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ABSTRACT Deep learning techniques have demonstrated significant capabilities across numerous
applications, with deep neural networks (DNNs) showing promising results. However, training these
networks efficiently, especially when determining the most suitable nonlinear activation functions, remains
a significant challenge. While the ReLU activation function has been widely adopted, other hand-designed
functions have been proposed. One such approach is the trainable activation functions. This paper introduces
a novel neural network design, the SWAG. In this structure, instead of evolving, activation functions
consistently form a polynomial basis. Each hidden layer in this architecture comprises k sub-layers that
use polynomial activation functions adjusted by a factorial coefficient, followed by a Concatenate layer and
a layer employing a linear activation function. Leveraging the Stone-Weierstrass approximation theorem,
we demonstrate that utilizing a diverse set of polynomial activation functions allows neural networks to
retain universal approximation capabilities. The SWAG algorithm’s architecture is then presented, where
data normalization is emphasized, and a new optimized version of SWAG is proposed, which reduces
the computational challenge of managing higher degrees of input. This optimization harnesses the Taylor
series method by utilizing lower-degree terms to compute higher-degree terms efficiently. This paper
thus contributes an innovative neural network architecture that optimizes polynomial activation functions,
promising more efficient and robust deep learning applications.

INDEX TERMS Activation functions, factorial coefficient, neural network design, polynomial activation
function.

I. INTRODUCTION
Deep learning has revolutionized many fields, enabling
computational models to learn abstract representations of
data using multiple processing layers [1]. Remarkable
successes have been achieved by deep neural networks
(DNNs) across a wide range of fields, including computer
vision [6], healthcare and bio medicine [4], [5] and natural
language processing [7]. This problem is further compounded
by the fact that selecting the best set of nonlinear activation
functions can be difficult [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Wanqing Zhao .

Several factors can influence the training process of a
neural network, including weight initialization, activation
functions, and network architecture [8]. Some activation
functions or network architectures can cause information loss
or increase the time needed to train a DNN [3], [8], [9],
[10]. The ReLU activation function has gained widespread
popularity due to its simplicity and effectiveness, but
hand-designed activation functions have also been proposed
to replace it [11], [12], [13], [14], [15], [16].

To address the challenge of selecting the best nonlinear
activation functions, trainable activation functions have
been proposed [3], [17]. Chung et al. [3] used a Taylor
series approximation of sigmoid, tanh, and ReLU as an
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initialization point for their activation functions and trained
the coefficients of the approximation to optimize training.
In this manuscript, we introduce a new neural network design
termed SWAG. Within this structure, the activation functions
across all layers are constructed from a polynomial basis,
adjusted by a factorial coefficient. Contrary to the usual
approach, we keep our activation functions static, ensuring
they consistently form a polynomial basis. The arrangement
of the hidden layers is systematic, with each layer containing
k sub-layers that utilize polynomial activation functions.
These are subsequently joined by a Concatenate layer and
followed by a layer that employs a linear activation function.

The rest of the manuscript is organized as follows:
Section II describes the mathematical foundations and archi-
tecture of SWAG, Section III presents the experiments con-
ducted, and Section IV discusses the results and future work.

II. RELATED WORK
The evolution of neural network architectures and the
diversification of activation functions have been pivotal
in advancing the field of machine learning. This section
delves into seminal works that have contributed to these
developments.

A. ADAPTIVE SPLINE NEURAL NETWORKS (ASNNS)
The introduction of Adaptive Spline Neural Networks
(ASNNs) by Guarnieri et al. [31] marked a significant
innovation in neural network design. ASNNs utilize adap-
tive spline activation functions, explicitly exploiting the
advantageous properties of cubic Catmull-Rom splines. This
approach enhances the network’s expressive power and
optimizes its performance, making ASNNs particularly adept
at handling complex modeling tasks with increased accuracy
and efficiency.

B. CHEBYSHEV-POLYNOMIALS-BASED UNIFIED NEURAL
NETWORK
Another groundbreaking contribution is the development
of a Chebyshev-Polynomials-Based (CPB) unified neural
network by Lee and Jeng [32]. This architecture cleverly
combines feedforward and recurrent neural mechanisms
through the incorporation of Chebyshev polynomials. The
CPB neural network remarkably accelerates the learning
process while preserving the core approximation capabilities
intrinsic to traditional neural network models. This dual
advantage facilitates a broader application spectrum, ranging
from complex system modeling to predictive analytics.

C. ENHANCEMENTS IN GESTURE DETECTION
The realm of gesture detection witnessed notable advance-
ments through applying Chebyshev polynomial neural
networks. Research conducted by Zhiqi [33] showcased
how these networks could outperform conventional Back
Propagation (BP) neural networks in recognizing and inter-
preting dynamic gestures. By leveraging polynomial-based
activation functions, this approach significantly improves the

model’s sensitivity and accuracy in capturing the nuances of
human gestures, thereby enhancing interaction technologies.

D. ORTHONORMAL HERMITE POLYNOMIALS FOR
ENHANCED ACCURACY
The innovative use of orthonormal Hermite polynomi-
als in single-hidden-layer neural networks by Ma and
Khorasani [34] represents a leap forward in accuracy
enhancement. This design principle capitalizes on the precise
approximation capabilities of Hermite polynomials, facili-
tating the construction of neural networks that can achieve
superior performance levels in tasks requiring high accuracy,
such as pattern recognition and data fitting.

E. LEGENDRE POLYNOMIALS IN FUNCTION
APPROXIMATION
Emphasizing orthogonal functions, Yang and Tseng [35] pro-
posed a single-layer neural network model that harnesses the
power of Legendre polynomials for function approximation.
This novel approach underlines the effectiveness of Legendre
polynomials in enhancing the network’s ability to generalize
from input data, thereby improving its predictive performance
across various applications.

F. TRAINABLE ACTIVATION FUNCTIONS IN IMAGE
CLASSIFICATION
Zhaohe Liao introduced a novel concept where the activation
function is subject to optimization alongside the neural
network’s weights. This approach, detailed in Trainable
Activation Function in Image Classification by Liao, repre-
sents a significant departure from traditional fixed activation
functions, promising improvements inmodel adaptability and
performance [36].

G. DEEP NEURAL NETWORK USING TRAINABLE
ACTIVATION FUNCTIONS
Chung, Lee, and Park further explore the concept of trainable
activation functions in their work published by IEEE [3].
They demonstrate that deep neural networks equipped with
activation functions that can be trained exhibit enhanced
learning capabilities and generalization across various tasks.
This research underscores the potential of adaptable activa-
tion mechanisms in advancing neural network designs.

These contributions emphasize the dynamic relation-
ship between neural network architectures and activation
functions. Through the exploration and integration of
polynomial-based designs along with inventive methods such
as trainable activation functions, researchers have notably
pushed the limits of neural networks, opening avenues for
future breakthroughs in artificial intelligence.

III. METHODS
A. REPRESENTATION OF BASIS FUNCTIONS
Suppose that we have a data set {xj} for 1 ≤ j ≤ n and
labels {yj}. We would like to find a function f (x) such that
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f (xj) = yj for all 1 ≤ j ≤ n. The Stone-Weierstrass
approximation theorem states that any continuous real-valued
function on a compact set can be uniformly approximated by
a polynomial. Formally:
Theorem 1 (Stone-Weierstrass Approximation Theorem):

Suppose f is a continuous real-valued function defined on
any closed and bounded subset X ∈

m for any m ∈ N. For
every ϵ > 0, there exists a polynomial p(x1, x2, . . . , xm)
such that |f (x1, x2, . . . , xm) − p(x1, x2, . . . , xm)| < ϵ for any
(x1, x2, . . . , xm) ∈ X The simplicity of polynomial systems
makes them very attractive analytically and computationally.
They are easy to form and have well-understood properties.
The use of polynomials of a given degree as activation
functions for all neurons in a single layer seems to be
mathematically discouraged in traditional neural network
settings because they are not universal approximators.
Particularly, Leshno et al. [18] proved the following
theorem:
Theorem 2: Let M be the set of functions which are

L∞
loc() with the property that the closure of the set of points

of discontinuity of any function in M has zero Lebesgue
measure. Let σ ∈ M . Then for a fixed x ∈

n,

span{σ {w · x + 2} : w ∈
n, 2 ∈}

is dense inC(n) if and only if σ is not an algebraic polynomial
almost everywhere.

This theorem implies that fully connected feedforward
neural networks with a sufficient number of neurons are
universal approximators if and only if the activation functions
are not polynomials. We note that in this traditional setting,
it is assumed that the activation function is the same
for every neuron in a given layer. We now give the
following extension of the Stone-Weierstrass approximation
theorem
Corollary 1: Let σp =

xp
p! for 0 ≤ p < ∞. Then

span{σp{w · x + 2} : w ∈
n, 2 ∈}

is dense in C(Xn) where Xn ∈
n is a compact set.

Proof: Notice that {σp}
∞

p=0 is a basis for the vector space
of polynomials over. So since we know that polynomials
are dense in C(Xn) by the Stone-Weierstrass approximation
theorem, the result follows.

This corollary implies that if we allow a diverse set of
polynomial activation functions in a particular layer, we will
still have the result of universal approximation capabilities
of feedforward neural networks. Using the same framework
as Leshno et al.. [18], in which the output was assumed to
be in n, an extension to higher dimensions can be easily
obtained by re-defining σp{w} as a pointwise operation that
takes each element of w and raises it to the pth power, e.g.
given w = [2, 3], then σ4{w} = [24, 34].

B. ARCHITECTURE OF THE SWAG ALGORITHM
Let xj ∈

d be a data point in our data set {xj}nj=1.
0 Normalize data to be in the interval [0,1].

FIGURE 1. Implementation of the SWAG architecture with three groups of
monomials of powers 1 through 3, and two layers.

1 Create the first polynomial layer as follows:

1.1 Choose a k for the number of of polynomial terms
used (k is a hyperparameter of the model).

1.2 Choose l for the number of neurons that correspond
to each monomial of the 1st layer (l is a hyperpa-
rameter of the model).

1.3 Create k fully-connected layers with l neurons in
each layer, all with xj as their inputs.

1.3.1 The pth fully-connected layer for 1 ≤ p ≤ k is
defined by σp{Wx + b} forW ∈ l × d , b ∈

l , and
σp as defined above.

1.3.2 Initialization of weights are random and drawn
fromN (0, 1), a Gaussian distribution with mean
0 and standard deviation 1.

1.4 Vertically concatenate the k layers to form a vector
of length l · k

2 Create a layer with a linear activation function. This is
considered the second layer of SWAG.

3 To add a third and fourth layer, repeat the structure of the
previous two layers with the input of the third layer as
the output of the second layer. If a third and fourth layer
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FIGURE 2. Implementation of the SWAG architecture with three groups of
monomials of powers 1 through 3, and four layers.

is added, then the first dimension of the matrix used in
the second layer is a hyperparameter of the model.

4 Continue to add layers in this pattern as desired.
5 The matrix used for the final linear activation layer will

have its first dimension be the dimension of the output
vector.

Figure 1 is a diagram of an example of SWAG using two
layers, and Figure 2 is a diagram of an example of SWAG
with four layers.

C. OPTIMIZED SWAG
The previous architecture faced a challenge that required
computing higher degrees of X. To address this issue.

FIGURE 3. Original SWAG in different format.

We propose a new architecture that optimizes the previous
flow.

When we have a Taylor series with terms of different
degrees, one useful technique is to use the lower-degree
terms to compute the higher-degree terms. Specifically,
if we have already computed X and X2, we can use these
terms to calculate all the higher-degree terms in the series.
For example, to calculate X3, we can multiply X by X2.
Similarly, to calculate X4, we can multiply X2 by itself.
This method allows us to compute all the terms in the
series without having to compute each term separately, which
can be very time-consuming for high-degree polynomials.
Therefore, by utilizing X and X2, we can simplify the
process of computing the Taylor series and obtain accurate
approximations for the original function.

Another benefit of this architecture is that the derivative of
X is constant, and the derivative of X2 is 2X , making them
easy to compute during backpropagation.

Figure 4 and Figure 3 illustrate the architectural differences
between the original SWAG and its optimized version,
presented in distinct formats.
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FIGURE 4. Optimized version of SWAG.

D. DATASET OVERVIEW
This study utilizes four fundamental datasets, widely rec-
ognized in the field of machine learning research for
classification tasks: the Pima Indians Diabetes, Sonar Sig-
nal, Ionosphere Radar, and the MNIST Handwritten Digit
datasets. Each dataset has been extensively documented in
the literature. Notably, [39] discussed the Sonar dataset, [38]
explored the Ionosphere dataset, [37] examined the Pima
Indians Diabetes dataset, and [40] described the MNIST
dataset.

1) PIMA INDIANS DIABETES DATASET
Comprising 768 entries, the Pima Indians Diabetes Dataset
is sourced from the corresponding Diabetes Database,

TABLE 1. Hyperparameters for random search.

presenting instances with eight attributes plus a class label.
The attributes, representing essential health metrics such
as glucose concentration, blood pressure, skin thickness,
insulin levels, BMI, diabetes pedigree function, age, and
number of pregnancies, are utilized to predict the likelihood
of diabetes onset within five years among Pima Indian
women [37].

2) SONAR SIGNAL DATASET
The Sonar Signal Dataset consists of 208 observations,
each described by 60 attributes, derived from sonar signals
rebounding off various materials. These attributes, docu-
menting energy levels across several frequency bands and
categorizing observations as ‘R’ (rock) or ‘M’ (mine), aim
to enable the accurate classification of sonar echoes from the
seabed, thus showcasing the model’s proficiency in pattern
recognition from signal data [39].

3) IONOSPHERE RADAR DATASET
This dataset features 351 instances, each with 34 attributes
from radar observations of the ionosphere, distinguishing
between ‘‘good’’ and ‘‘bad’’ structural detections. A ‘‘good’’
rating indicates that the radar successfully identified a
structure, whereas ‘‘bad’’ suggests the opposite. This differ-
entiation aids in evaluating the model’s capacity to discern
various atmospheric phenomena [38].

4) MNIST HANDWRITTEN DIGIT DATASET
With 70,000 handwritten digits, the MNIST dataset splits
into a training set of 60,000 images and a testing set of
10,000 images. Each 28 × 28 pixel image depicts a digit
from 0 to 9, challenging the model to accurately classify
handwritten digits, thereby testing its image recognition
abilities [40].

5) DATA PREPROCESSING AND PREPARATION
Each dataset was subjected to preprocessing protocols
to align with the SWAG model requirements. The Pima
Indians Diabetes, Sonar, and Ionosphere datasets underwent
normalization to a 0-1 scale to remedy scale variations,
with missing data points imputed based on the median of
relevant attributes. The MNIST dataset’s pixel values were
similarly normalized to the [0,1] range, and its labels were
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adapted to a one-hot encoding scheme, optimizing the data
for classification tasks.

Collectively, these datasets afford a thorough examination
of the SWAG model’s classification accuracy in various
contexts, from medical diagnostics and sonar signal parsing
to atmospheric condition discernment and handwritten
digit identification. These datasets’ diverse nature and
application areas underpin a solid basis for evaluating the
model’s versatility, efficiency, and general effectiveness in
classification tasks.

IV. RESULTS
In the field of machine learning, there are three primarymeth-
ods for hyperparameter tuning: human-designed machine
learning models [19], AutoML [20], and the greedy search
algorithm [29].

Human-designed machine learning models rely on expert
knowledge and experience to select hyperparameters and
construct the model architecture [30]. This approach neces-
sitates extensive domain expertise, and the resulting models
may not always be optimal for a specific use case [30].
AutoKeras, an automated machine learning (AutoML)

tool, employs a neural architecture search algorithm to
generate deep learning models automatically [24]. This
method requires less human intervention and is generally
faster than manual design. However, it may only consistently
produce the optimal architecture for some use cases [24].
The greedy search algorithm, another method, seeks

optimal hyperparameters within a predefined deep learning
architecture. It involves testing various hyperparameter com-
binations and selecting the best-performing one, although it
can be computationally intensive and time-consuming [29].

This study compared our proposed model’s perfor-
mance with random search, AutoKeras, and human-designed
machine learning models. Our objective was to demonstrate
the effectiveness of our model and its ability to outperform
both traditional and automated hyperparameter optimization
techniques and expert-designed models. This comparison
provides insights into each method’s strengths and limita-
tions, highlighting the importance of choosing the most suit-
able hyperparameter tuning approach for a specific task [26].
We generated a dataset containing random numbers

between 0 and 1 to conduct this analysis, which we divided
into training and test sets. We also created three random
mathematical functions to evaluate algorithm performance
across different data types. In addition to manually designing
two deep learning architectures, we investigated random
search and AutoKeras for comparison purposes [25].

For the AutoKeras implementation, the max trials param-
eter was set to 10 [28]. We also trained SWAG with l = 50,
k = 8, and three layers, where the first dimension of the
second layer was set to 50. The standard mean squared loss
function with the Adam optimizer was employed to test
model accuracy [23].

For the random search, the following hyperparameters
were applied:

For the AutoKeras implementation, the max trials param-
eter was set to 10. We also trained SWAG with l = 50,
k = 8, and three layers, where the first dimension of the
second layer was set to 50. The standard mean squared loss
function with the Adam optimizer was employed to test
model accuracy [23].

We generated three random functions by selecting coef-
ficients for four distinct terms: a power function, a sigmoid
function, an exponential function, and a logarithmic function.
Each function was defined as a summation of these four
terms using the randomly selected coefficients. The generated
function is given as follows:

F(x) = a0xa1 + a2

(
1

1 + e−a3x

)
+ a4ea5x×0.1

+ a6 log(a7x) (1)

In this equation, a0, a2, a4, a6 ∈ (−10, 10) and
a1, a3, a5, a7 ∈ (1, 50) are coefficients.
The randomly generated functions for this experiment are

as follows:

F1 =
1
2
x2 − 5

(
1

1 + ex

)
(2)

F2 = 6x5 − 3
(

1
1 + ex

)
+ ex − 9 log10(x) (3)

F3 = 22x20 −
1

1 + ex
+ 2ex + 5 log10(x) (4)

For 1 ≤ i ≤ 3,

Yitrain = Fi(Xtrain) (5)

Yitest = Fi(Xtest) (6)

A. DETAILED ANALYSIS OF MODEL PERFORMANCE FOR
FUNCTION APPROXIMATION TASKS
To provide a more in-depth analysis of the performance of
the five different models in approximating the three functions
(F1, F2, and F3), we will consider the following aspects:

• Loss value trends and convergence
• Model complexity and computational efficiency
• Robustness and generalization capabilities

1) LOSS VALUE TRENDS AND CONVERGENCE
• Architecture 1 demonstrates a steady decline in loss
values for F3 and F2. However, the loss values remain
relatively constant for F1, showing no significant
improvement. Overall, Architecture 1 exhibits subopti-
mal performance across all three functions.

• Architecture 2 shows limited improvement in loss
values for all three functions. Loss values plateau or
slightly increase over time, indicating poor performance
in approximating the functions.

• AutoKeras exhibits a significant decrease in loss values
across all three functions, demonstrating quick conver-
gence and strong potential for function approximation.
This model outperforms Architectures 1 and 2 by a
considerable margin.

73368 VOLUME 12, 2024



S. Safaei et al.: SWAG: A Novel Neural Network Architecture Leveraging Polynomial Activation Functions

TABLE 2. Comparison of final loss values between SWAG and AutoKeras
for functions 4-13.

• Random Search achieves the lowest loss values among
all models for all three functions, indicating excellent
performance. However, the convergence is slower than
that of AutoKeras and SWAG, taking more epochs to
achieve optimal loss values.

• SWAG displays a remarkable reduction in loss values
over the epochs for all three functions, achieving low
loss values and demonstrating excellent convergence
properties.

2) MODEL COMPLEXITY AND COMPUTATIONAL EFFICIENCY
• Architecture 1 and Architecture 2, despite their different
architectures, both exhibit suboptimal performance in
approximating the given functions. This suggests that
they may not be well-suited for the task, and other
architectures should be explored.

• AutoKeras leverages an automated search for an optimal
model architecture, resulting in improved performance
across all three functions. This method provides a good
balance between model performance and computational
efficiency.

• Random Search, although yielding the best perfor-
mance, is computationally expensive, taking 200 times
longer than the other models. This could be a significant
drawback when dealing with larger datasets or more
complex functions.

• SWAG balances model performance and computational
efficiency, achieving low loss values and demonstrating
quick convergence.

3) ROBUSTNESS AND GENERALIZATION CAPABILITIES
• AutoKeras and SWAG consistently show promising
results across all three functions, suggesting that these
models have robust and generalizable architectures. This
indicates that they are likely to perform well on a wider
range of function approximation tasks.

• Architecture 1 and 2, on the other hand, exhibit poor
performance and limited generalization capabilities,
making them unsuitable for the given tasks.

• While Random Search achieves the best performance,
its computational inefficiency and slower convergence
may limit its general applicability, especially for larger
or more complex tasks.

FIGURE 5. F1 =
1
2 x2 − 5

(
1

1+ex
)

: Five plots show training and validation
losses over epochs for models approximating Function 1.

In conclusion, AutoKeras and SWAG emerge as the most
promising candidates for approximating the three functions,
providing a good balance between model performance,
computational efficiency, and generalization capabilities.
Random Search achieves the best performance in terms of
loss values but is considerably slower, limiting its practical
applicability. Architectures 1 and 2 exhibit suboptimal
performance and may not be suitable for the given tasks.

4) COMPARATIVE ANALYSIS OF SWAG AND AUTOKERAS
MODELS BASED ON FINAL LOSS VALUES
This section presents a comparative analysis of the SWAG
and AutoKeras models, focusing on each function’s final test
loss values. The results are outlined below:

In Equations (5) to (14), we can observe the various random
functions that were generated for our experiment.

In summary, AutoKeras exhibits superior performance
for Function 4, while SWAG outperforms AutoKeras for
Functions 5-13. Notably, the average runtime for AutoKeras
is approximately eight times slower than that of SWAG,
which is an important factor to consider when selecting a
model for a specific application.

f4(x) = −5x7 +
1

1 + e−6x + e−4x×0.01
+ log(4x), (7)

f5(x) = −4x10 +
1

1 + e−4x + e4x×0.01
+ 7 log(3x), (8)

f6(x) = −x6 +
2

1 + e−7x − e−x×0.01
+ 5 log(7x), (9)
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FIGURE 6. F2 = 6x5 − 3 1
1+ex + ex − 9 log10(x): Five plots illustrate

training and validation losses for models on Function 2. Architecture
1 and 2 plots excluded due to losses beyond the displayed range.

f7(x) = −3x10 + 5
e2x

1 + e8x
− e−x×0.01

+ 3 log(6x), (10)

f8(x) = 10x6 − 2
e4x

1 + e8x
− e−x×0.01

+ 6 log(7x), (11)

f9(x) = 8x9 + 5
e8x

1 + e−x
+ e−x×0.01

+ 3 log(7x), (12)

f10(x) = −8x8 − 9
ex

1 + e−9x + 5e10x×0.01
+ 2 log(8x),

(13)

f11(x) = 6x10 + 8
e5x

1 + e3x
− e−10x×0.01

+ 2 log(2x), (14)

f12(x) = 5x5 + 10
e6x

1 + e−2x − e−x×0.01
+ 8 log(5x), (15)

f13(x) = −7x5 + 10
e6x

1 + e−2x − 6e−x×0.01
+ 4 log(10x).

(16)

B. CLASSIFICATION EXPERIMENT: APPLICATION OF
SWAG ON DIVERSE DATASETS
Our experiment assessed the efficacy of twomachine learning
approaches, SWAG and AutoKeras, through a rigorous
10-fold cross-validation process across three diverse datasets:
Sonar, Ionosphere, and Pima Indians Diabetes. Unlike
previous methods that relied on time-consuming random

FIGURE 7. F3 = 22x20 −
1

1+ex + 2ex + 5 log10(x): Figure with five plots
showing training and validation losses over epochs for each model on
Function 2. Plots for Architecture 1 and 2 are omitted due to losses
exceeding the displayed range.

FIGURE 8. F1 =
1
2 x2 − 5

(
1

1+ex
)

: Chart of models’ approximations vs.
original Function 1, with input on x-axis and output on y-axis.

searches or human-designed architectures, our comparison
focused on the innovative SWAG algorithm and AutoKeras
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TABLE 3. SWAG test loss for random functions.

TABLE 4. AutoKeras test loss for random functions.

due to their automation and efficiency in design selection.
This analysis presents detailed insights into each dataset’s
outcomes.
Experimental Setup:We conducted our evaluation using a

consistent experimental setup across all datasets. Specifically,
the number of training epochs was fixed at 5, and AutoKeras
was allowed a maximum of 5 trials to optimize its architec-
ture. This setup ensures a fair comparison between SWAG
and AutoKeras regarding performance and efficiency.

1) ANALYSIS ON THE SONAR DATASET
The Sonar dataset, introduced by [39], served as the first test
case for our comparison. Our findings are summarized as
follows:

• Accuracy and Performance: SWAG showcased superior
accuracy, with a mean of 75.43% (±8.10%), outshining
AutoKeras’s 61.98% (±10.89%). This demonstrates
SWAG’s robustness in handling the Sonar dataset’s
complex signal patterns.

• Computational Efficiency: SWAG’s computational time
was significantly less (20.21 seconds) compared to
AutoKeras (333.03 seconds), highlighting SWAG’s
efficiency and its potential for real-time applications.

2) EVALUATION ON THE IONOSPHERE DATASET
Upon applying the algorithms to the Ionosphere dataset [38],
the following observations were made:

• Accuracy Excellence: Continuing its streak, SWAG
achieved 87.45% (±4.48%) accuracy on the Ionosphere
dataset versus AutoKeras’s 81.78% (±8.46%). This
underscores SWAG’s ability to model the atmospheric
disturbances captured in this dataset effectively.

• Speed Advantage: SWAG maintained an execu-
tion time (21.63 seconds), far outpacing AutoKeras

FIGURE 9. Graph comparing model approximations to original F2, with
input on the x-axis and F2 output on the y-axis.

(305.51 seconds), which speaks to its computational fru-
gality and suitability for high-frequency data processing
tasks.

3) PERFORMANCE ON THE PIMA INDIANS DIABETES
DATASET
The evaluation of the Pima Indians Diabetes dataset [37]
yielded the following results:

• Comparable Accuracy: Both algorithms performed
similarly, with SWAG slightly edging out with 76.31%
(±3.41%) accuracy against AutoKeras’s 76.17%
(±2.86%). This parity suggests that both methods are
equally adept at managing the clinical data variability
inherent in the diabetes dataset.

• Efficiency Gains: SWAG completed its analysis in
39.49 seconds, compared to AutoKeras’s 244.52 sec-
onds, reinforcing the efficiency pattern observed in
previous datasets.

4) OVERALL OBSERVATIONS
The comparative analysis between SWAG and AutoKeras,
as detailed in Tables 5 and 6, reveals insightful distinctions
in their performance across various datasets. In terms of
accuracy, SWAG consistently demonstrates comparable or
superior results when measured against AutoKeras. Specif-
ically, for the Pima Indians Diabetes dataset, SWAG and
AutoKeras exhibit nearly identical average accuracies, with
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FIGURE 10. Graph of model approximations vs. original F3, with input on
the x-axis and F3 output on the y-axis.

SWAG slightly leading at 76.31% compared to AutoKeras’s
76.17%. This trend is more pronounced in the Ionosphere and
Sonar datasets, where SWAG outperforms AutoKeras with
average accuracies of 87.45% and 75.43% against 81.78%
and 61.98%, respectively. The variance in performance is
notably lower for SWAG across these datasets, indicating a
more stable and reliable prediction model.

Moreover, the efficiency of SWAG is markedly highlighted
in the analysis of runtime performance. SWAG completes
its processing significantly faster than AutoKeras across
all evaluated datasets, with runtime measurements for
SWAG (ranging from 20.21 to 39.49 seconds) substantially
lower than those for AutoKeras (ranging from 244.52 to
333.03 seconds). This substantial difference underscores
SWAG’s potential for applications requiring not only high
accuracy and stability but also efficiency in computational
resource usage.

This comparative evaluation underscores the efficacy of
SWAG in achieving high accuracy with reduced variability
and enhanced computational efficiency, making it a com-
pelling choice for diverse machine learning applications.

C. FINAL EXPERIMENT: EVALUATING SWAG ON THE
MNIST HANDWRITING DATASET
In the final phase of our investigation, the SWAG frame-
work was applied to the MNIST handwriting dataset [40],
a benchmark collection of 70,000 images of handwritten
digits ranging from 0 to 9. This dataset served as the basis

FIGURE 11. This figure depicts training and validation loss trends over
epochs for SWAG and AutoKeras on MNIST.

for evaluating the efficacy of SWAG relative to AutoKeras.
During preprocessing, images were transformed into vectors
of dimension 784×1to facilitate their use as input. Parameters
for the SWAG algorithm were configured with l = 500,
k = 7, and the model architecture was streamlined to
incorporate only two layers. The dataset allocation consisted
of a training subset encompassing 60,000 images, alongside
a test subset comprising 10,000 images.

1) COMPREHENSIVE EVALUATION OF SWAG AND
AUTOKERAS ON THE MNIST DATASET
Our in-depth analysis focuses on contrasting the SWAG and
AutoKeras models across various metrics on the MNIST
dataset:

• Trends in loss values and model convergence
• Accuracy metrics, including both training and validation
accuracy

• Training duration and computational efficiency

Trends in Loss Values and Model Convergence:

• SWAG Model: Exhibited a consistent decrease in
training and validation loss over the epochs, indicating
effective learning and convergence towards an optimal
solution. The training loss reduced from 0.0552 to
0.0099, alongside a validation loss decrease from
0.0172 to 0.0104, showcasing the model’s ability to
generalize well as illustrated in Figure 11.

• AutoKeras Model: Demonstrated reduced training
loss but increased validation loss, suggesting potential
overfitting. Specifically, training loss dropped from
0.3001 to 0.2251, while validation loss escalated from
97.3062 to 116.4989, indicating a divergence in model
generalization capability.

Accuracy and Validation Accuracy:

• SWAG Model: Achieved a remarkable training accu-
racy of 98.36% and validation accuracy of 97.70%,
underlining its superior performance on the MNIST
dataset.

• AutoKeras Model: Attained lower accuracy levels
compared to SWAG, with a training accuracy of 92.97%
and validation accuracy of 88.38%, highlighting its
limitations in effectively classifying the MNIST digits.

Training Time and Computational Efficiency:

• SWAG Model: Notably efficient, requiring only
7.32 seconds to complete the training over four epochs.
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TABLE 5. Performance comparison of SWAG and AutoKeras on different
datasets.

TABLE 6. Runtime and average accuracy for SWAG and AutoKeras on
different datasets.

This efficiency underscores SWAG’s suitability for rapid
model development and deployment.

• AutoKerasModel: Incurred a significantly longer train-
ing duration of 5681.16 seconds (approx. 94.7 minutes),
largely due to its exhaustive search for an optimal
model architecture. While this automated process aims
to achieve high accuracy, it poses practical challenges
regarding time efficiency, especially for larger datasets
or complex modeling tasks.

In summary, the SWAG model distinctly outperforms
the AutoKeras model across all evaluated metrics on the
MNIST dataset, including loss convergence, accuracy, and
computational efficiency. SWAG’s rapid convergence, high
accuracy rates, and computational frugality make it an
exemplary choice for handwriting digit classification tasks.
Conversely, the AutoKeras model, despite its automated
architecture optimization, needs to improve in generalization
and efficiency, underpinning the superior utility of SWAG
for such applications. The experiments were facilitated by
Google Colab, with the code and further details accessible

at [41], specifically within Chapter 2 and the SWAG
Classification notebooks.

V. DISCUSSION
This study introduces SWAG, a novel neural network
architecture aimed at optimizing the selection of nonlinear
activation functions for enhanced model performance. Unlike
traditional approaches that rely on predetermined activation
functions, SWAG employs a set of fixed functions, construct-
ing a polynomial basis within each layer. This strategy is
grounded in the principles of the Stone-Weierstrass approxi-
mation theorem, which asserts that polynomial functions are
capable of uniformly approximating any continuous function
over a closed interval. Consequently, SWAG preserves the
global approximation capability intrinsic to feedforward neu-
ral networks while potentially streamlining the computational
process.

Our comprehensive evaluation of SWAG, compared with
random search techniques, AutoKeras, and manually devel-
oped machine learning models, particularly in hyperparame-
ter optimization, sheds light on the strengths and limitations
of these methods. This comparative analysis underscores
the importance of adopting a bespoke hyperparameter
optimization strategy tailored to the specific demands of each
task. The findings reveal that AutoKeras and SWAG balance
accuracy, computational efficiency, and model generalization
effectively. On the other hand, despite achieving optimal
loss values, random search methods are hindered by their
time-intensive nature, rendering them less practical for real-
world applications. Moreover, architectures designed by
human experts fell short of expectations, highlighting their
limitations in the tasks examined within this study.

A noteworthy observation from the refinement of the
SWAG model is the predominant use of X and X2 as
activation functions. The linear derivative of X2 signifi-
cantly simplifies the backpropagation process. Additionally,
incorporating the NumPy library in several iterations of
SWAGhasmarkedly improved computational speed, offering
a competitive advantage over other libraries.

VI. FUTURE WORK
The adaptability and computational efficiency of the SWAG
model open up promising avenues for future research,
particularly in the realm of on-device machine learning.
Given its fixed architecture, SWAG can be pre-installed on
mobile devices or other portable hardware, allowing for on-
the-fly training and deployment of models directly on the
device. This capability introduces a paradigm shift in how
machine learning models are traditionally deployed, moving
from cloud-based to edge computing. Future studies could
explore:

• Optimization for Mobile Devices: Tailoring SWAG’s
architecture to maximize efficiency and performance on
mobile processors, including adjustments for battery life
optimization and memory usage.
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• Real-time Learning and Adaptation: Investigating
SWAG’s potential to learn from new data in real-time,
enabling personalized and adaptive applications that
evolve with user interaction.

• Cross-Device Compatibility: Ensuring SWAG’s com-
patibility across a broad spectrum of devices, from
smartphones to IoT devices, to foster a wider adoption
of on-device learning.

• Privacy-preserving Machine Learning: Leveraging
SWAG’s on-device training capability to enhance data
privacy, as data need not leave the user’s device for
model training or updates.

The exploration of these areas will significantly contribute
to the advancement of edge computing in machine learning,
paving the way for innovative applications that leverage the
immediacy and privacy benefits of on-device computation.
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