . , IN (t))T , t > 0.

The relationship between the vector of voltages and the vector
of currents might be expressed as

U (t) = U0 + H × I (t),

where H is the matrix of nodal resistances and U0 =

(U0,U0, . . . ,U0)T .

Suppose we have three-phase LV grid and every phase has
linear topologywithM nodes, where 3M = N . For simplicity
we assume that phases are independent of each other and
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FIGURE 1. The phase-line of the linear LV grid.

active resistances R between the nodes in every phase are
the same. We neglect reactive parameters of the LV grid.
We number all the nodes so that the phase p, p = 1, 2, 3,
consists of nodes with indices 3(s− 1) + p, s = 1, 2, . . . ,M
(see Fig. (1) with phase p = 1 ).
Then (see, for example, [23])

H = −R×


1 1 1 . . . 1 1
1 2 2 . . . 2 2

. . .

1 2 3 . . . M − 1 M


or

U3(s−1)+p(t) = U0

− R

(
s∑

r=1

rI3(r−1)+p(t) + s
M−1∑
r=s

I3r+p(t)

)
,

where U0 is the known voltage at the beginning of the line.
We suppose that the values of currents Ii(t), i =

1, 2, . . . ,N , are the algebraic sum of the current from the PV
unit ISi(t) in the node i and the consumption current Ji(t) from
the node to the customer (see [23]):

Ii(t) = −ISi(t) + Ji(t).

Let ISi(t) and Ji(t) be described by means of independent
Brownian motion processes, i.e.

Ii(t) = Ii(0) − σ̂iŴ (t) + σ̃iW̃i(t),

where i is the node index, Ŵ (t), W̃i(t), i = 1, 2, . . . ,N , are
independent standard Brownian motions, Ii(0) corresponds to
the current value at the initial time, σ̂i is the standard deviation
for the PV node current and σ̃i is the standard deviation for
the consumption current in the node. For simplicity we put

σ̂i = σ̂ , σ̃i = σ̃ , i = 1, 2, . . . ,N .

We can find the probability distribution of every node
voltage, including last nodes in phases, where the maximal
amplitude of voltage fluctuations is achieved. Note that

(1 + 2 + . . . +M )Ŵ (t) =
M (M + 1)

2
Ŵ (t),

W̃1(t) + 2W̃4(t) + . . . +MW̃3M−2(t)) d=√
M (M + 1)(2M + 1)

6
W̃ (t),

where Ŵ (t) and W̃ (t) are independent standard Brownian
motions, designation ( d

=
) means the same probability distri-

bution. Thus

U3(M−1)+p(t) d=U3(M−1)+p(0) + σ3(M−1)+pWp(t), (13)

TABLE I. Parameters of the model.

where Wp(t), p = 1, 2, 3, are standard Brownian motions,
U3(M−1)+p(0) – node voltage at some initial time and

σ 2
3(M−1)+p = R2

(
σ̂ 2M

2(M + 1)2

4

+ σ̃ 2M (M + 1)(2M + 1)
6

)
.

That is, we defined σi (see (7)) from the Assumption 5 for our
example with simplified three-phase linear LV grid.

Firstly, based on our assumptions, we can find and compare
the maximal probabilities of exceeding the upper voltage
limit among all nodes (maximal risk) for the case with
equal intensities (2) and the case when the specifics of the
transmitted data are taken into account for one SF = 11.

Secondly, the communication system, which at SF =

11 ensures successful message delivery in the absence
of collisions, also ensures successful delivery at SF =

12. We define airtimes for every SF as Q11 and Q12.
In considering several SF , we assume that all assumptions
remain valid except for one spreading factor limitation.
We need to divide indices of all nodes G = {1, 2, . . . ,N }

into two sets G11 and G12, such that G = G11 ∪ G12,

G11 ∩G12 = ∅, where G11 – node indices with SF = 11 and
G12 – node indices with SF = 12. We assume that message
transmission in each of the SF occurs independently of the
nodes with other SF .

This allows us to find and compare maximal risks between
cases with equal and various intensities of transmission.

Let us first consider the case where all nodes belong to the
same spreading factor SF = 11.
We take UL = 253 V since the voltages in a LV grid must

not exceed the levelUL = Unom+10%,whereUnom = 230V
is the nominal voltage, over 5% time (see [24]). The other
parameters of the example are given below (see Table I).
For the case where all nodes belong to the same SF =

11 and send messages with equal intensities (2), it is easy to
obtain that

max
{
P
(
U1(τ1) > 5

)
, . . . ,P

(
UN (τN ) > 5

)}
= exp(−0.4109 × 5) = 0.1281.
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TABLE II. Maximal risk.

To study the maximal risk among all nodes, which have
various intensities, we consider individual probabilities of
exceeding the upper voltage limit. In addition, as we have
already mentioned, the last in the phases nodes will have the
maximum voltage variance, therefore

max
{
P
(
U1(τ1) > 5

)
, . . . ,P

(
UN (τN ) > 5

)}
= max

{
P
(
U1(τ1) > 5

)
, . . . ,P

(
U3M−2(τ3M−2) > 5

)}
= P

(
U3M−2 (τ3M−2) > 5

)
= exp(−0.5611 × 5) = 0.0605.

Let us consider our problem for the case SF = 11, 12. Instead
of finding the optimal node partitioning (see (10) ), consider
sequential partitioning with k = 2 and

G12 = {1, 2, . . . , i12}, G11 = {i12 + 1, i12 + 2, . . . ,N }.

(14)

It is easy to obtain that i12 = 92,

F∗
s = 0.2412,

and find the solution of the linear programming problem (11)

F∗
lp = 0.2448.

Thus for two spreading factors and various message send-
ing intensities we obtain that maximal risk with sequential
partitioning

exp
(
−
√
2F∗

s × 5
)

= exp(−0.6947 × 5) = 0.031.

Let us find the maximum risk for partitioning (14) and
equal message sending intensities within each spreading
factor:

exp(−min(0.6607, 0.4608) × 5) = 0.0998.

The table below (see Table II) shows the values of maximal
risk among all nodes for one spreading factor (first column)
and two spreading factors with partitioning (14) and i12 = 92
(second column), for equal (first row) and various message
intensities (second row).

Fig. (2) displays on the ordinate axis the values of maximal
risk at B = 5 for the cases of equal (blue line) and various
(purple line) message sending intensities, where the abscissa
axis displays the values of i12 when nodes are sequentially
partitioned (see (14)) into SF = 11 and SF = 12.
Thus, by accounting for the specifics of the data being

transmitted, it is possible to choose various parameters for
sending messages from different nodes in order to reduce the
probability of an unwanted event.

FIGURE 2. Values of maximum risk at B = 5 when sequentially partitioned
by k = 2 SF for cases of equal and various message sending intensities .

VII. ACCURACY ASSESSMENT
In partial example conditions, we provide a number of
simulation examples to compare them with theoretical
derivations.

Assume that in the example conditions all nodes belong to
the same spreading factor SF = 11.
If all nodes send messages with equal intensity, then the

average time between two successfully delivered messages
to the operator from every node is equal to (see (3))

2Q11Ne = 671.3 s.

The simulation results for the lengths of intervals between
successfully delivered messages when nodes send messages
with various intensities (see (9)) of exponential distribution
are listed in Table III. The first column ‘‘Index’’ shows
the node indices, the second column ‘‘Model’’ shows our
theoretical values

1
λ∗
i p

=
2Q11Se

σ 2
i

under the assumption of exponential distribution of time
between messages (Assumption 1). The third column ‘‘Sim.
(Exp)’’ shows the simulation results for the lengths of
the intervals between successfully delivered messages. The
results in the third column are obtained by simulating
the intervals between messages with a shifted exponential
distribution Q11 + θ , where θ has an exponential distribution
with parameter λ∗

i . Assumption 1 regarding the random
exponential distribution of message intervals is necessary to
derive rigorous mathematical conclusions. In practice, some
equipment manufacturers for LoRaWAN networks allow
configuring the transmission of messages not through fixed,
but through random, uniformly distributed intervals of time.
Thus, the fourth column shows the simulation results when
each node sends messages in independent random intervals
with a shifted uniform distribution of Q11 +α, where α has a
uniform distribution on (0, 2/(λ∗

i p)).
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TABLE III. Comparison of the average interval length between
successfully delivered messages according to the model and simulation
results .

FIGURE 3. Voltage trajectory between successfully delivered messages.

TABLE IV. Simulation results for risk with equal, exponentially and
uniformly distributed interval lengths between messages .

The results in Table III show that rigorous theoretical
conclusions derived from the mathematical model are well
supported by the simulation results.

The work is devoted to the problem of the optimal choice
of interval lengths to minimize the maximum risk among all
nodes, that is, the probability of exceeding the upper voltage
limit, provided the nodes have the same initial value. This
means that if the operator receives a message from the ith
node with a voltage of 248 V , the operator is interested in
the risk of the voltage exceeding the upper voltage limit of
253 V before the next successfully delivered message. The
simulation results for one such event are presented in Fig. 3.
We reduced this risk by choosing various interval lengths

between the messages. If the average interval is the same for
all nodes, the maximum risk is 0.1281; if it varies according

TABLE V. List of abbreviations.

to (9), the maximum risk is 0.0605. The Table IV shows
the simulation results of the risk value for varoius nodes
(‘‘Index’’) for the cases of equal average interval (‘‘Equal’’)
and various intervals (‘‘Var. (Exp)’’). The fourth column
(‘‘Var. (Unif)’’) shows the simulation results for the risk when
each node sends messages at shifted uniformly distributed
intervals.

VIII. CONCLUSION
We studied the communication system for monitoring
the voltages of the electrical grid, based on LoRaWAN
technology, which allows the creation of low-cost and
energy-efficient data collection and transmission systems.
We considered two related objects – the LV electrical grid
with DER and the communication network, which used
LoRaWAN technology to transmit node voltage monitoring
data. The model, reflecting the main specific features of these
objects – the random character of voltage changes in the
electrical grid and the possible loss of data due to conflicts in
the communication network – was proposed. The notion of
risk was introduced – the probability of loss of information
about voltage exceeding the upper limit. The optimization
problem of minimizing the maximal risk by selecting the
parameters of the communication network, based on the
properties of a random voltage changes in the grid, was
formulated. The solution of this problem was found and
illustrated by the example for the voltages described by
Brownian motions.

For the convenience of readers, we present Table V with
the abbreviations used in the article.
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According to our model, each node sends messages to the
grid operator at exponentially distributed with the parameter
λi random time intervals for each node i. Due to possible
collisions, sent messages can be lost. Thus, the grid operator
estimates the voltages of the grid nodes only on the basis of
successfully delivered messages.

Therefore, each time a successfully delivered message is
received from a certain node, the operator must estimate the
risk that the voltage at that node will exceed the threshold
level UL until the next successfully delivered message:

P
(
U i(τi) > B

)
, B = UL − Ui(0)

where i – index of the node, Ui(0) – voltage value at the
moment of receiving the last successfully delivered message,
U i(t) = sup0≤s≤t Ui(s), τi – exponentially distributed
random variable with parameter λip, UL – upper voltage
limit.

If this probability (or risk) is ‘‘high’’, the operator takes
costly measures to avoid this event, for example turning off
solar generation at the node. Otherwise, it is reasonable to
wait until the next successfully delivered message. According
to our model, one must choose a higher message sending
intensity λi in nodes where the risk of exceeding the threshold
level UL is higher (provided the initial values of Ui(0) are
the same) than in less risky nodes in order to equalize risks.
In LV grid the voltage fluctuations of the nodes distant from
the transformer are larger than those close to it, so it is natural
to send messages from distant nodes more often.

As an extension of our problem, it is natural to consider
a model with several spreading factors. We considered the
problem of optimal partitioning of nodes by spreading factors
and studied the maximal risks of exceeding the threshold
among all nodes.

According to requirements [24], the voltage should be
between certain upper and lower limits. In our work,
we focused only on the risk of ‘‘over voltage’’ and did not
study ‘‘under voltage’’ case, which is similar to the ‘‘over
voltage,’’ but is not the concern of our study. The problem
that considers both over and under voltage risks is more
difficult. If we consider the voltage as a random process under
general requirements, then only the asymptotic results for
the problem with two boundaries are known [27], [28]. They
are more complicated for analysis than the probability of
exceeding the upper voltage limit and can be used for further
research.

We proposed an approach to the selection of commu-
nication network parameters, which took into account the
properties of the randomly changing parameters of the
object of monitoring. This approach might be applied for
variousmonitoring systems, in which LoRaWANor any other
network with random multiple access channel was used as
communication network.

The authors would like to thank Dr. Dmitri Moltchanov for
help and sound advice.
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