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ABSTRACT Utilizing convolutional neural network (CNN) models, computer vision technology has
become a reliable and powerful tool for detecting potential damage in concrete structures at the pixel
level. In this study, an advanced SWIN U-Net architecture was introduced to detect concrete cracks. The
model integrated attention-based convolutional neural networks to enhance the speed and accuracy of
crack detection significantly. The distinctive features of the SWIN Transformer made the application of
the model to images of varying sizes possible while the computational resources were used efficiently.
To train the model, a dataset consisting of crack images, each accompanied by a corresponding mask that
highlighted the relevant regions within the image, was used. The training data were augmented using Flip,
Rotate, Random Contrast, Random Gamma, Random Brightness, Elastic Transformation, Grid Distortion,
and Optical Distortion to counter potential overfitting. Additionally, L2 and spatial dropout regularization
techniques were applied to the proposed model. The model was fine-tuned using stochastic gradient descent
with the Adam optimizer, employing the binary cross-entropy loss function, and a learning rate of 0.001.
The model was trained over 100 epochs with an adjustment scheduler. The performance of the model was
evaluated using various metrics. Then, it was compared with three benchmarks and impressive results were
achieved. Notably, the Dice loss and IOU values were 93% and 79%, respectively. The trained model had
the exceptional performance score of 0.99 in accuracy, precision, recall, F1, and sensitivity.

INDEX TERMS Attention-based mechanism, concrete crack detection, generalizable model, SWIN U-Net,
transfer learning.

I. INTRODUCTION
Cracks in concrete structures and buildings are highly impor-
tant as they can directly affect the quality, safety, and lifespan
of structures. Therefore, the timely detection of cracks is
crucial for mitigating potential risks and making appropriate
repairs. In fact, many countries have implemented systematic
crack assessment systems as part of their inspection pro-
grams. Over the past few decades, various methods have
been introduced for crack detection in concrete including
manual inspection, non-destructive techniques such as ultra-
sonic waves, and image processing. With advancements in
machine learning and convolutional neural networks, various
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methods have been employed for automatic crack detection
in concrete including the utilization of architectures such as
U-Net, SegNet, and PSPNet. However, these methods still
have certain limitations [1]. 1- They require a large training
dataset: Training deep learning models necessitates large and
diverse training datasets which can be time-consuming and
costly to collect and annotate; 2- They have generalization
limitations: Some deep learning models may face challenges
in detecting cracks in images of different sizes. This means
that they may struggle to detect cracks in non-standard or
larger-sized images; 3- They do not model non-local rela-
tionships: Previous models often relied on convolution-based
methods that heavily focused on local relationships. This
limitation prevented the models from capturing the non-local
relationships in concrete images effectively, restricting their
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crack detection capabilities; 4- They have difficulty detecting
small and rough cracks: Certain previous methods sometimes
had difficulty detecting small and rough cracks accurately.
This is particularly important in concrete images as small and
rough cracks can indicate serious structural issues.

In this regard, transformers, initially developed for natural
language processing tasks, have been integrated into con-
volutional neural network architectures. These architectures,
which operate based on attention mechanisms between input
and output, have a significant strength in modeling non-local
relationships and capturing certain image features that may
not be captured by convolution-based methods [2]. In this
architecture, the input image is first transformed into feature
vectors or feature maps. For each pixel in the feature map,
a feature vector or key point is generated. These feature
vectors, using multi-head attention layers and spatial lay-
ers, combine and extract important visual information by
modeling local and non-local relationships in the image.
This approach allows models to improve the relationships
between different image features and identify the salient fea-
tures. It enhances the interpretability of the image features
and improves the accuracy of crack detection. Due to the
non-local nature of cracks in concrete images, the proposed
architecture is capable of modeling the relationships among
distant parts in an image. Furthermore, the bidirectional inter-
action between the features is facilitated in this architecture.
This means that each feature in the image can interact with
other features. This transfers information across the entire
image, improves the detection of crack-related points in it,
and increases the detection accuracy.

In summary, using the transformer architecture for crack
detection in concrete images improves the interpretability
of image features, detection accuracy, and processing speed.
This approach enhances the feature interactions and accel-
erates the modeling of non-local relationships in images.
These architectures performwell in various image processing
applications including object detection, face recognition, and
satellite image analysis. Therefore, it is expected that com-
bining these architectures with convolutional neural networks
such as U-Net will further improve the accuracy and speed of
crack detection in concrete.

In this paper, the SWIN U-Net architecture is proposed
for crack detection in concrete. This architecture enhances
the accuracy and speed of crack detection by combining
attention-based neural networks and U-Net. The advantages
of using this architecture include increased accuracy, higher
generalizability (effective crack detection in images of dif-
ferent sizes), improved interaction between the extracted
features in each network layer, transfer of learning capabil-
ities, and detection of smaller cracks.

In the following sections, we delve into the details of
the proposed architecture, its implementation, and training.
We then compare its performance with those of previous
methods using a dataset comprising the images of intact and
cracked concrete. Finally, we discuss the future prospects and
applications of this architecture in the construction industry.

FIGURE 1. U-Net network.

II. U-Net ARCHITECTURE
Ronnenberg et al. [7] were the first to train the U-Net net-
work for the segmentation of biological microscopic images
using data augmentation. This network consists of an encoder
network that extracts the background image as well as a
symmetric decoder network that expands the image. The
encoder network, or the contracting path, utilizes a convolu-
tional network for feature extraction. On the other hand, the
decoder network, or the expansive path, employs a decon-
volutional network to increase the dimensionality of the
low-resolution feature maps [7].

In the above figure, the contracting and expansive paths are
depicted in detail. In the contracting path, 3∗3 convolutional
layers which are responsible for implementing filters on the
image are used. After each convolutional layer, there is an
activation function layer, commonly referred to as the linear
activation function. Finally, a max-pooling layer with 2∗2
dimensions and moving with a stride of 2 over the extracted
features from the filters is included [6].

Dice loss: The Dice similarity coefficient, also known
as the Dice coefficient, was originally used for Boolean
data in the past but is now widely employed for evaluat-
ing image segmentation. This metric defines the similarity
coefficient for each voxel (the smallest element of a three-
dimensional image) as true positive, false positive, and false
negative [6].

DSC =
2TP

2TP + FP + FN
(1)

In Eq. 1, TP represents true positives, FP represents false
positives, and FN represents false negatives.

This metric is used to measure the overlap between two
regions. The higher the overlap, the higher the value of this
metric which is calculated using Equation 2.

IOU =
Area of intersection of two boxes

Area of union of two boxes
(2)

In this equation, the numerator represents the intersection
area between the two boxes, whereas the denominator repre-
sents the union area of the two boxes under consideration [7].
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III. RELATED WORKS
In general, crack detection methods can be divided into
image classification models for distinguishing images with
and without cracks and models for detecting the presence or
absence of cracks. Image classification methods commonly
utilize convolutional neural networks (CNNs) for automatic
crack detection in concrete images [1], [2], [4], [5]. These
methods typically employ standard CNN architectures which
combine convolutional layers, activation functions, pooling
layers (in some cases) [1], normalization layers, and fully
connected layers. Yang et al. [1] used a CNN on a dataset of
40,000 images with the dimensions of 256∗256. To enhance
the generalizability of the proposedmethod, a sliding window
technique was employed to detect cracks in larger images
exceeding the standard network size. The training results on
this dataset demonstrated that the proposed method outper-
formed older methods (such as edge detection) in terms of
accuracy. Moreover, this method had the ability to detect
cracks under various conditions such as strong lighting, shad-
ows, and thin cracks.

For crack detection in images, Sallem et al. [2] utilized a
combination of two models, a convolutional neural network
(CNN) and a region-based CNN with masking. Their pro-
posed method in their article involved using image cropping
andMask-RCNN to downsize the high-resolution images into
smaller ones in order to detect smaller cracks and reduce
the computational load. In this approach, the high-resolution
images were transformed into 512∗512 images. The presence
or absence of cracks in these images was determined using a
crack detection block. Finally, these images were connected
to form the original image. This change in image process-
ing and transformation enhanced the accuracy in detecting
smaller cracks. However, it prolonged the detection process.

In addition to classification methods, image segmentation
methods are also employed in crack detection [3], [6], [9],
[11], [13]. The most widely used algorithm in recent years
is the U-Net architecture. As mentioned earlier, this archi-
tecture consists of an encoder and a decoder. The encoder
layers extract the image features using convolutional layers,
whereas the decoder layers reconstruct the original image
using the extracted features. Lu et al. [3] used a standardized
architecture for concrete crack detection in images. A control-
lable aerial vehicle was used to collect the data. Real images
under realistic conditions were used to train the network.
Other papers, such as that of Chu et al. [6], focused on
detecting small cracks. In this paper, one of the obstacles
causing difficulties in detecting small cracks was the class
imbalance issue, whereby images containing small cracks
formed a smaller class. Consequently, the features of the
images containing small cracks were limited. To address this
problem, a novel method called ‘Tiny-Crack-Net’ was pro-
posed. This new model included a multi-scale feature fusion
network with an attention mechanism which was utilized for
extracting the features of small cracks. Additionally, a dual-
attention network was incorporated into the main network to

better distinguish the small cracks from the background. The
task of the multi-scale network was to preserve the details
of the crack edges. The proposed mechanism in the article
achieved an accuracy of over 91.44% for cracks larger than
0.05 millimeters.

One approach that researchers, such as Jing et al. [9],
have used is the combination of classification and segmen-
tation methods. In this article, they proposed a model called
CrackDetector, which was a convolutional neural network
for detecting the presence or absence of cracks in an image,
and a tool called CrackSegmentor which was a standard
U-Net architecture that identified the crack regions within the
image. The first part of the model was designed to reduce
the computational load in the second part. However, it still
imposed a computational burden on the overall system.

In a similar vein, other researchers, like Li et al. [11],
have employed ensemble learning methods to improve the
efficiency of concrete crack detection. In this model, multi-
ple algorithms were used for classification. The philosophy
behind using multiple learning algorithms for a single task
was to create a strong model from a set of weak models work-
ing together. The architectures used in this article included
U-Net, DeepLabV3, DeepLabV3+, DANNet, and FCN-8s.
Previous research has shown that each of these models has
weaknesses that can be covered by the strengths of the oth-
ers, leading to a higher accuracy compared to using each
algorithm individually.

Kim et al. [8] also utilized a similar idea to enhance
the accuracy of image segmentation. They used a combina-
tion of super-resolution networks and generative adversarial
networks (GANs). Generally, the networks developed for
segmentation tasks employed an identical encoder-decoder
model. In these architectures, the encoder layer extracted
the features from the image, while the decoder layer recon-
structed the spatial information. The performance of these
models was highly dependent on the presence of image noise,
blurriness, and even image jitter. However, they might not
perform well for small-sized cracks due to the insufficient
number of pixels. To address this issue, a two-stage structure
was proposed.

These approaches demonstrate the utilization of combined
classification and segmentation methods as well as ensemble
learning and advanced network architectures to improve the
accuracy and efficiency of crack detection and segmentation
tasks.

In the first stage, a super-resolution network was used to
increase the number of pixels in small regions. This network,
called an elliptical approximation network, was applied to the
input image to identify and reduce the blurriness of small
cracks in low-resolution images. This method enhanced the
visibility of the cracks within the image. However, it might
not accurately distinguish between the cracks and the back-
ground since the boundaries of the cracks, particularly in
blurry images, were often irregular. To improve the image
quality, the SRGAN network, which predicted the values
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between two points, was utilized. In this case, the boundary
between the cracks and the background was more accurately
determined.

In addition to semantic segmentation methods, researchers
such as Inam et al. [13] have used sample-based segmentation
models such as YOLO for the automated detection of cracks
and damages on the surfaces and infrastructures of bridges.
In their article, they employed the YOLOv5 model which
had a high detection speed. In the YOLO algorithm, initially,
the entire image passes through convolutional layers and all
objects within the image are identified. The image is divided
into N∗N grids and if the center of an object falls within a
grid, that grid is responsible for detecting the object. This
operation leads to the high speed of the YOLO algorithm.
Its 98% accuracy demonstrates its effectiveness in crack
detection.

Rong et al. [4] developed an improved neural network
called CrackSegNet for the pixel-level segmentation of con-
crete cracks. This network employed convolutional layers
for feature extraction and dimension reduction. However, the
primary objective of using CNN was to preserve the spatial
relationship between the pixels in the images. Lower layers in
the network usually extracted the structural details and spatial
information from an image, while higher layers extracted
the semantic features. The activation functions used in this
network were the ReLU functions which enabled the network
to capture the nonlinear features. The proposed network had a
higher accuracy and lower detection time than segmentation
methods like U-Net.

Li et al. [5] improved the U-Net algorithm to enable it
to detect fine cracks. The proposed method in their article
used a full attention mechanism in the U-Net architecture.
This mechanism worked by inserting an attention layer
after each convolutional layer. The attention layer connected
with the skip connection in the decoder layer. This strategy
improved the training process by providing more information
to the decoder layer. This additional information acted like
a double-edged sword since it contained both useful and
noisy information. To prevent the addition of noise to the
network, an attention gate was used in each skip connection.
In essence, the attention gate was an attention mechanism in
which the activation functions were sigmoid functions and its
input and output had the same size. The results of the mIoU
evaluation metric showed an 85.88% improvement compared
to the regular U-Net network.

With the continuous development of deep learning algo-
rithms, newer methods have been developed for crack
detection. For example, in Klick and König’s article [7],
a U-Net-like architecture composed of encoder and decoder
networks was proposed. Unlike the U-Net network, the pro-
posed network utilized specific connections between these
encoder and decoder blocks. Additionally, an attempt was
made to improve the U-Net architecture using the squeeze-
and-excitation architecture. The activation function in this
network was of the sigmoid type. Alongside this approach,
another solution proposed for vertebral models was the use of

transfer learning. By employing a pre-trained model trained
on a large amount of data, a significant reduction in the F1
error rate could be achieved. The output results demonstrated
an F1 error rate of 88.56%.

Other models have also been developed by other
researchers such as Chlorney et al. [8] who developed the
model for image processing in the pipeline. The model pro-
posed for the pipeline prepared the images in four stages.
In the first stage, using a YOLO-v5 model, the cracks inside
the image were identified and the rectangles were drawn to
indicate the boundaries of the cracks. In the second part,
each of the rectangles obtained in the previous stage was
cropped to a size of 400∗400. In the next stage, all the
cropped crack images underwent unsupervised training using
the DINO model to extract their features. The final stage of
this model involved combining the feature images based on
FPN to perform a binary classification for each pixel. Finally,
the noises were removed based on the segmentation mask and
resized to fit the bounding box. In terms of theMIoU error, the
proposedmethod outperformed other methods with a value of
0.7712.

As evident from the conducted studies, the use of
speed-focused models is expanding. U-Net-based networks
with attention layers show a higher accuracy compared to
the other models and reduce the dependence of the model
on a large amount of data. However, in these models, only
the skip connections toward the decoder layer have attention
mechanisms, while the network layers maintain their tradi-
tional structure. In the proposedmodel, attentionmechanisms
were utilized in both the encoder and decoder layers. This
model, known as Swin U-Net, employs Swin transformer
blocks (explained in detail below) instead of convolutional
networks.

IV. THE PROPOSED METHOD
A. CONVOLUTIONAL NEURAL NETWORK (CNN)
Convolutional Neural Networks are one of themost important
components of deep learning and one of the most widely used
methods in the field of computer vision. CNNs consist of
three layers.

The convolutional layer: In this layer, a convolutional ker-
nel is used to map the image features. This mapping extracts
various features from the image. Weight sharing is applied,
reducing the number of network parameters. It evaluates the
local dependencies in the image and, ultimately, maintains
spatial invariance if an object is present in the image.

The above figure illustrates a convolutional process on an
image. As evident, the convolution filter consists of numerical
values that are randomly selected. The final value for each
pixel is determined by point-wise multiplication with the
original image.

The pooling layer: This layer is placed after the con-
volutional layers. The purpose of using this layer is to
reduce the feature mapping. Considering the spatial proxim-
ity of the image pixels and disregarding the spatial variations
of the objects in the image, the most common pooling
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FIGURE 2. The process of convolutional filters.

FIGURE 3. The processes of the pooling layers.

operations used in this layer are maximum pooling or average
pooling [4].

The above figure represents the processes of maximum
pooling and average pooling. In the maximum pooling pro-
cess, a filter with specific dimensions slides over the pixels
and selects the maximum number on them. As evident, in the
2∗2 window, the maximum value of 112 is selected, whereas
in the next window, the value of 37 is chosen. This pro-
cess continues across all dimensions. Similarly, the average
pooling process calculates the average of values within a
2∗2 window and replaces the output value with the average
value [5].

The fully connected layer: This layer is placed at the end of
the network after the last pooling layer. It converts the 2D fea-
ture vector from the previous layer into a 1D vector and uses it
for training. It functions like a traditional neural network and
is used for feature vector classification. Additionally, it has a
large number of parameters for training which increases the
computational complexity of the network [6].

B. THE DATABASE
The database used in this research was a combination of
12 concrete crack databases used for image segmentation.
This database consisted of 150,000 images with a size of
448∗448 pixels. A portion of the analyzed data is shown in
the following figure which includes the original image along
with its mask. The image mask is displayed in black-and-
white format.

Due to the limited number of images available for training
the network, data augmentation techniques were employed
to enhance its training. Data augmentation is a technique that

FIGURE 4. An example of the data used.

artificially expands the previous dataset by applying modi-
fications to the existing images without the need to create
entirely new images. With this technique, the network can be
trained more effectively.

The objective of data augmentation is to generate new
images with novel features that provide a better under-
standing of the network besides the original images. These
modifications to the images can include shifts, rotations,
zooming, adding noises, etc. Convolutional neural networks
have the ability to learn the features of an image regardless
of their locations within the image. Therefore, data augmen-
tation techniques can contribute to this learning process and
ultimately improve the training of the network.

Typically, data augmentation techniques are applied to
the training data. The following table demonstrates the ran-
dom modifications applied to the images along with their
descriptions.

V. THE IMPLEMENTATION METHOD
The structure of the proposed model consists of four modules
that are similar to the U-Net network. The main building
blocks of this model are Swin transformers.

The transformer was first introduced in 2021 [32] and its
main aim was to address the drawbacks of convolutional lay-
ers. The Swin transformer network utilizes the self-attention
mechanism and divides the input image into overlapping
patches which are then processed by these blocks. Another
advantage of this model is its hierarchical design which
enables the extraction of both local and global features.

Swin transformer blocks have several advantages over
traditional convolutional networks. Their most important fea-
ture is their reduced computational complexity despite the
increasing size of the input images. Unlike convolutional net-
works in which the number of trainable parameters linearly
increases with the image size, Swin transformer networks
apply self-attention in local windows which improves scal-
ability. These networks also outperform standard transformer
models which typically use a global attention mechanism.
In such cases, the relationships between one extracted token
and all tokens in the network increase computational com-
plexity, leading to a slow performance when the network
deals with high-resolution images [32].
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TABLE 1. The random changes to the images with their descriptions.

FIGURE 5. The proposed architecture.

To address this issue, the Swin transformer network uti-
lizes local window computations. The image is divided into
non-overlapping windows with M∗M sizes. The computa-
tional complexity of a self-attention module in an image with
h∗w dimensions is calculated as follows [32]:

� (MSA)= 4hwC2
+2(hw)2C (3)

� (W−MSA)= 4hwC2
+2M2hwC (4)

In equations 3 and 4, h and w represent the height and
width of the image. In equation 4, M denotes the size of the
transformer window. In the window-based attention mech-
anism, there is no direct interaction between the windows
which reduces the modeling power. To address this issue,
a shifted window partitioning strategy is proposed and used
in Swin transformers. This method employs a regular window
partitioning strategy that starts from the top left corner and
uniformly divides an 8∗8 feature map into 4∗4 windows.
The next module then utilizes the settings of the previous
layer and shifts the windows |M/2|∗|M/2| to obtain regular
windows. This approach allows consecutive blocks to have
mutual interactions with the windows [32].

FIGURE 6. The comparison of the windows in the shifted and non-shifted
window approaches. (a) non-shifted 4∗4 windows; (b) shifted windows.

In the above figure, an approach using the shifted window
for self-attention calculation in the proposed architecture is
shown. (a) (left) illustrates a regular window partitioning
method; (b) (right) demonstrates the shifted partitioning [32].

A. THE PROPOSED ARCHITECTURE
In Figure 5, the proposed architecture for image segmentation
is depicted. To process the input images, they are initially
divided into non-overlapping windows with 4∗4 sizes. The
feature dimension of each window is 48 (4∗4∗3). Addi-
tionally, a linear embedding layer is added to transform
the feature dimensions to the desired size denoted by C.
After passing through various layers, hierarchical features are
generated. The next layer is the path aggregation which is
responsible for downsampling and increasing the dimensions.
In the up path, there is an expansion path layer designed
for upsampling. This layer doubles the dimensions of the
feature map. This process continues after each layer until
reaching the original size of the image. Finally, another linear
embedding layer is applied to the image to predict the class
of each pixel. The specific tasks of each layer will be further
examined below.

1) ENCODER
In this block, the inputs, which are passed through an embed-
ding layer with dimensions C and resolution H/4 and W/4,
are sent to two consecutive Swin transformer blocks for
learning, while the feature dimensions and resolution remain
unchanged. Meanwhile, the path aggregation layer reduces
the number of tokens (2x downsampling) and doubles the
feature dimensions. This operation is performed three times
in the encoder [32].

2) PATH AGGREGATION LAYER
The input patches are divided into four parts and combined
together by the path aggregation layer. Through this process,
the feature resolution is halved and the feature dimensions are
quadrupled. A linear layer is applied to the combined features
to transform the feature dimensions back to twice the initial
size [32].

3) BOTTLENECK
Since transformers are deep and convergewith difficulty, only
two consecutive Swin transformer blocks are used to create a
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bottleneck for deep feature learning. In the bottleneck output,
the feature dimensions and resolution remain unchanged [32].

4) DECODER
Corresponding to each encoder, a symmetric decoder based
on the Swin transformer is constructed. For this purpose, the
path expansion layer is used in the decoder, in contrast to
the path aggregation layer used in the encoder, to increase the
resolution of the deep extracted features. The path expansion
layer plays the role of reshaping the neighboring features into
a larger feature map with a higher resolution (2x upsampling)
and, at the same time, reduces the feature dimensions to half
of the initial size [32].

5) PATH EXPANSION LAYER
For example, in the first path expansion layer, before per-
forming upsampling, a linear layer is applied to the input
features (w/32×h/32×8c) to increase the feature dimensions
to twice the initial size (w/32×h/32 × 16c). Then, using the
shuffle operation, the feature resolution is doubled and the
feature dimensions are reduced to one-fourth of the input size
(w/32×h/32 × 8c → w/32×h/32 × 16c) [32].

6) THE SKIP CONNECTIONS
Similar to U-Net, skip connections are used in Swin trans-
formers to combine the multi-scale features from the encoder
with the upsampled features. The low-level and deep-level
features are connected to prevent the loss of spatial infor-
mation caused by downsampling. After a linear layer, the
concatenated features remain the same size as the upsampled
features [32].

7) THE ANALYSIS RESULTS
After configuring the network and its related parameters, the
next step is to train the network. The system used for train-
ing consisted of an NVIDIA graphics card (RTX 3070 Ti),
16 GB of RAM, and a Ryzen 7 CPU. The network was trained
for 100 epochs. In the left-side graph, the accuracy of the
network during training is displayed. The blue curve repre-
sents the accuracy during the training phase, while the orange
curve represents the accuracy during the validation phase.
The right-side graph shows the error rate of the network. The
blue curve represents the error rate during training, while the
orange curve represents the error rate during validation.

In Figure 8, the left-side diagram (a) represents the IOU
error rate, while the right-side diagram (b) represents the
Dice error rate. The y-axis represents the error rate, whereas
the x-axis represents the different stages or iterations of the
network.

The visual results of the proposed network (after training)
are shown in the images below.

As evident from the results and the output images gen-
erated by the proposed model, the model exhibits a high
level of accuracy. The middle image represents the predicted
output mask, while the image on the right shows the ground
truth mask based on which the network made its predictions.

FIGURE 7. Network error and accuracy: (a) represents the network
accuracy; (b) illustrates the network error.

As observed from the first and second images, the proposed
network successfully detected all the cracks within the image
including small and subtle ones. The detection process is
facilitated by the utilization of sliding windows in each block
which locally examine the features of each image. Addition-
ally, training the image features separately increases accuracy
when dealing with fine cracks.

B. DISCUSSION AND CONCLUSION
In this paper, the Swin U-Net network was used for crack
detection. It was a combination of the U-Net architecture and
the Swin transformer network and was capable of detecting
cracks in images accurately. The network was trained on
a large dataset consisting of images with various types of
cracks. The experimental results demonstrated that the Swin
U-Net network outperformed othermodels in crack detection.
The accuracy, IOU error, and Dice error in crack detection
were 99%, 71%, and 93%, respectively. Additionally, the
execution time of the network was significantly shorter than
those of the other models, indicating its practical efficiency.

The analysis of the accuracy of the network revealed that
the Swin U-Net was capable of detecting both small and
large cracks accurately. Moreover, in cases where cracks
overlapped with the entire image, the network was able to
segment the cracks properly and extract accurate information.

Given that the Swin U-Net is a powerful model for crack
detection, it can be used in various applications and cases,
including the rehabilitation and maintenance of infrastruc-
tures, geohazard detection, and quality control. Furthermore,
there is potential for further development and improvement
of the network in the future. The proposed model has been
compared with previous models below.

VI. COMPARING THE PROPOSED MODEL WITH
PREVIOUS ONES
This section compares the results of the proposed method
with those of the other three methods based on the mentioned
criteria. The Swin U-Net differs from CNN-based methods
in its approach to feature representation and learning. The
Swin U-Net capitalizes on the Swin Transformer block as the
fundamental unit for feature representation and long-range
semantic information interactive learning. This is in contrast
to CNN-based methods which rely on convolutional neural
networks for feature extraction and learning. The use of
the Swin Transformer block by the Swin U-Net allows for
a different approach to capturing long-range dependencies
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FIGURE 8. The network error rate: (a) displays the IOU error rate;
(b) shows the Dice error rate.

FIGURE 9. The output images of the network: a) the original image (left);
b) the predicted mask (middle); c) the ground truth mask (right).

and semantic information, which can result in different
performance and efficiency characteristics compared to tra-
ditional CNN-based methods [33]. The Swin U-Net model
combines the strengths of the Swin Transformer for global
context understanding and the U-Net for local feature extrac-
tion, offering a hybrid approach for semantic segmentation
tasks like tunnel lining crack detection. On the other hand,
CNN-based methods primarily rely on convolutional opera-
tions for feature extraction and segmentation, focusing more
on local features with limited consideration for long-range
dependencies [34].
4.1.1. Deep Crack:
The proposed network was a CNN in which the feature

maps were extracted in every convolutional layer. A filter was
applied to the feature maps to predict the outputs.

The architecture of the proposed method is shown in
Figure 10.
4.1.2. CNN Architecture:
Similarly, the second method was a CNN operating at the

pixel level which decided whether a pixel belonged to the
‘crack’ category or the ‘no-crack’ category [30].
The network designed in this study is illustrated in

Figure 11.
4.1.3. The VGG Architecture:
The third network was a U-Net based on a VGG located in

the encoding layer.
The network designed in this study is illustrated in

Figure 12. All the methods are compared and shown in
Table 3 based on the mentioned metrics.

As observed in Table 3, the proposed method had a higher
accuracy and a lower error rate on an identical dataset than
the other methods.

As observed in the above table, the proposed method out-
performed the other methods and had a higher accuracy and a
lower error rate on the same dataset. In a previous study [29],
due to increased computational complexity, the training time
and inference of the network increased. In contrast, the com-
plexity of the proposed model was significantly reduced by
utilizing its self-attention mechanism. In another study [31],
the use of a pre-trained model reduced the computational
overhead. However, the extracted features in the encoding
layer were not suitable for the task of crack detection. Addi-
tionally, all three papers ( [29], [30], and [31]) required a large
amount of training data due to their usage of convolutional
layers.

VII. CONCLUSION
By using its self-attention mechanism, the proposed method
eliminates the need for a large amount of data in crack
detection. Moreover, by incorporating the local features of
each image during training, it can easily detect small cracks
as well. Considering the inherent complexity of the dataset
and the extensive image labeling effort required, the proposed
model exhibited highly satisfactory results. The accurate
detection and localization of concrete cracks provide a great
potential for diverse applications in structural health monitor-
ing and concrete infrastructure maintenance.

A. CONSTRAINTS
• Dataset: Using an appropriate and comprehensive
dataset for training and evaluating the model is crucial.
Access to properly annotated image datasets can be
challenging. In fact, many researchers have collected
their own datasets using drones or other means.

• Parameter tuning: The Swin U-Net model, like other
deep learning networks, has multiple parameters that
need to be properly tuned. Improper parameter settings
can have an impact on the performance and results of the
model.

• Computational constraints: Due to its utilization
of encoders and decoders, the Swin U-Net archi-
tecture requires significant computational resources.
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FIGURE 10. The architecture of the deep crack.

FIGURE 11. The architecture of the CNN.

Computational limitations and hardware constraints can
hinder the fast and efficient execution of the algorithm.

• Examples of failure cases:
1. Misclassification of ambiguous regions: The SWIN

U-Net may misclassify regions in the input image that are
ambiguous or contain complex structures, leading to segmen-
tation errors.

2. Segmentation artifacts: In some cases, the SWIN
U-Net may produce segmentation masks with artifacts
such as disconnected regions, over-segmentation, or under-
segmentation.

3. Failure on out-of-distribution data:When presented with
data that significantly deviate from the training distribu-
tion, the SWIN U-Net may produce inaccurate segmentation
results or fail entirely.

4. Inability to handle occlusions: The SWIN U-Net may
struggle to segment accurately objects that are partially
occluded or overlap with other objects in the scene.

While the SWIN U-Net model has shown a promising
performance in various computer vision tasks, it still has
some limitations and can encounter failure cases like any
other model. Here are some of its limitations:

1. Complexity and computational cost: The SWIN U-Net
is a deep neural network with a large number of

FIGURE 12. VGG architecture.

TABLE 2. Units for magnetic properties.

parameters, making it computationally expensive to
train and deploy. This complexity can lead to longer
training times and higher resource requirements.

2. Overfitting: Like other deep learning models, the
SWIN U-Net is susceptible to overfitting, espe-
cially when trained on limited data. Overfitting
can result in poor generalization performance
whereby the model performs well on the training
data but fails to generalize to unseen data.

3. Limited generalization to diverse data: The SWIN
U-Net may struggle to generalize to data that
significantly differ from the distribution of the
training data. For example, if the model is
trained on a specific type of medical images,
it may not perform well when applied to images
from a different imaging modality or medical
condition.

4. Sensitivity to hyperparameters: The performance
of the SWIN U-Net can be sensitive to hyperpa-
rameters such as the learning rate, batch size, and
network architecture. Suboptimal hyperparame-
ter choices can lead to a slower convergence or
an inferior performance.

5. Handling of small objects or details: The SWIN
U-Net may face difficulty in segmenting or
detecting small objects or fine details in the input
images accurately. This limitation can arise due
to the downsampling operations in the U-Net
architecture which may cause the loss of spatial
information.

6. Limited interpretability: While the SWIN U-Net
can produce accurate segmentation results, it may
not provide insights into the reasoning behind its
predictions. Understanding why the model makes
certain decisions can be challenging, especially in
critical applications like medical imaging.
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B. SUGGESTIONS
• Carefully curate and annotate a diverse and represen-
tative dataset that adequately covers various types of
cracks.

• Conduct thorough parameter tuning experiments to find
the optimal settings for the Swin U-Net model.

• Utilize powerful hardware resources or consider dis-
tributed computing to overcome computational limita-
tions and expedite the training and inference processes.

VIII. FUTURE WORKS
To improve the algorithm presented in this paper and make
advancements in crack detection using the Swin U-Net, one
can consider the following:

1) Using a more extensive dataset: Utilizing larger and
more diverse datasets for training and evaluation is
crucial as it enhances the generalizability of the model.
Incorporating larger datasets can improve the perfor-
mance of the model.

2) Parameter optimization: Conducting more experiments
to tune the parameters and determine the optimal com-
bination can significantly improve the performance of
the model. Consider selecting an appropriate optimiza-
tion algorithm to find the best parameters. For example,
using the parameter ‘search processes’ can help dis-
cover the optimal parameter values.

3) Evaluating generalizability: In this paper, it was
claimed that the Swin U-Net model had a high gen-
eralizability. One can evaluate this claim by using the
proposed model on different datasets to assess its per-
formance in various scenarios.

4) Damage assessment: In the aftermath of natural disas-
ters or accidents, the SWIN U-Net can aid in the rapid
damage assessment of concrete structures. By pro-
cessing images acquired from UAVs or ground-based
sensors, the model can identify areas of structural dam-
age and prioritize response efforts.

5. Environmental monitoring: The SWIN U-Net can be
deployed for environmental monitoring applications related
to concrete structures such as assessing the impacts of weath-
ering, pollution, or chemical exposure. By analyzing the
images collected over time, the model can track changes in
the surface conditions of concrete and predict maintenance
needs.

By addressing these points, one can enhance the effec-
tiveness and robustness of the Swin U-Net model for crack
detection.
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