
Received 9 April 2024, accepted 12 May 2024, date of publication 20 May 2024, date of current version 30 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3403106

Adversarial-Learning-Based Taguchi
Convolutional Fuzzy Neural
Classifier for Images
of Lung Cancer
CHENG-JIAN LIN 1, (Senior Member, IEEE), XUE-QIAN LIN 1, AND JYUN-YU JHANG 2
1Department of Computer Science and Information Engineering, National Chin-Yi University of Technology, Taichung 41170, Taiwan
2Department of Computer Science and Information Engineering, National Taichung University of Science and Technology, Taichung 40401, Taiwan

Corresponding author: Cheng-Jian Lin (cjlin@ncut.edu.tw)

This work was supported in part by the National Science and Technology Council under Grant NSTC 112-2221-E-167-026.

ABSTRACT Deep learning technology has extensive application in the classification and recognition of
medical images. However, several challenges persist in such application, such as the need for acquiring
large-scale labeled data, configuring network parameters, and handling excessive network parameters.
To address these challenges, in this study, we developed an adversarial-learning-based Taguchi convolu-
tional fuzzy neural classifier (AL-TCFNC) for classifying malignant and benign lung tumors displayed in
computed tomography images. In the framework of the developed AL-TCFNC, a fuzzy neural classifier
replaces a conventional fully connected network, thereby reducing the number of network parameters and the
training duration. To reduce experimental cost and training time, the Taguchi method was used. This method
helps to identify the optimal combination of model parameters through a small number of experiments.
The transfer learning of models across databases often results in subpar performance because of the paucity
of labeled samples. To resolve this problem, we used a combination of maximum mean discrepancy and
cross-entropy for adversarial learning with the proposed model. Two data sets, namely the SPIE–AAPM
Lung CT Challenge data set and LIDC–IDRI Lung Imaging Research data set, were used to validate the
AL-TCFNC model. When the AL-TCFNC model was used for transfer learning, it exhibited an accuracy
rate of 89.55% and outperformed other deep learning models in terms of classification performance.

INDEX TERMS Lung cancer, computed tomography (CT), adversarial learning, convolutional neural
network (CNN), fuzzy neural network, Taguchi method, maximum mean discrepancy.

I. INTRODUCTION
Computed tomography (CT) images are often used for the
early detection of lung cancer, which commonly manifests as
pulmonary nodules. These nodules may exhibit malignant or
benign characteristics. Consequently, distinguishing between
malignant and benign lung tumors is an indispensable step
in the early diagnosis of lung cancer. However, enhancing
diagnostic and detection accuracy is a challenging task. Deep
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learning technology has been adopted for the identification
and classification of lung tumors. This technology can be
used for automatically extracting pertinent tumor features
from lung CT images and is more effective and accurate than
are traditional deep learning methods [1], [2], [3].

Zhang et al. [1] combined multiple convolutional neural
network (CNN) models to construct an ensemble learner
for the classification of pulmonary nodules. Hu et al. [2]
proposed STN model with unsupervised learning method to
label malignant lung cancer. Shen et al. [3] introduced an
interpretable deep hierarchical semantic CNN to predict the
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malignancy of pulmonary nodules observed in CT images.
However, these methods have certain limitations. For exam-
ple, CNN models, because of their substantial number of
parameters, necessitate high computational costs and a long
training duration.

In CNN models, fully connected networks (FCNs) are fre-
quently used as classifiers. Each neuron in the FCN connects
to all neurons in the preceding layer, with each connection
bearing a corresponding weight. During model training, these
weights are adjusted to learn themapping from input to output
data. However, the weights lack physical meaning. The fuzzy
neural network (FNN) [4], [5] has wide-ranging applications
across various domains. This neural network is endowed with
fuzzy inference abilities; it seamlessly integrates the learning
abilities of a neural network with the inferential capabili-
ties of human thought, which are rooted in fuzzy logic [6].
Cheng et al. [7] introduced a novel fuzzy neural network
that incorporates traditional convolution layers and fuzzy rule
layers. The convolution layers extract discriminative features
across scales, providing information for pixel-level features.
The fuzzy rule layers adeptly handle various uncertainties,
thereby ensuring robust segmentation outcomes.

The parameter settings of CNN models have a strong
influence on their performance. Because extensive experi-
mentation is essential for identifying a suitable parameter
combination, this process demands substantial time and
resource investments. The uniform distribution method [8]
and Taguchi method [9] are commonly applied for set-
ting parameters. These systematic methods facilitate the
exploration and optimization of parameter settings to ensure
optimal model performance. In the uniform distribution
method, multiple variables are tested to identify the most
favorable parameter combination for achieving the desired
performance [8]. By contrast, in the Taguchi method, a rel-
atively small number of experiments are performed, and a
systematic experimental design is used to identify the primary
factors influencing quality and their optimal setting. The
aforementioned methods help to conserve time and resources
while preserving model stability and performance [9].

Traditional machine learning methods operate under the
assumption that data originate from the same distribution
during the training and testing phases. However, real-world
data might exhibit different distributions because of varying
domains, environmental conditions, or time points. Thus,
when different data sets are used, data relabeling becomes
imperative, which necessitates considerable human effort and
time. Domain adaptation, which is a key trend in the realms
of machine learning and deep learning, is aimed at extracting
features from source- and target-domain data with different
distributions. These features are then mapped to a common
feature space, thereby enabling the model to perform gener-
alization effectively [10], [11]. Gallego et al. [12] proposed an
incremental strategy for the adversarial learning of neural net-
works. Thismethod involves self-labeling data from the target
domain to the source domain making adversarial learning to

extract new features. Liu et al. [13] proposed a multisource
transfer learning method based on domain adversarial neu-
ral networks for the classification of electroencephalograms.
Tzeng et al. [14] incorporated an adaptation layer into a CNN
model. The output of the adaptive layer mitigated distribution
disparities between the source and target domains and mini-
mized classification losses in the source domain. However,
under challenges such as category imbalance and extreme
disparities between the source and target domains, model
training might become unstable, thereby compromising the
realization of optimal transfer effects. Gangeh et al. [15]
developed a computer-aided tomography system for eval-
uating patients with locally advanced breast cancer who
were receiving neoadjuvant chemotherapy. They used patient
response monitoring data to explore kernel-based metrics for
maximum mean discrepancy (MMD). This approach facili-
tates learning from imbalanced data and supervised learning
based on random undersampling. Although the aforemen-
tioned method has high efficacy, it involves extensive param-
eter computations. In summary, domain adaptation—a key
avenue of research within the domains of machine learning
and deep learning—can help to address the complexities
arising from disparate data distributions in real-world set-
tings. By leveraging diverse adversarial learning techniques,
domain adaptation can enhance model generalization across
multiple domains.

In the present study, we developed an adversarial-
learning-based Taguchi convolutional fuzzy neural classifier
(AL-TCFNC) for the classification of malignant and benign
lung tumors displayed in CT images. The contributions of our
study are as follows:

1. In the developed AL-TCFNC, a fuzzy neural classifier
(FNC) replaces an FCN, thereby reducing the number of
network parameters and training duration.

2. Recognizing that fine-tuning the parameters of a
deep learning model necessitates extensive experimentation,
we used the Taguchi method to select the optimal parameter
combination through a small number of experiments.

3. Given that the transfer learning of models across
diverse databases results in poor performance because of the
insufficiency of labeled samples, we combined MMD and
cross-entropy (CE) in our adversarial learning strategy.

The rest of this paper is organized as follows. Section II
presents an overview of the developed system architecture
for the classification of lung tumors. Section III presents the
experimental outcomes and comparisons between ourmethod
and alternative approaches. Finally, Section IV presents the
conclusions of this study.

II. MATERIALS AND METHODS
Fig. 1 illustrates the developed system architecture for the
classification of lung tumors. First, we used the Taguchi
method to identify the optimal parameter combination
for the proposed AL-TCFNC model. Next, we imple-
mented the optimal parameter combination in this model to
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FIGURE 1. Overall system architecture developed for lung tumor
classification.

classify malignant and benign lung tumors for evaluating the
model’s recognition performance. Finally, to apply the pro-
posed model to transfer learning across different databases,
we used the MMDmethod, thereby facilitating the transfer of
knowledge acquired from the source domain to enhance clas-
sification performance in the target domain byminimizing the
distribution disparity between the two domains. Specifically,
the labeled SPIE–AAPM lung CT images are used as the
source domain (Fig. 2(a)), and the unlabeled LIDC–IDRI
lung CT images are adopted as the target domain (Fig. 2(b)).
Our model’s recognition performance was evaluated using
a three-dimensional (3D) receiver operating characteristic
(ROC) curve.

FIGURE 2. (a) SPIE-AAPM lung CT images. (b) LIDC-IDRI lung CT images.

A. ARCHITECTURE OF THE CONVOLUTIONAL FNC
The architecture of the convolutional FNC (CFNC) of the
proposed model is depicted in Fig. 3. The CFNC comprises
four distinct network layers: a convolutional layer, a pooling
layer, a feature fusion layer, and an FNN layer. The con-
volutional layer extracts feature from lung CT images. The
maximum pooling layer compresses these features to reduce
the computational complexity and improve the calculation
efficiency. The feature fusion layer combines individual
features in a feature map, thereby integrating feature cor-
relations to obtain representative features. The FNN layer

FIGURE 3. Convolutional FCN.

replaces the FCN layer and identifies semantic relationships
between features and outputs. Notably, the use of the FNN
layer effectively reduces the number of network parameters
while enhancing the interpretability of feature–classification
associations.

Convolutional operations often engender a sudden increase
in network features. Researchers have used various feature
fusion methods [16], [17] for reducing the volume of fea-
ture information. The network mapping fusion method [16]
involves flattening the feature matrix and assigning a distinct
weight to each feature element; these weights are subse-
quently fused (Fig. 4). The fusion formula for network
mapping is as follows:

fk =

∑m

j=1

∑n

i=1

(
Wkij ∗ xij

)
, (1)

where fk is the output of the kth fusion process, n is the
number of input features of the mth channel layer, xij is the
ith input feature element of the jth channel, andWkij is the ith
input weight of the jth channel in the kth fusion result.

FIGURE 4. Schematic of the network mapping layer.

An FNN combines the learning ability of a neural net-
work and the human-like inferencing ability of fuzzy logic.
We used If–Then fuzzy rules to express. These rules map
the fuzzified values of features to corresponding conclusion
values.
Rulej: IF f1 is F1j and f2 is F2j . . . and fk is Fkj . . . and fn is

Fnj

THEN y is wj, (2)

where fk is the input of the kth dimension, Fkj is the fuzzy set,
wj is the output weight, n is the number of input dimensions,
and m is the number of fuzzy rules. A schematic of an FNN
is displayed in Fig. 5.

The Gaussian membership function [17] is used to
fuzzify each input for generating the corresponding
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FIGURE 5. Schematic of an FNN.

membership degree. Membership values of 0 and 1 indicate
feature importance, with 0 indicating nonsignificance and
1 indicating importance. The formula for calculating mem-
bership values is as follows:

µij(f ) = exp

(
−

[
fi − mij

]2
σ 2
ij

)
, (3)

where fi is the input, andmij and σij are themean and deviation
of Gaussian membership functions, respectively.

The attribution degrees corresponding to the inputs are
combined, and the excited strength of each fuzzy rule is
obtained as follows:

Rj =

∏n

i=1
µij, (4)

Finally, the output of each rule is used as an input for the
defuzzification layer to obtain a precise output. The relevant
formula is as follows:

yk =

∑m

j=1
Rjwjk , (5)

where yk is kth output, Rj is the excited strength of jth fuzzy
rule, and wjk is the weight of the output.

B. ADVERSARIAL LEARNING METHODS
Real-world data often exhibit variations in distribution
across different domains, environmental conditions, or time
points. Adapting to such disparities typically demands
labor-intensive data relabeling and learning efforts. In the
case of medical images, clinicians must label the data. In this
context, domain adaptationmethods offer a solution by allow-
ing the extraction of features from source- and target-domain
data with different distributions and the mapping of the fea-
ture vectors of these data to a shared feature space, thereby
enhancing the model’s generalization performance.

In domain adaptation, the difference between the distribu-
tions of source- and target-domain data is crucial. MMD [18]
is commonly used for measuring the difference between two
feature distributions. The premise of this approach is that if
the data distributions in the source and target domains are
similar, these distributions have similar representations in the
feature space. Fig. 6(a) illustrates the use of the source and
target domains for adversarial-learning-based training in the

FIGURE 6. Architecture of the proposed AL-TCFNC model. (a) Use of the
source and target domains for adversarial-learning-based training.
(b) Use of only the target domain for validation.

proposed AL-TCFNCmodel, whereas Fig. 6(b) illustrates the
use of only the target domain for validation.

The feature vectors generated from the source-domain data
set (Ds) and target-domain data set (Dt ) on the basis of the
rule excitation degree of the FNN layer are expressed as
follows, respectively (Fig. 6a): Ds=(s1, s2, . . . ,si) and Dt =(
t1, t2, . . . ,tj

)
. The two data sets exhibit different distribu-

tions, and a kernel function is used to measure the difference
in data distribution.

Given that the distributions of source- and target-domain
data differ in Euclidean space, data are mapped to a high-
dimensional space. To bring the two data distributions closer,
the source- and target-domain data are mapped to the repro-
ducing kernel Hilbert space [19]. In practice, the Gaussian
kernel function is used for distance operations in the feature
space, which eliminates the need for the direct computation
of inner products in high-dimensional space. The Gaussian
kernel function (K ) is defined as follows:

K (a, b) = exp(
− ∥a−b∥2

2σ 2 ), (6)

where a and b are sample vectors in the source- or
target-domain data sets, ∥a− b∥2 is the square of the
Euclidean distance between the two vectors, and σ is the
standard deviation of the Gaussian kernel, which regulates
the kernel function width.

The Gaussian kernel function enables the measurement
of the similarity between two data sets. When the distance
between data points is small and the standard deviation is
large, the Gaussian kernel function approaches 1, which indi-
cates high similarity. However, as the distance increases or
the standard deviation decreases, the Gaussian kernel func-
tion gradually decreases, which indicates reduced similarity
between data points. Notably, the selection of the standard
deviation for the Gaussian kernel function influences the
results, with a smaller standard deviation resulting in the
peaking of the kernel function. In essence, the peaking effect
has a considerable influence classification performance when
the local structure and data similarities are emphasized.
Conversely, a larger standard deviation flattens the Gaussian
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kernel function, which enhances overall data similarity and
prevents a sole focus on local variations.

The features obtained after mapping the source and target
domains are denoted as φ(x) and φ(y), respectively. Because
φ(x) and φ(y) have infinite dimensions, the Gaussian kernel
function is used to calculate the mean vectors in the feature
space for the source- and target-domain data sets. The defi-
nition of MMD focuses primarily on the similarity between
samples. MMD can be calculated as follows:

MMD2 (Ds,Dt)

=

∥∥∥∥∥∥ 1m
m∑
i=1

φ (si) −
1
n

n∑
j=1

φ
(
tj
)∥∥∥∥∥∥

2

H

=
1
m2

∑m

i=1

∑m

i′=1
K
(
si, s′i

)
−

2
mn

∑m

i=1

∑n

j=1
K
(
si, tj

)
+

1
n2
∑n

j=1

∑n

j′=1
K
(
tj, t ′j

)
, (7)

where Ds and Dt denoted source domain and target domain
data, respectively; s and t are subset of Ds and Dt ; ∅(·) is the
mapping function that maps original values to Reproducing
Kernel Hilbert Space (RKHS); the norm ∥·∥H is defined
with respect to the specific Hilbert space associated with a
reproducing kernelK ; andH represents the space of functions
in the Hilbert space.

During adversarial learning, MMD loss and CE are used
to update the weights of the FNN. This approach minimizes
the difference in feature distribution between the source and
target domains and reduces the classification loss in the
source domain. The overall loss function is expressed as
follows:

L = Lc (Ds, y) + λMMD2 (Ds,Dt) , (8)

In Eq. (8), the former term is the classification loss
obtained after model training in the source domain and the
latter term is the sum of MMD distances calculated after the
rule layer. The hyperparameter λ is a penalty parameter.
During the parameter learning process, the distribution

difference between the source and target domains is reduced
by minimizing the MMD loss. Thus, the knowledge and
features of the source domain can be mapped to those of
the target domain by enhancing the model’s recognition per-
formance in the target domain. The trainable parameters in
the AL-CFNC model are mij, σij, and wj, which are adjusted
using a backpropagation learning algorithm. The following
formula is used for parameter modification:

wj (t + 1) = wj (t) − η1wj (9)

mij(t + 1) = mij − ηm1mij (10)

σij(t + 1) = σij − ησ 1σij (11)

where

1wj =
∂Lc
∂wj

=
∂Lc
∂y

∂y
∂wj

=
∂ 1
2 (y− yd )2

∂y

∂
∑m

j=1 Rjwjk
∂wj

= (y− yk )Rj (12)

1mij =
∂L
∂mij

=
∂L
∂µij

∂µij

∂mij
=

∂L
∂Rj

∂Rj
∂µij

∂µij

∂mij

=
∂L
∂ ŷ

∂ ŷ
∂Rj

∂Rj
∂µij

∂µij

∂mij
=

[
(y− yk)Rjwj +

∥∥∥∥ 1m∑m

i=1

×φ (si) −
1
n

∑n

j=1
φ
(
tj
)∥∥∥∥2

H

][
2
[
fi − mij

]2
σ 2
ij

]
(13)

1σij =
∂L
∂σij

=
∂L
∂µij

∂µij

∂σij
=

∂L
∂Rj

∂Rj
∂µij

∂µij

∂σij

=
∂L
∂ ŷ

∂ ŷ
∂Rj

∂Rj
∂µij

∂µij

∂σij
=

[
(y− yk)Rjwj +

∥∥∥∥ 1m∑m

i=1

×φ (si) −
1
n

∑n

j=1
φ
(
tj
)∥∥∥∥2

H

][
2
[
fi − mij

]2
σ 3
ij

]
(14)

where ηw, ηm, and ησ are the learning rates of wj,mij, and σij,

respectively.

III. RESULTS
We used the AL-TCFNC model to assess the efficacy of the
Taguchi method in optimizing parameter combinations and
to evaluate the generalization ability of domain adaptation.
Moreover, we compared the proposed model with other com-
mon deep learning models to evaluate its usefulness.

A. DATA SETS AND EVALUATION INDICATORS
In this study, two datasets were utilized: the SPIE-AAPM
Lung CT Challenge dataset [20] and the open LIDC-IDRI
Lung Imaging Research dataset [21]. The source domain
input consisted of a total of 22,489 annotated SPIE-AAPM
lung CT images, including 11,082 benign cases and 11,407
malignant cases, while the target domain input comprised
16,471 unannotated LIDC-IDRI lung CT images, consisting
of 5,332 benign cases and 11,139 malignant cases. Maxi-
mum Mean Discrepancy (MMD) and Cross-Entropy (CE)
were employed for adversarial learning. Finally, the unan-
notated LIDC-IDRI lung CT images were used for model
validation.

The following indicators were used to assess the classifica-
tion results: accuracy, true positive rate (TPR), false positive
rate (FPR), and F1 score. We generated an ROC curve [22]
and calculated the area under the ROC curve (AUC).
Typically, in a binary classification model, the classifier
assigns a score to each sample. A higher score indicates
a higher likelihood of being positive. By varying the deci-
sion thresholds, we classified the samples into positive and
negative categories, thereby obtaining different performance
metrics (Fig. 7).

The two-dimensional (2D) ROC curve displayed in
Fig. 8(a) characterizes the model performance at a single
decision threshold and describes the relationship between
FPR and TPR at various thresholds. In this study, FPR
was determined as 1 − specificity. A higher specificity
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FIGURE 7. Decision threshold.

FIGURE 8. (a) 2D ROC and (b) 3D ROC curve.

corresponds to a lower FPR, which indicates an enhanced
ability of the model to identify negative samples correctly.
A higher AUC value implies that when the classifier ran-
domly selects a positive sample, the classifier is more likely
to correctly identify the sample as a positive sample than as
a negative sample. Therefore, a higher AUC value correlates
with a higher classifier accuracy.

Medical imaging frequently involves combined detection–
estimation tasks. To evaluate the performance of classifica-
tion models in these tasks, various objective measures have
been proposed, such as accuracy, precision, and F1 score.
An ROC curve is a visual tool for comparing classification
models [23], [24], [25]. Guo et al. [24] conducted 3D ROC
curve analysis and found that the combination of linearly
constrained minimum variance with 3D ROC analysis can
solve background problems caused by unknown complexity.
Subsequently, by regarding small classes as signals to be
detected, their class accuracy can be interpreted as a measure
of signal detection capability or probability. Therefore, 3D
ROC analysis can help to address class imbalance problems.
Chang [25] analyzed the three 2D ROC curves and developed
six quantitative classification measures on the basis of the
AUC values of these curves. These quantitative classification
measures can be used for comprehensively evaluating classi-
fier performance. The concept of a 3D ROC curve usually
refers to an extension of the traditional 2D ROC curve to
include a third dimension, often representing the performance
of a classifier at different decision thresholds. In 3D ROC
space, metrics include sensitivity, specificity, and threshold.
Similar to 2D ROC, we can evaluate the curvature of the ROC
curve along the third dimension (e.g., decision threshold).
A convex shape may indicate that a balanced model performs
well across different trade-offs, while a concave shape may
indicate a bias toward certain thresholds. Furthermore, the
performance of the model changes as the decision thresh-
old changes. Smooth and continuous transitions between

different sensitivity and specificity values indicate that the
model maintains discriminative power over a range of thresh-
olds. The classification curve of perfect 3D ROC is shown
in Fig. 8(b). The closer to the blue line, the better the
classification performance.

B. OPTIMAL PARAMETER COMBINATION FOR THE
AL-TCFNC MODEL
In the initial experiment, the size of the input image was
set as 50 × 50 × 3 pixels, and two sets of convolutional
and pooling layers were used for feature extraction. Each
convolutional layer used an initial convolution kernel (size:
3 × 3) for feature extraction and a max pooling layer (size:
2 × 2) for feature compression to reduce computational load.
In the convolutional layer, 16 and 32 convolution kernels
were used to extract various feature combinations. In the
feature fusion layer, the network mapping method was used
to reduce feature dimensions, which resulted in 32 features
being obtained. These features were incorporated into the
FNN for classifying malignant and benign lung tumors. For
model training, the Adam optimizer was used; the learning
rate, epoch count, and batch size were set as 0.001, 30, and
64, respectively.

In a Taguchi experiment, seven factors of the proposed
model were explored to identify the optimal parameter com-
bination. The following inference factors were selected for
exploration: penalty parameter (λ), number of convolution
filters in the first convolutional layer (C1_F), convolution
kernel size of the first convolutional layer (C1_KS), num-
ber of convolution filters of the second convolutional layer
(C2_F), convolution kernel size of the second convolutional
layer (C2_KS), number of network mapping layers (NML),
and number of fuzzy rules (FR). The levels of these fac-
tors were set as follows: λ—0.1, 0.2, 0.5, 0.6, 0.8, and 1.0;
C1_F—16, 32, and 48; C1_KS—3, 5, and 7; C2_F—32,
48, and 64; C2_KS—3, 5, and 7; NML—32, 48, and 64;
and FR—32, 48, and 64. Because of the combination of the
seven factors and its levels, the traditional method necessi-
tates 61 × 36 = 4374 experiments, whereas the Taguchi
method necessitates only 18 experiments. To obtain stable
results, each experiment with the same parameter combina-
tion was performed three times, denoted as y1, y2, and y3,
respectively. The yave represents the average accuracy of
three experimental results (i.e., y1, y2, and y3). The average
accuracy was used to calculate the signal-to-noise (S/N) ratio
and the loss function was larger-the-better. The formula of
S/N is as follows:

S/N = −10log

(
1/n

n∑
i=1

1
yi

)
, (15)

where n is the number of experiments and yi is the accuracy of
ith experiment with the same parameter combination. In this
study, n is set as 3. The results of 18 experiments using the
Taguchi method are summarized in Table 1.

The S/N ratio for each experiment was used to derive the
average S/N ratio for each factor and level and to determine
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TABLE 1. S/N ratios in the taguchi experiment.

TABLE 2. Significance rank of each factor, optimal level of each parameter, and optimal parameter combination.

the between-level numerical differences. Table 2 presents the
significance rank of each factor, the optimal level of each
parameter, and the best parameter combination. With the
exception of λ, C1_F, C1_KS, C2_F, C2_KS, NML, and FR
each have three levels. Hence, the presence of the ‘‘-’’ symbol
in Table 2 indicates the unavailability of the corresponding
value. Notably, λ, C1_KS, C2_KS, and NML exerted signif-
icant effects on the model. The maximum difference value
of C1_KS, namely 0.252, indicates its key role in model
response.

In Table 1, Experiment 5 shows a higher signal-to-noise
ratio, which indicates that the parameters configured in

Experiment 5 (i.e., λ = 0.2, C1_F = 32, C1_KS = 5,
C2_F = 64, C2_KS = 7, NML = 32, FR = 32) is better
than other experiments. But, this is not the best parameter
combination for ourmethod.Wemust analyze each factor and
its level in 18 experiments through Table 2. Table 2 show that
the factors affecting the S/N ratios based on yield extraction
method are affected for each level of the parameters. Themost
significant factors can be determined by the larger difference
in the S/N ratio. Finally, the best parameter combination in
the ninth and tenth rows of Table 2 was set as λ = 0.2,
C1_F = 32, C1_KS = 5, C2_F = 48, C2_KS = 7, NML =

32, and FR = 32. The obtained results were then compared
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with those of the unoptimized AL-CFNC model. As demon-
strated in Table 3, the accuracy, sensitivity, specificity, and F1
score of the AL-TCFNCmodel are 88.69%, 87.50%, 90.00%,
and 89.02%, respectively. The proposed AL-TCFNC model
outperforms the AL-CFNC model.

TABLE 3. Performance metrics of the AL-CFNC and AL-TCFNC model.

We performed 3D ROC analysis to evaluate the perfor-
mance of the AL-TCFNCmodel. A 3DROC curve comprises
three 2DROC curves: those of (PD, τ ), (PF , τ ), and (PD,PF ).
Therefore, we plotted 3D ROC curves for the AL-CFNC
and AL-TCFNC models by using three parameters, namely
PD,PF , and τ where denoted TPR, FPR, and thresholds,
respectively; the step size of τ was 0.01 in our experiments.
Fig. 9(b) presents the 3D ROC curves for the AL-CFNC and
AL-TCFNC models. The results indicate that the optimal
parameter combination markedly enhanced classifier accu-
racy. Fig. 9(a) indicates that the AL-TCFNC and AL-CFNC
models had the same AUC values in the 2D ROC curves,
and identifying the superior model on the basis of these
curves was difficult. However, the 2D ROC curves clearly
indicated that the AL-TCFNCmodel had higher performance
than did the AL-CFNC model, as the curve of AL-TCFNC is
closer to the perfect curve, as Fig 8(a). The 3D ROC curves
indicated that the AL-TCFNC model had better stability
which means that under different thresholds excellent PD and
PF . In other words, the proposed AL-TCFNC model does
not cause degradation in classification performance due to
changes in different thresholds. Illustrated in Fig 8(b), the 3D
ROC curve (depicted by the blue line) for AL-TCFNC reveals
that test accuracy improves as the curve approaches the upper
left corner of the chart. This is attributed to the fact that in the
upper left corner, sensitivity equals 1, and the false positive
rate is 0 (with specificity equating to 1), signifying superior
performance.

FIGURE 9. (a) 3D ROC and (b) 2D ROC curves for the AL-CFNC and
AL-TCFNC models.

C. ADVERSARIAL LEARNING OF THE AL-TCFNC MODEL
ACROSS DATABASES
For adversarial learning, we used the labeled SPIE–AAPM
lung CT images as the source-domain input and combined
the MMD and CE methods for adversarial learning. Subse-
quently, unlabeled LIDC–IDRI lung CT images were used
for model validation. The optimal parameter combination,
which was identified using the Taguchi method, was applied
to the AL-TCFNCmodel. During the training process, we set
the learning rate as 0.001, deviation as 2, and batch size
as 64 and used the early stopping mechanism. Under the
aforementioned conditions, the classification performance of
the AL-TCFNC model was compared with that of several
other common models, namely, LeNet-5 [26], VGG-16 [27],
and AL-AlexNet (proposed by Tzeng et al.) [14]. The
LeNet-5 [26] and VGG-16 [27] models that are incorporated
into adversarial learning are referred to as AL-LeNet-5 and
AL-VGG-16, respectively. The experimental results revealed
that the AL-TCFNC model outperformed the AL-AlexNet,
AL-LeNet-5, and AL-VGG-16 models in terms of accu-
racy, sensitivity, and F1 score. Furthermore, the number of
parameters was considerably less for the AL-TCFNC model
(0.266 MB) than for the AL-AlexNet (27.701 MB) and
AL-VGG-16 (12.604 MB) models (Table 4 ).

TABLE 4. Adversarial learning data for various models.

The 2D ROC and 3D ROC curves for various models are
displayed in Fig. 10(a) and 10(b), respectively. As shown in
Fig. 10(b) (3D ROC curve), the AL-TCFNC model achieved
relatively high TPR and FPR values across different decision
thresholds. In essence, the AL-TCFNC model exhibited a
higher TPR and a lower FTR.

FIGURE 10. (a) 2D ROC and (b) 3D ROC curves for various models.
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In our experiments, MMD played a pivotal role. By min-
imizing the distribution difference between source- and
target-domain data, the knowledge acquired from the source
domain was leveraged to enhance the model’s performance
in the target domain. Given that the selection of the stan-
dard deviation for the Gaussian kernel function influences
the experimental outcomes, we performed multiple experi-
ments by varying the standard deviation. Table 5 presents
the experimental results for various models under standard
deviations ranging from 2.0 to 7.0. These results indicate
that the accuracy of the AL-TCFNC model surpassed that of
other models. Notably, when the standard deviation was set
as 5.0, the AL-TCFNC model achieved its highest accuracy
(89.55%), which was 0.86% higher than its accuracy at the
default standard deviation of 2.0.

TABLE 5. Accuracy of various models under different standard deviations.

Fig 11 shows the confusion matrix of AL-TCFNC. As can
be seen from Fig 11, the correct classification accuracy of
AL-TCFNC for benign lung cancer is 87.50%, and the correct
classification accuracy for malignant lung cancer is 88.57%.
These results highlight the effectiveness of AL-TCFNC using
adversarial learning to accurately classify CT images within
the target domain.

FIGURE 11. The confusion matrix of AL-TCFNC in lung carcer detection.

Table 6 illustrates the comparison results of the proposed
AL-TCFNC and existing methods (i.e., Sharma et al. [29],
Wu et al. [30], and Feng et al. [31]). In Table 6, the
experiment employed two adversarial learning methods:
supervised adversarial learning and unsupervised adversar-
ial learning. In addition, two databases (i.e., SPIE–AAPM
and LIDC–IDRI) were used for testing various methods.
The evaluation metrics included accuracy, sensitivity, speci-
ficity, and F1-score. To evaluate the stability of AL-TCFNC,

TABLE 6. Adversarial learning data for various methods.

this experiment also introduced K-fold cross-validation
and assessed its performance on lung CT images from
SPIE-AAPM and LIDC-IDRI datasets. In this study, we set K
to 5. Experimental results indicate the proposed AL-TCFNC
in supervised adversarial learning achieved average accura-
cies of 99.66% and 97.94% in SPIE-AAPM and LIDC-IDRI
datasets, respectively. However, the average accuracies of
Sharma et al. [29] and Wu et al. [30] methods in the two data
sets are 93.96% and 92.36%, respectively. In unsupervised
adversarial learning, Feng et al. [31] achieved an accuracy of
75.72% using domain adversarial neural network approach.
However, AL-TCFNC achieves an accuracy of 88.69% in
unsupervised adversarial learning, which is 12.97 percentage
points higher than that of the method of Feng et al. [31].

The above experiments demonstrate the effectiveness of
the proposed method. However, there are still some chal-
lenges in real-world applications, such as generalization
across datasets, model interpretability, statistical evaluation
and validation, and clinical system implementation. Many
studies have suggested addressing the issues of generaliza-
tion across datasets and model interpretability by employing
attention mechanisms [28] and the Gradient-weighted Class
Activation Mapping (Grad-CAM) [32]. The attention mech-
anism can enhance the feature extraction and representation
capabilities of the model, thereby further improving its
overall performance. Grad-CAM can display the atten-
tion regions of the attention mechanism to explain the
model’s reasoning. Additionally, the accuracy, sensitivity,
and specificity metrics used in assessment and analysis
may be affected by the degree of learning, making perfor-
mance metrics subjective. In this case, the fuzzy evaluation
method [33] can be used to exclude outliers and make the
evaluation data more valuable. Finally, for effective clin-
ical application, chip-based systems are imperative. The
chip-based system not only greatly improves the inference
speed of the model, but also reduces the computing power
consumption.
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IV. CONCLUSION
In this study, we developed an AL-TCFNC model for the
classification of malignant and benign lung tumors displayed
in CT images. In this model, we substituted an FCN with an
FNC to reduce the number of network parameters and the
training duration. The Taguchi method was used to identify
the optimal parameter combination through a small num-
ber of experiments. A combination of MMD and CE was
leveraged for the adversarial learning of the proposed model.
The use of the Taguchi experiment resulted in an accuracy
value of 88.69%, which indicated a substantial improvement
(by 6.70%) compared with the results obtained without the
Taguchi experiment. Furthermore, a careful selection of an
appropriate standard deviation ensured that the AL-TCFNC
model attained an accuracy rate of 89.55% in transfer learn-
ing and surpassed the classification performance of other
deep learning models. Notably, in 3D ROC analysis, the
AL-TCFNC model consistently exhibited a higher TPR and
lower FPR across different decision thresholds than other
deep learning models in terms of classification performance,
which reaffirmed that it had superior recognition accuracy
and a reduced number of false positive instances.

Although the accuracy, sensitivity, specificity, and
F1-score performance of the proposed AL-TCFNC method
using different data sets in both supervised and unsupervised
adversarial learning are better than other methods. This study
has its limitations. In the Taguchi experiments, the influenc-
ing factors and their levels of the proposed AL-TCFNC were
difficult to determine. The optimal parameter combination
of the model may produce different results when different
factors and their levels are selected. Therefore, more time is
needed to determine these important factors and their levels.
Furthermore, the evaluation metrics used in the experiments
may bias the evaluation results due to outliers. In future
research, we will consider introducing statistical evalua-
tion and validation to make the experimental results more
reliable.
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