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ABSTRACT This study introduces a ground-breaking approach to analyzing dihedral groups through the
lens of fuzzy graph theory, significantly enhancing computational efficiency in group theory. By extending
the fuzzy topological indices to polynomial forms, this research drastically reduces the calculation time
for these indices from hours to mere seconds. A notable feature of this work is the innovative use of
polynomial regression, a machine learning technique, to generate polynomials for adjacency and degree
matrices within the fuzzy conjugate graph of a dihedral group. This method not only simplifies calculations
but also incorporates an error analysis component, ensuring accuracy and reliability. The integration of fuzzy
graph theory with polynomial regression in this context is a pioneering step, offering valuable insights into
the structural attributes of dihedral groups. This research goes beyond traditional methods, highlighting
the effectiveness of machine learning in deciphering complex patterns in group theory. The findings and
techniques presented hold great promise for future applications in graph theory and group theory, offering
a novel perspective for understanding and analyzing intricate graph structures. This study stands as a
significant contribution to the field, potentially revolutionizing the way complex mathematical problems
are approached and solved.

INDEX TERMS Artificial intelligence, conjugate graph, dihedral group, fuzzy graph, fuzzy topological
indices, polynomial regression, topological indices.

I. INTRODUCTION
In the realm of chemical graph theory, where molecules are
represented as graphs to simplify the study of their structures,
this study marks a significant advancement by introducing
a groundbreaking approach to analyzing dihedral groups
through fuzzy graph theory. The dihedral group, integral to
understanding molecular symmetries in various compounds
such as benzene (C6H6), is explored with enhanced compu-
tational efficiency. By extending fuzzy topological indices
to polynomial forms, the research drastically reduces the
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calculation time of these indices from hours to mere seconds.
The incorporation of polynomial regression, a machine
learning technique, is a key innovation for generating
polynomials for adjacency and degree matrices within the
fuzzy conjugate graph of a dihedral group. This method
simplifies complex calculations and incorporates error anal-
ysis to ensure accuracy and reliability. The integration of
fuzzy graph theory with polynomial regression in analyzing
dihedral groups’ structural attributes is a pioneering step.
This research transcends traditionalmethods, highlighting the
effectiveness of machine learning in deciphering complex
patterns in group theory. The findings and methodologies
presented offer new perspectives in graph theory and group
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theory, potentially revolutionizing the approach to complex
mathematical problems in chemistry and beyond.

Conjugate graphs have been the focus of several research
papers. They are defined as graphs related to groups, where
the vertices represent elements or sets from the groups and the
edges represent properties and conditions for the graph [1].
Different properties and matrices associated with conjugate
graphs have been studied, such as the conjugate adjacency
matrix and the conjugate Laplacian matrix [2]. These
matrices have been used to determine various properties of
the eigenvalues and eigenvectors of graphs with co-neighbour
vertices [3]. Conjugate graphs have also been applied in the
field of shape matching, where a novel formalism based
on the conjugate product graph has been proposed to find
continuous and non-rigid matchings between 2D contours
and 3D meshes [1]. Additionally, the conjugate graph has
been used to study the isomorphism between nonabelian
groups and to compare the conjugate graphs of different
groups [4]. Overall, conjugate graphs have been extensively
studied in various contexts, including group theory, graph
theory, and shape matching.

Different graphs of dihedral groups have been studied in
the literature. One type of graph representation is the power
graph, which uses the elements of the group as vertices
and connects two vertices if their corresponding elements
satisfy certain conditions [5]. The conjugacy class graph is
another graph related to dihedral groups, where the vertices
represent non-central conjugacy classes and two vertices are
connected if they have a common prime divisor [6]. Meta-
Cayley graphs on dihedral groups have been defined, and
their automorphism groups have been fully determined [7].
The conjugacy class graph of a group is a graph with a vertex
set represented by the non-central conjugacy classes of the
group, and two distinct vertices are connected if they have
a common prime divisor [8]. These different graphs provide
insights into the properties and topological indices of dihedral
groups.

Fuzzy graphs are a significant area of research due
to their wide range of applications. They combine the
concepts of fuzzy sets and graphs to represent vagueness
and uncertainty. Different types of fuzzy graphs have
been studied, including fuzzy planar graphs, fuzzy soft
graphs, and cubic fuzzy graphs [9]. These graphs have
been applied in various fields such as social networks, road
networks, traffic management, telecommunication, and brain
networks [10]. The properties of fuzzy graphs have been
investigated, including graph coloring and the utility value
of neutrosophic and intuitionistic structures [11]. TheWiener
index, a measure of connectivity, has also been studied in
cubic fuzzy graphs. Overall, fuzzy graphs provide a useful
framework for dealing with ambiguity and uncertainty in
various applications [12]. In [13], the identity graph of
a ring is discussed, and its fuzzy and crisp topological
indices are presented. Topological indices are numbers that
describe specific properties of a graph and are widely
used in chemistry. They convert the chemical structure into

a numerical value and are helpful in understanding the
structure and dynamics of molecules. Various topological
indices, such as the Wiener index, Zagreb index, and ABC
index, have been computed for different graphs [14]. These
indices are algebraic quantities that correlate the chemical
structure with physical characteristics and can be used to
determine properties like chemical activity, thermodynamic
properties, and biological activity [15]. Topological indices
are also used in the study of quantitative structure-activity
relationships (QSAR) and quantitative structure-property
relationships (QSPR) to correlate molecular structure with
different properties and activities [16]. They have been
applied in drug design and development to analyze the
physical characteristics, chemical reactivity, and biological
activity of chemical structures [17]. The energy of a graph
in graph theory is a concept that measures the sum of
the absolute eigenvalues of the adjacency matrix of the
graph [18]. It has applications in various fields, such as
chemistry and network analysis [19]. We can use the
energy of a graph to determine its properties, including its
connectivity and degree. Several theorems and bounds have
been established to study the energy of a graph, including
upper bounds and bounds based on different graph matrices
[20]. The energy of a graph has been compared to the
energy of complete graphs and used to classify graphs as
hyperenergetic or borderenergetic [21]. Additionally, the
energy of a graph can be determined for specific types of
graphs, such as regular subdivision graphs and complete
graphs [22].

II. PRELIMINARIES
The conjugate graph of the dihedral group D2υ is defined
as the graph in which the vertex set is the set of elements
of the dihedral groupD2υ and an edge exists between a pair of
vertices if and only if they are conjugate of each other. In this
article, we refer to the conjugate graph of the dihedral group
D2υ where υ is odd as G( ˙D2υ ) and the conjugate graph of the
dihedral group D2υ where υ is even as G( ¨D2υ ). Based on this
definition of conjugate graph,G(Ḋ14) is given in Figure 1 and
G(D̈16) in Figure 2.
In this study, we define the fuzzy graph associated with the

conjugate graph of a dihedral group, denoted as D2υ . This
graph is represented by a three-part structure (v, h̄, �). Here,
v denotes the set of vertices, and E signifies the set of edges.
Each edge (ψ,2) belonging toE and each vertexψ in v carry
a membership value, noted as�(ψ,2) and h̄(ψ) respectively,
ranging between 0 and 1. These values represent the weights
of vertices and edges, termed vertex weight h̄ and edge weight
�. The specific focus of this article is on the fuzzy conjugate
graphs of the dihedral group D2υ , differentiated by the parity
of υ; the graph for odd υ is expressed as ✠( ˙D2υ ), and
for even υ as ✠( ¨D2υ ). We exemplify this with ✠(Ḋ14) and
✠(D̈16) in figures 4 and 3, respectively. We propose that the
vertex weight h̄ in the fuzzy conjugate graph of any dihedral
group ✠(D2υ ) is 1

υ
, and the corresponding edge weight �

is 1
2υ .

73634 VOLUME 12, 2024



M. U. Mirza et al.: Machine Learning Driven Exploration of Energies and Generalization of Topological Indices

FIGURE 1. Conjugate graph of the dihedral group D14, G(D14).

FIGURE 2. Conjugate graph of the dihedral group D16, G(D16).

FIGURE 3. Conjugate fuzzy graph of the dihedral group D14, G(D14).

FIGURE 4. Conjugate fuzzy graph of the dihedral group D16, G(D16).

Furthermore, we define the fuzzy degree of a vertex ℘
in ✠(D2υ ) as the aggregate of membership values of all
connecting edges. This is mathematically represented by
℘(ψ) =

∑
ψ∈V,(ψ,2)∈E�(ψ,2). Additionally, we explore

the application of topological indices—numerical descriptors
that encapsulate the topological characteristics of graphs—
in understanding the chemical and physical attributes of
molecules. The computationmethods for both crisp and fuzzy
topological indices are detailed in Table 1.

III. THE SCOPE OF FUZZY TOPOLOGICAL INDICES FOR
✠(D2υ ) BY CREATING υ DEPENDENT POLYNOMIALS
This section is dedicated to introducing generalized υ

dependent polynomial expressions for the fuzzy topological
indices pertaining to the conjugate graph graph of ✠(D2υ ).

TABLE 1. Formulae of fuzzy topological indices.

A. GENERALIZATION OF FUZZY TOPOLOGICAL INDICES
FOR ✠( ¨D2υ ), WHEN υ IS EVEN
Theorem 1: The first fuzzy Zagreb index ® of conjugate

graph ✠(D2υ ) where υ is even is given by

® =
(υ − 2)(υ2 − 2υ + 4)

16υ3
(1)

Proof:

® =

∑
h(ψ)(w(ψ))2 ∀ψϵV

=
1
υ
(
1
2υ

)2 +
1
υ
(
1
2υ

)2 + · · ·
1
υ
(
1
2υ

)2
(
(υ − 2) times

)
+

1
υ
(
υ − 2
4υ

)2 +
1
υ
(
υ − 2
4υ

)2 + · · ·

+
1
υ
(
υ − 2
4υ

)2
(
υ times

)
+

1
υ
(0)2 +

1
υ
(0)2

=
υ − 2
υ

(
1
2υ

)2 + (
υ − 2
4υ

)2

=
(υ − 2)
4υ3

(
(υ − 2)2

16υ2
)

=
4(υ − 2) + υ(υ − 2)2

16υ3

=
(υ − 2)(4 + υ(υ − 2))

16υ3

=
(υ − 2)(υ2 − 2υ + 4)

16υ3

□
Theorem 2: The second fuzzy zegrab index ¥ for conju-

gate graph ✠(D2υ ) where υ is even is given by

¥ =
(υ − 2)(4 + υ3)

16υ5
(2)

Proof:

¥ =

∑
(ψ,2)ϵE

h̄(ψ)℘(ψ)h̄(2)℘(2)

=
1
υ
(
1
2υ

).
1
υ
(
1
2υ

) +
1
υ
(
1
2υ

).
1
υ
(
1
2υ

)

+ · · · +
1
υ
(
1
2υ

).
1
υ
(
1
2υ

)
(υ − 2)
υ

times+
1
υ
(
υ − 2
4υ

)

+
1
υ
(
υ − 2
4υ

) + · · · +
1
υ
(
υ − 2
4υ

)
υ(υ − 2)

4
times

=
1

4υ4
(
υ − 2
υ

) + (
υ − 2
16υ2

)
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=
υ − 2
4υ2

(
1
υ3

+
1
4
)

=
υ − 2
4υ2

(
4 + υ3

4υ3

=
(υ − 2)(4 + υ3)

16υ5
(3)

□
Theorem 3: The fuzzy harmonic index ζ of conjugate

graph ✠(D2υ ) where υ is even is given by

ζ =
υ(υ − 2)(υ + 1)

(υ + 2)
(4)

Proof:

ζ =
1
2

[ ∑
(x,y)ϵE

1
h(x)w(x) + h(y)w(y)

]

=
1
2

[
1

( 1
υ
)( 1

2υ ) + ( 1
υ
)( 1

2υ )
+

1

( 1
υ
)( 1

2υ ) + ( 1
υ
)( 1

2υ )

+ . . . ..+
1

( 1
υ
)( 1

2υ ) + ( 1
υ
)( 1

2υ )

(υ − 2)
υ

times+

+
1

( 1
υ
) + (υ−2

4υ )
+

1

( 1
υ
) + (υ−2

4υ )

+ . . . ..+
1

( 1
υ
) + (υ−2

4υ )

υ(υ − 2)
4

times
]

=
1
2

[
(
1
2

2υ2
)(
υ − 2
υ

) + (
1

4υ+υ2−2υ
4υ2

)(
υ(υ − 2)

4
)
]

=
1
2

[
υ(
υ − 2
υ

) +
4υ2

4υ + υ2 − 2υ
(
υ(υ − 2)

4
)
]

= (
υ(υ − 2)

2
)
[
1 +

υ2

4υ + υ2 − 2υ

]
= (

υ(υ − 2)
2

)
[
υ2 + 2υ + υ2

υ2 + 2υ

]
= (

υ(υ − 2)
2

)
[
2υ2 + 2υ
υ2 + 2υ

]
= (

υ(υ − 2)(υ2 + υ)
υ2 + 2υ

)

= (
υ2(υ − 2)(υ + 1)

υ(υ + 2
)

=
υ(υ − 2)(υ + 1)

(υ + 2)
(5)

□
Theorem 4: The fuzzy Randic index ξ for conjugate graph

✠(D2υ ) where υ is even is given by

ξ =
1
2

[
(υ − 2)(4 + υ3)

16υ5
+

(υ − 2)(υ − 3)
8υ4

+
υ2(υ − 2)2

64υ4

+
υ(υ − 2)2

8υ4

]−1
2

(6)

Proof:

ζ =
1
2

[ ∑
(ψ,2)ϵV

h̄(ψ)℘(ψ)h̄(2)℘(2)
]−1

2

=
1
2

[ ∑
(ψ,2)ϵV

h̄(ψ)℘(ψ)h̄(2)℘(2)

+

∑
(ψ,2)ϵV́

h(ψ)w(ψ)h(2)w(2)
]−1

2

=
1
2

[
(υ − 2)(4 + υ3)

16υ5
+ (

1
υ
)(

1
2υ

)(
1
υ
)(

1
2υ

)+

+ (
1
υ
)(

1
2υ

)(
1
υ
)(

1
2υ

) + · · · (
1
υ
)(

1
2υ

)(
1
υ
)(

1
2υ

)

(υ − 2)(υ − 3)
2

times

+ (
1
υ
)(
(υ − 2)
4υ

)(
1
υ
)(
(υ − 2)
4υ

)

+ · · · + (
1
υ
)(
(υ − 2)
4υ

)(
1
υ
)(
(υ − 2)
4υ

)
υ2

4
times

+ (
1
υ
)(

1
2υ

)(
1
υ
)(

1
2υ

) + . . . .

+ (
1
υ
)(

1
2υ

)(
1
υ
)(

1
2υ

)
(
υ(υ − 2) times

)]−1
2

=
1
2

[
(υ − 2)(4 + υ3)

16υ5
+

(υ − 2)(υ − 3)
8υ4

+
υ2(υ − 2)2

64υ4
+
υ(υ − 2)2

8υ4

]−1
2

(7)

□
Figure 5 shows the comparison of fuzzy topological indices
for different values of υ

FIGURE 5. Fuzzy topological indices for υ = 4, 6, 8.

B. GENERALIZATION OF FUZZY TOPOLOGICAL INDICES
FOR ✠( ˙D2υ ), WHEN υ IS ODD
Theorem 5: The first fuzzy Zagreb index of conjugate

graph ✠(D2υ ) where υ is odd is given by
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® =
(υ − 1)
4υ3

+
υ(υ − 1)

2υ2
(8)

Proof:

® =

∑
h(ψ)(w(ψ))2 ∀ψϵV

=
1
υ
(
1
2υ

)2 +
1
υ
(
1
2υ

)2 + . . . ..
1
υ
(
1
2υ

)2 (υ − 1)times

+
1
υ
(
υ − 1
2υ

) +
1
υ
(
υ − 1
2υ

) + . . . ..

+
1
υ
(
υ − 1
2υ

) υ times

= (
1
υ

1
4υ2

)(υ − 1) + υ(
υ − 1
2υ2

)

=
υ − 1
4υ3

+ υ(
υ − 1
2υ2

)

(9)

□
Theorem 6: The second fuzzy Zagreb index ¥ for conju-

gate graph ✠(D2υ ) where υ is odd is given by

¥ =
(υ − 1)(υ2 − υ + 1)

8υ4
(10)

Proof:

¥ =

∑
(ψ,2)ϵE

h(ψ)w(ψ)h(2)w(2)

=
1
υ
(
1
2υ

).
1
υ
(
1
2υ

) +
1
υ
(
1
2υ

).
1
υ
(
1
2υ

)

+ · · · +
1
υ
(
1
2υ

).
1
υ
(
1
2υ

)
(υ − 1)

2
times

+
1
υ
(
υ − 1
2υ

)
1
υ
(
υ − 1
2υ

) + · · ·

+
1
υ
(
υ − 1
2υ

)
1
υ
(
υ − 1
2υ

)
υ(υ − 2)

4
times

=
υ − 1
4υ4

(
υ(υ − 1)

2
) + (

υ − 1
8υ4

)

=
υ(υ − 1)2

8υ4
+
υ − 1
8υ4

)

=
(υ − 1)
8υ4

(υ(υ − 1) + 1)

=
(υ − 1)
8υ4

(υ2 − υ + 1)

=
(υ − 1)(υ2 − υ + 1)

8υ4
(11)

□
Theorem 7: The fuzzy harmonic index ζ of conjugate

graph ✠(D2υ ) where υ is odd is given by

ζ =
υ2(2(υ − 1) + υ

4
(12)

Proof:

ζ =
1
2

[ ∑
(ψ,2)ϵE

1
h(ψ)w(ψ) + h(2)w(2)

]

=
1
2

[
1

( 1
υ
)( 1

2υ ) + ( 1
υ
)( 1

2υ )
+

1

( 1
υ
)( 1

2υ ) + ( 1
υ
)( 1

2υ )

+ . . . ..+
1

( 1
υ
)( 1

2υ ) + ( 1
υ
)( 1

2υ )
(υ − 1)times+

+
1

( 1
υ
)(υ−1

2υ ) + ( 1
υ
)(υ−1

2υ )
+

1

( 1
υ
)(υ−1

2υ ) + ( 1
υ
)(υ−1

2υ )

+ . . . ..+
1

( 1
υ
)(υ−1

2υ ) + ( 1
υ
)(υ−1

2υ )

υ(υ − 1)
2

times
]

=
1
2

[
(
1
2

2υ2
)(υ − 1) + (

1
2(υ−1)
2υ2

)(
υ(υ − 1)

2
)
]

=
1
2

[
υ2(υ − 1) + (

υ2 − υ)
2

)
]

=
1
2

[
υ2(υ − 1) + (

υ3)
2

)
]

=
1
4

[
2υ2(υ − 1) + υ3

]
=
υ2(2(υ − 1) + υ

4
(13)

□
Theorem 8: The fuzzy Randic index ξ of conjugate graph

✠(D2υ ) where υ is odd is given by

ξ =
1
2

[
(υ − 1)(υ2 − υ + 1)

8υ4
+

(υ − 1)(υ − 3)
8υ4

+
υ(υ − 1)2

4υ4

]−1
2

(14)

Proof:

ξ =
1
2

[ ∑
(ψ,2)ϵV

h(ψ)w(ψ)h(2)w(2)
]−1

2

=
1
2

[ ∑
(ψ,2)ϵV

h(ψ)w(ψ)h(2)w(2)

+

∑
(ψ,2)ϵV́

h(ψ)w(ψ)h(2)w(2)
]−1

2

(15)

=
1
2

[
(υ − 1)(υ2 − υ + 1

8υ4
) +

1
υ
(
1
2υ

).
1
υ
(
1
2υ

)

+
1
υ
(
1
2υ

).
1
υ
(
1
2υ

)

+ · · · +
1
υ
(
1
2υ

).
1
υ
(
1
2υ

)
( (υ − 1)(υ − 3)

2
times

)
+

1
υ
(
1
2υ

)
1
υ
(
υ − 1
2υ

) +
1
υ
(
1
2υ

)
1
υ
(
υ − 1
2υ

)

+ · · · +
1
υ
(
1
2υ

)
1
υ
(
υ − 1
2υ

)
(
υ(υ − 1) times

)]−1
2

=
1
2

[
(υ − 1)(υ2 − υ + 1)

8υ4
+

1
4υ4

(υ − 1)(υ − 3)
2
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+
(υ − 1)
4υ4

υ(υ − 1)
]−1

2

=
1
2

[
(υ − 1)(υ2 − υ + 1)

8υ4
+

(υ − 1)(υ − 3)
8υ4

+
υ(υ − 1)2

4υ4

]−1
2

(16)

□
Figure 6 show the comparison of fuzzy topological indices
for different values of υ

FIGURE 6. Fuzzy topological indices for υ = 3, 5, 7.

IV. APPLICATION OF MACHINE LEARNING TO GENERATE
POLYNOMIALS FOR THE ENERGIES OF ✠(D2υ )
We use polynomial regression in this machine learning
section to generate polynomials for fuzzy energies of
adjacency and degree matrices. Table 2 shows the computed
energies. We used the MATLAB software for computation
purposes. Python uses ‘‘pandas’’ and ‘‘numpy’’ to compute
the energies for polnomial regression.

TABLE 2. Computed energies of adjacency and degree matrices.

A. FUZZY ADJACENCY MATRIX ENERGY 8̇ OF ✠( ¨D2υ ),
WHERE υ IS EVEN
The relation between fuzzy adjacency matrix energy 8̈

for ✠( ¨D2υ ) and the values of υ in ✠( ¨D2υ ) is given in
equation (17) which is generated by polynomial regression.

8̈ = −
4047653480013547 υ6

604462909807314587353088

+
4940584157399497 υ5

4722366482869645213696

−
607046617967185 υ4

9223372036854775808

+
4924605032620321 υ3

2305843009213693952

−
5482776509751437 υ2

144115188075855872

+
3292057333465955 υ
9007199254740992

−
1973197593104899
9007199254740992

(17)

The absolute error between precise adjacencymatrix energies
and approximated adjacencymatrix energies by equation (17)
obtained with the help of polynomial regression is shown in
Figure 7.

FIGURE 7. Absolute error between exact adjacency energies and
approximated adjacency energies by with equation (17).

B. FUZZY DEGREE MATRIX ENERGY 9̈ OF ✠( ¨D2υ ), WHERE
υ IS EVEN
The relation between fuzzy degree matrix energy 8̈ for
✠( ¨D2υ ) and the values of υ in ✠( ¨D2υ ) is given in
equation (18), which is generated by polynomial regression.

9̈ =
4574178239290795 x
18014398509481984

−
175917086628555
1125899906842624

(18)

The absolute error between precise degree matrix energies
and approximated degree matrix energies by equation (18)
obtained with the help of polynomial regression is shown in
Figure 8.
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FIGURE 8. Absolute error between exact adjacency energies and
approximated adjacency energies by with equation (18).

FIGURE 9. Absolute error between exact adjacency energies and
approximated adjacency energies by with equation (19).

C. FUZZY ADJACENCY MATRIX ENERGY 8̇ OF ✠( ˙D2υ ),
WHERE υ IS ODD
The relation between fuzzy adjacency matrix energy 8̇

for ✠( ˙D2υ ) and the values of υ in ✠( ˙D2υ ) is given in
equation (19), which is generated by polynomial regression.

8̇ = −
7789955364297077 υ6

1208925819614629174706176

+
2264999464565113 υ5

2361183241434822606848

−
8428646944186213 υ4

147573952589676412928

+
4006096819602223 υ3

2305843009213693952

−
2061371430098643 υ2

72057594037927936

+
2240482132713677 υ
9007199254740992

+
2135402885199973
4503599627370496

(19)

The absolute error between precise adjacencymatrix energies
and approximated adjacencymatrix energies by equation (19)
obtained with the help of polynomial regression is shown in
Figure 9.

D. FUZZY DEGREE MATRIX ENERGY 9̇ OF ✠( ˙D2υ ), WHERE
υ IS ODD
The relation between fuzzy adjacency matrix energy 8̇

for ✠( ˙D2υ ) and the values of υ in ✠( ˙D2υ ) is given in
equation (20) which is generated by polynomial regression.

9̇ =
4525761030488853 υ
9007199254740992

−
6609891379687135
72057594037927936

(20)

The absolute error between precise degree matrix energies
and approximated degree matrix energies by equation (20)
obtained with the help of polynomial regression is shown in
Figure 10.

FIGURE 10. Absolute error between exact adjacency energies and
approximated adjacency energies by with equation (20).

V. POTENTIAL APPLICATIONS
The application of dihedral groups in the study of molecular
symmetry within the field of chemistry is a critical aspect
of molecular modeling and analysis. Here are the key
applications.

A. SYMMETRY OF MOLECULES
Dihedral groups are pivotal in the field of chemistry,
offering profound insights into the symmetry of molecules,
which is essential for comprehending their three-dimensional
shape and structure. This understanding is exemplified in
molecules like benzene (C6H6), where dihedral symmetry
elucidates its stable, planar hexagonal structure. Beyond
molecular geometry, the symmetry of reactants and products,
as dictated by dihedral groups, plays a critical role in
determining the outcomes of chemical reactions, influ-
encing both the feasibility and nature of the products
formed.

In the realm of spectroscopy, particularly when ana-
lyzing vibrational and rotational spectra, the symmetry of
molecules, as characterized by these groups, is crucial. It aids
in predicting the activity of various vibrational modes using
techniques like infrared and Raman spectroscopy. Similarly,
in quantum chemistry, dihedral groups assist in deciphering
the electronic structure of molecules, enabling predictions
about the behavior of molecular orbitals under different
symmetry operations.
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The role of dihedral groups extends to stereochemistry,
where they are instrumental in understanding the spatial
arrangement of atoms in both chiral and achiral molecules.
This knowledge is fundamental in determining properties
such as optical activity in organic compounds. In material sci-
ence, understanding molecular symmetry, including dihedral
symmetry, is key to predicting and explaining the properties
of materials, particularly in crystalline structures.

Furthermore, in the field of drug design and pharmacology,
the symmetry of drug molecules, as influenced by dihedral
groups, can significantly impact their interaction with
biological targets, affecting both their binding affinity and
efficacy.Â

In conclusion, dihedral groups serve as a cornerstone in the
study of molecular symmetry, with broad implications across
various chemical disciplines. Their application is critical to
accurately predicting and comprehending the physical and
chemical properties of molecules based on their symmetrical
characteristics.

B. CHIRALITY AND OPTICAL ACTIVITY
Chirality and optical activity are key concepts in chemistry,
particularly relevant in stereochemistry, where dihedral
groups play a significant role in their understanding. Chirality
in molecules, defined by the inability to be superimposed on
their mirror images, akin to human hands, is critical in various
chemical and biological processes. Dihedral groups aid in
identifying chirality by analyzing a molecule’s symmetry
elements. For example, a molecule with certain dihedral
symmetries, like a rotation axis, can be achiral, whereas
the absence of these symmetrical elements often signifies
chirality.

In achiral molecules, dihedral symmetry elements, such
as a rotation-reflection axis (Sn), are typically present and
associated with dihedral groups, indicating a lack of chirality.
In contrast, chiral molecules lack these dihedral symmetry
elements, and understanding the presence or absence of such
symmetries is crucial in determining a molecule’s chirality.

Optical activity is another fascinating aspect, where chiral
molecules uniquely rotate the plane of polarized light.
This property is particularly significant in pharmacology,
as the chirality of drug molecules can greatly influence
their effectiveness. Dihedral groups provide insights into
how different chiral molecules (enantiomers) interact with
polarized light, with each enantiomer rotating the plane of
polarized light to an equal degree but in opposite directions.

In practical applications, such as drug design, many
drugs are chiral, and their therapeutic effect often hinges
on their chirality. Understanding dihedral symmetries is
key to designing and synthesizing the correct enantiomer.
In material science, the chirality of molecules can impact the
properties of various materials, including polymers and liquid
crystals.

Finally, advanced analytical techniques like circular
dichroism spectroscopy, which rely on the principles of
chirality and optical activity, benefit from the understanding

of dihedral groups. This knowledge aids in interpreting
spectroscopic data to determine the absolute configuration of
chiral molecules, illustrating the widespread implications of
dihedral groups in the field of chemistry.

VI. CONCLUSION AND OPPORTUNITIES FOR FUTURE
WORK
In this article, we have explored the application of fuzzy
graph theory to the dihedral group’s conjugate graph,
presenting a significant enhancement in the computational
approach to group theory analysis. By generalizing the
fuzzy first Zagreb index, fuzzy second Zagreb index, fuzzy
harmonic index, and fuzzy Randic index in polynomial
form, we offer a transformative approach that simplifies
and accelerates the calculation process. This advancement is
crucial as it shifts the computational timeframe from hours
to mere seconds, representing a substantial improvement in
efficiency.

The core innovation in our research is the integration of
machine learning, particularly polynomial regression, into the
study of group theory. Polynomial regression, a technique
commonly used in various fields for pattern recognition
and prediction, is applied here to derive polynomials for
the energies of adjacency and degree matrices in the fuzzy
conjugate graph of a dihedral group. This application is
ground-breaking in its approach, as it allows for a more
nuanced and accurate analysis of the graph’s properties.
Furthermore, the inclusion of error analysis adds a layer
of rigor and precision, ensuring the reliability of the
results.

Our research serves as a testament to the potential of
interdisciplinary approaches to solving complex mathemat-
ical problems. By bridging fuzzy graph theory with machine
learning, we not only enhance the computational methods
in group theory but also provide deeper insights into the
structural and functional properties of dihedral groups. The
polynomial forms of the indices facilitate a more accessible
and quicker computation, which is invaluable for extensive
studies involving large and complex graphs.

Moreover, the implications of this research extend beyond
the realm of dihedral groups. Themethodologies and findings
presented here open up new possibilities for the application
of these techniques to other complicated graph structures.
This is particularly significant in the broader field of graph
theory, where unraveling the intricate properties of various
graph types is crucial.

In conclusion, our work stands as a pivotal contribution to
both fuzzy graph theory and group theory. The incorporation
of polynomial regression as a machine learning strategy in
this context not only simplifies the computational process
but also provides a novel perspective on the analysis of
group structures. It paves the way for further research in
this area, promising advancements in our understanding of
complex graph structures and their applications. As such,
the methodologies and findings of this study hold substantial
promise for future explorations in group theory, graph theory,
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and related fields, potentially revolutionizing the way these
disciplines approach and solve complex problems.
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