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ABSTRACT Malware analysis and detection are still essential for maintaining the security of networks
and computer systems, even as the threat landscape shifts. Traditional approaches are insufficient to keep
pace with the rapidly evolving nature of malware. Artificial Intelligence (AI) assumes a significant role in
propelling its design to unprecedented levels. Various Machine Learning (ML) based malware detection
systems have been developed to combat the ever-changing characteristics of malware. Consequently, there
is a growing interest in exploring advanced techniques that leverage the power of Deep Learning (DL)
to effectively analyze and detect malicious software. DL models demonstrate enhanced capabilities for
analyzing extensive sequences of system calls. This paper proposes a Robust Malware Detection Network
(RMDNet) for effective malware detection and classification. The proposed RMDNet model branches the
input and performs depth-wise convolution and concatenation operations. The experimental results of the
proposed RMDNet and existing DL models are evaluated on 48240 malware and binary visualization image
dataset with RGB format. Also on the multi-class malimg and dumpware-10 datasets with grayscale format.
The experimental results on each of these datasets demonstrate that the proposed RMDNet model can
effectively and accurately categorize malware, outperforming the most recent benchmark DL algorithms.

INDEX TERMS Binary classification, concatenation, convolution, cyber security, deep learning, depthwise
convolution, malware, multiclass classification.

I. INTRODUCTION
With the increasing sophistication of malware threats, the
framework of cybersecurity is changing dramatically. Attack-
ers are continually pushing the boundaries of established
security procedures, equipped with innovative strategies and
tools. This increase in sophistication includes not only the
complexity of the malicious code itself but also the strategies
used to avoid detection, exploit weaknesses, and remain
within infected systems. Malware evolution is distinguished
by the growth of polymorphic and metamorphic code, which
makes detection and analysis more difficult. To conceal
their destructive payloads and intents, cybercriminals use
advanced obfuscation tactics, encryption, and anti-analysis
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techniques. Cybersecurity experts must use cutting-edge and
flexible defense strategies in response to these growing
threats. Security systems are using ML and AI at increasing
rates to detect trends, abnormalities, and zero-day vulnera-
bilities instantly. Most objects in our present-day reality are
not linked to a computer network, but this situation is rapidly
transforming. Objects that were previously unconnected and
exist all around us are now empowered to communicate with
other objects and individuals. This advancement paves the
way for novel services and enhances the efficiency of our
daily lives. However, our society is embracing connected
technology at a faster pace than our capacity to ensure its
security. As the use of networked devices grows, protecting
the security of data at rest and in transit poses considerable
problems. Failure to secure network data exposes systems
to the risk of malware injection and unauthorized access to
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personal or sensitive information [1]. Particularly within the
realm of Internet of Things (IoT), the need for strong security
measures is paramount to uphold consumer trust. However,
due to factors such as cost, size, performance, and security
management often takes a lower priority in IoT deployments.
Consequently, IoT becomes vulnerable to security breaches,
resulting in substantial, financial and reputation damages [2].
Internet security is facing a significant menace as malware
attacks continue to surge at an exponential rate. It can affect
regular processes, gather sensitive information, and obtain
superuser rights to carry out malicious acts. Attackers deliver
it to the victim’s PC by exploiting security weaknesses in
operating systems or application software [3].
Traditional techniques to malware detection and analysis

are struggling to keep up with the rising sophistication
and diversity of malware threats. While effective against
known malware variants, signature-based methods, and
rule-based systems often fail to detect novel and evolving
threats [4]. As a result, there is an essential need to
investigate sophisticated methodologies capable of adapting
to and successfully analyzing the ever-changing environment
of malicious software [5]. DL is a subfield of ML that
focuses on artificial neural networks with multiple layers,
enabling the automatic learning and extraction of complex
patterns and features from data. Inspired by the structure
and function of the human brain, DL algorithms excel at
tasks such as image and speech recognition, natural language
processing, and pattern recognition. The depth of the neural
networks allows them to autonomously learn hierarchical
representations, making DL particularly powerful for tasks
requiring intricate and nuanced understanding of data. [6].
This ability makes DL an appealing approach for tackling the
challenges in malware analysis. The fundamental objective of
malware analysis is to uncover and understand the behavior,
objectives, and capabilities of malicious software [7]. This
process involves static analysis, which examines the structure
and content of malware samples without executing them, and
dynamic analysis, which observes malware’s behavior when
executed in a controlled environment.

DL techniques can significantly contribute to both static
and dynamic analysis by automating feature extraction,
improving detection accuracy, and providing insights into the
inner workings of malware. In this paper, we delve into the
realm of malware analysis using DL techniques. We aim to
explore the potential of various DL models in effectively
analyzing and detecting malware [8]. To accomplish our
objectives, we leverage large-scale datasets consisting of
binary and diverse types of malware samples. These datasets
encompass a wide range of malware families, such as
viruses, worms, and trojans, providing a comprehensive
representation of the threat landscape [9]. Discussing the
pre-processing steps involved in preparing the data for
training DL models, ensuring data integrity, and appropriate
feature extraction. Furthermore, addressing the challenges
associated with the interpretability and explainability of
DL models in the context of malware analysis. While DL

models have demonstrated exceptional performance, their
decision-making process often lacks transparency, hindering
the understanding of how and why a classification or
detection decision is made [10]. Explore methods such as
attention mechanisms and interpretability techniques to shed
light on the reasoning behind the DLmodel outputs. Through
extensive experimentation and evaluation, empirical evidence
showcasing the effectiveness of DL techniques in malware
analysis. Results obtained in this paper reveal improvements
in detection accuracy, robustness against emerging malware
variants, and the capacity to identify hidden patterns and
characteristics that may not be detectable using standard
analytic approaches. This work intends to contribute to the
improvement of malware analysis by harnessing the power
of DL techniques. By capitalizing on the capabilities of
neural networks, we can enhance the accuracy, efficiency, and
adaptability of malware detection and analysis systems.To
defend against zero-day attacks, the proposed RMDNet
excels at detecting anomalies and recognizing novel attack
signatures, providing a proactive defense against previously
unseen threats. RMDNet’s ability to autonomously adapt
to evolving threats without explicit programming makes it
valuable for real-time detection and mitigation. The key
contributions of this study are as follows:

1) ARMDNet-deep learning basedmalware classification
algorithm is proposed to efficiently differentiate classes
of malware samples while retaining high accuracy
on different malware datasets and also emphasizing
computational efficiency.

2) Propose a DCOCO block, that performs depth wise
convolution and concatenation methods and has the
ability to perform effective and efficient feature
extraction.

Rest of the article is organized as follows: Section II
discusses various methods for categorizing and detecting
malware. The proposed RMDNet architecture model’s com-
prehensive description and the datasets are the main topics
of Section III. The proposed RMDNet model’s training and
implementation details are described in Section IV. The
experimental results of our model are detailed in Section V
along with comparisons of various benchmark models.
Section VI of our paper presents the results of our research.

II. RELATED WORK
Malware detection is crucial for securing computer systems
and user data in the area of computer security. To fight
the constantly changing threat landscape, several malware
detection techniques have been developed as shown in
Figure 1. These techniques are classified as static analysis,
dynamic analysis, feature extraction techniques, and DL
techniques.

A. STATIC ANALYSIS
In this approach, most of the antivirus software used
for detection uses the signature-based technique. These
signatures are generated by gazing at the disassembled
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FIGURE 1. Malware detection and classification methods.

code or using the string command. Disassembling portable
executables is made easier by a variety of disassemblers and
debuggers. Thus, features are taken from disassembled code,
and it is analyzed. Therefore, these characteristics are crucial
in creating the signature of a specific malware family. Static
analysis is a technique for assessing malware without running
it [11]. This is often accomplished by analyzing the coding
of a binary file in order to comprehend its operation and
discover anymalicious activities. Potential security issues in a
sample can be discovered via static analysis without affecting
the analysis environment. Static analysis does not involve the
execution of the actual malware. It is safer because of this
non-execution environment, which lowers the possibility of
unintentional activation or unexpected repercussions during
dynamic analysis [12]. They are quick, safe, and can readily
detect multi-path malware. But they may make errors while
analyzingmalware that is unknown. Attackers employ several
ways to find vulnerable devices and transform them into
bots using infection scripts. Data botnet arrays are then
leveraged to conduct network traffic attacks. Opcodes are
building blocks that have historically been utilized for
malware detection and statically analyzing program activity.
The control flow graph method (CFG) is used to extract
the executable opcodes, representing behavior characteristic
executable [13], [14]. Features are chosen from CFG-based
and text-based sequences, if packed malware cannot be
unpacked, this strategy is rendered insignificant. Formulating
a Convolution Recurrent Neural Network (CRNN) to detect
malware using an N-extracted opcode sequence from a binary
file without execution doesn’t reflect in indirect branching
instructions. Information about the program or its intended
behavior is gathered from explicit and implicit observations
in its binary/source code through static analysis [15]. Static
analysis solutions are often created using signature-based
approaches, but even with their extreme precision, they are
ineffective against unknown malicious code.

B. DYNAMIC ANALYSIS
As traditional static approaches fail to keep up with the
increasing sophistication of malicious software, dynamic

analysis is essential in the identification and categorization
of malware. Dynamic analysis involves executing malware
samples in a controlled environment to observe their behavior
during runtime. An effective method used to investigate
malware is by analyzing the program’s behavior during
execution [16], [17]. This approach, also known as behavioral
analysis, involves observing and collecting information from
the operating system including API call sequence analysis,
system call monitoring, network traffic analysis, sandboxing,
and memory behavior analysis. However, dynamic analysis
does come with some limitations. For example, accurately
simulating the conditions necessary to trigger the malware’s
dangerous functionalities, especially when targeting specific
vulnerable applications, can be quite challenging [18].
Additionally, determining the precise time frame required
to observe harmful behavior for each malware instance
remains uncertain. To accomplish categorization, the ML
approach makes use of various aspects of the malware
samples [19]. This technique can give great accuracy, but
it involves significant effort to run the malware files and
does not guarantee the execution of the malware’s entire
code, thus the harmful section of the malware code may not
be identified. Executing malware in controlled environments
poses risks of unintentional infection and contamination if
proper isolation measures are not in place. Dynamic anal-
ysis can be computationally intensive, requiring substantial
resources and potentially impacting system performance
during analysis [20]. Some extremely sophisticated malware
can identify the analysis environment and change their
behavior to avoid detection, decreasing the effectiveness of
dynamic analysis.

C. FEATURE EXTRACTION TECHNIQUES
Several efforts have been made to adapt feature extraction
techniques for the classification of malware. There have been
surveys of numerous visualization approaches, including
image processing for malware analysis. The visualization of
malware as images [21], which presented the first studies
on the viewing of binary data as images, improved the
capabilities of text-based hex editors, and provided a method
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for converting binary files into images called byteplots.
A method for visualizing static malware samples as grayscale
images, discovering that images from the same malware
family appear very similar in structure and texturing for
many malware families [22]. Figure 2 depicts the process of
converting malware binary data to images. Malware binary
files, which are in the form of bits are grouped into eight-bit
vectors and then converted to grayscale images.

A recurring element of these initiatives is the transforma-
tion of binary malware samples into various image formats,
followed by the implementation of image classification
algorithms to categorize based on the image representation
of the malware. Using local gray level cooccurrence matrices
and global color moments, features from both grayscale and
color byteplots are extracted and then sent to classifiers.
This was tested on fifteen malware families and showed
that scoring 97 % in accuracy, the combined feature sets
outperformed either local or global features alone. There
hasn’t been a lot of study on malware classification using
space-filling curves, in contrast to the byteplot related
work that was mentioned [23]. An approach using Hilbert
curves and a Self-Organizing Incremental Neural Network
were employed to classify malware, very small sample
size was used and it is insufficient to properly show the
benefits of classifying malware using the Hilbert curve,
Overfitting makes it difficult for the model to generalize
to new samples [24]. SimHash keeps the malware’s unique
characteristics while encoding them to identical lengths.
When converting SimHash bits to grayscale images, each
SimHash value may be viewed as a pixel. SimHash can
be improved by employing multiple cascade hash functions
rather than a single hash result [25]. Bitmap Image Converter,
a technique that accepts binary files from Windows Portable
Executables (PE) as input and converts them into bitmap
images in order to visualize them. In order to assess the
similarity of the original binary files, each line of bitmap
images has an entropy value, which is calculated by the
entropy graph generator, and these values are used to create
entropy graphs, it incorrectly classified malware binary files
belonging to few families of malware [26]. The bytes transfer
probability matrix based Markov images are fixed-size pixel
matrices. It ignores the scaling issue when compared to
grayscale images. Malware binaries are seen as a stream of
bytes that may be visualized as a stochastic process [27].

D. DEEP LEARNING TECHNIQUES
Due to the improved feature learning ability of convolu-
tion neural network (CNN) from malware images, several
researchers have tried to contribute elegant DL techniques
to work on malware analysis. Figure 3 shows the basic
block diagram or workflow diagram of the DL method. The
malware datasets are pre-processed and split into training
and testing data. Training data is applied on different DL
algorithms and its performance is evaluated by applying test
datasets. Models are built on the continuous evaluation of the
performance of the model using quality metrics.

Malware detection and classification using a deep random
forest approach, and a sliding window were proposed [28].
However, because it uses smaller versions of the input
image for each sliding window, this uses more memory.
To investigate informative aspects from the one-dimensional
structure of binary executables, a byte-level 1D CNN model
was presented [29]. While binary executables were being
converted and resized to larger images, such as 128 ×

128, this 1D CNN did not always perform better. And
also suggest learning the useful characteristics from larger
images may require a more complex model, like ResNet
or EfficientNet. Deep Image Mal Detect (DIMD) model
was proposed, consisting of Deep Neural Nework (DNN)and
Long Short Term Memory (LSTM). The highest accuracy of
this CNN-LSTM model was 96% with a cross-validation of
10 fold. Results in this model suggest a scope of improvement
is required to develop DL complex model [30]. Experiments
were conducted on different ResNet models and transfer
learning for malware classification, with more complicated
ResNet variants that did not yield a meaningful improvement
in results [31]. An Alex Net and Resnet hybrid DNN was
presented, integrating the two pre-trained networks to provide
a feature vector and fully connected layers for categorization.
The limitations of the model were the adversary’s attacks
were not tested using crafted inputs, and complexity in rises
more hidden layers [32]. Amodel on Convolution Recurrence
(ConRec), based on VGG16 and BiLSTM was used along
with image augmentation on the malware samples. Model
performance without image augmentation was less [33].
It was suggested to employ transfer learning-based architec-
ture rather than class balancing techniques to identify mal-
ware from different families [34]. It utilized spatial attention
created by CNN, as well as feedforward and dropout layers
with less trainable parameters. On the Malimg benchmark
dataset, the performance was examined and an accuracy
of 97.68 % was obtained. Malware classification utilizing
Co-Lab image, VGG 16, and Support vector machine
(MalCVS) presented, with image feature extraction using
a fine-tuned VGG16 model. Following that, the retrieved
features are used to construct a multi-class SVM mode.
Due to malware’s ability to change or confuse the header
field of PE files after packing, this visualization technique
cannot classify malware that has been packaged [35].
Using transfer learning using ShuffleNet and DenseNet-201,
in the final classification layer, an ensemble configuration
of Support Vector Machines (SVM) with Optimal Error
Correction Output Coding (ECOC). This model reported an
accuracy of 99.14 % on the malimg dataset and 96.62 % on
dumpware 10 datasets [37]. VGG16 and ResNet-50 ensemble
of CNN architectures to extract malware image bottleneck
characteristics, which were subsequently used to train SVM
classifiers. The computational complexity of this model was
high [41].

Static approach remains invaluable in identifying known
threats and lays the groundwork for subsequent stages
of analysis. Although dynamic malware analysis provides
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FIGURE 2. Visualizing malware as grayscale image.

FIGURE 3. DL method of malware detection and classification.

useful insights into the behavior of harmful software, it is
not a solution. Its limitations, including evasion techniques,
time-dependent behavior, and the complexity of real-world
environments. However, the true innovation of this study
lies in the fusion of DL techniques with the established
practices. DL with its ability to learn feature hierarchies
independently from malware data, overcomes the constraints
of handcrafted features. To overcome these limitations,
a robust malware detection and classification model is
required, and to address this issue, we propose the RMDNet
architecture for efficiently differentiate classes of malware
samples while retaining high accuracy on different malware
datasets. Detailed description about proposed RMDNet is
presented in Section III.

III. PROPOSED ARCHITECTURE
The proposed architecture, RMDNet for malware detection
and categorization is described in this section. This section
outlines the detailed architecture and provides insights into
each layer’s purpose and functionality.

A. PROPOSED RMDNet MODEL
The schematic diagram of proposed RMDNet CNN model
is shown in Figure 4. This model has 3 stages, performing
Convolution 2D and depthwise convolution in several layers.
Conv2D captures spatial hierarchies and local patterns
efficiently, allowing the network to learn the hierarchical
representation of features in images. This is crucial for tasks
like image recognition, where local features combine to
form more complex patterns. Whereas separable convolution
may not capture global relationships as effectively as
Conv2D. Hence, Conv2D is used during the initial stages of
convolution operations in the RMDNet.The model starts with
an input layer that expects images of size 224 × 224 with
three color channels (RGB) or one grayscale, depending on
the input image channels. In stage 1 the model is branched

into two sections, section I and section II. Section I starts with
a convolutional layers (Conv2D) with 64 filters, each having
a kernel size of 3 × 3 and ReLU activation. These layers are
responsible for extracting high-level features from the input
images. Batch normalization is applied after each Conv2D
layer to accelerate training and stabilize the learning process
of the model. Following batch normalization, max pooling is
performed to downsample the feature maps spatially while
preserving essential information. The output equation of
Section I is given in equation1, the ReLU activation function
is represented as ϕ, batch normalization is represented asBN,
and the max pooling layer as ϑ .

Xsec1 = ϑ(BN(ϕ(Xin ∗W3×3))) (1)

Section II begins with a Conv2D with 64 filters, followed
by a depth-wise convolution. The depth-wise convolution
performs separate convolutions for each input channel and
then continues them. Batch normalization and max pooling
are applied subsequently. Equation for section II is given in
equation 2

Xsec2 = ϑ(BN(ϕ(ϕ(Xin ∗W3×3)) ∗W3×3depthwise)) (2)

The output of these two sections is concatenated together,
represented in equation 3.

Xstage1 = Xsec1
Xsec2 (3)

The output of stage 1 is fed as an input to stage 2. It also
has two sections, namely sections III and IV. Section III
is identical to Section I of Stage 1 and is represented in
equation 4. Here Conv2D is performed with a filter size of
128.

Xsec3 = ϑ(BN(ϕ(Xstage1 ∗W3×3depthwise))) (4)

Section IV resembles Section II of the first stage, but
with a deliberate omission of one convolutional layer. This
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FIGURE 4. Proposed RMDNet architecture.

adjustment is made to effectively decrease the total number of
parameters within the module, as described in the equation 5

Xsec4 = ϑ(BN(ϕ(Xstage1 ∗W3×3))) (5)

The output of these two sections is concatenated together,
represented in equation 6.

Xstage2 = Xsec3
Xsec4 (6)

In Conv2D, each filter is applied to all input channels,
resulting in a large number of operations. However, in depth-
wise convolution, each channel is convolved separately,
significantly reducing the number of operations. This makes
depthwise convolution computationally more efficient than
Conv2D. Depthwise convolution requires fewer parameters
compared to Conv2D. There are a lot of learnable parameters
in Conv2D since each filter has the same amount of param-
eters as the input channels. A single filter is used for each

input channel in depthwise convolution, which minimizes
the number of parameters and improves model performance.
Depthwise convolution preserves spatial information better
than Conv2D. In Conv2D, filters apply the sameweights to all
input channels, potentially mixing different types of features.
Conversely, depth-wise convolution applies different filters
to individual channels, which helps retain channel-specific
information. However, Conv2D is adept at preserving spatial
hierarchies and local patterns efficiently. This is crucial for
tasks like image recognition, where local features combine to
form more complex patterns. Hence, Conv2D is effectively
used in different stages of the proposed model. Stage 3
consists of two DCOCO layers, followed by a convolution
layer with 256 filters, with a kernel size of 3 × 3, max
pooling. The output from the last max pooling layer is
then flattened to 1d vectors and passed through two fully
connected (dense) layers with 4096 units each, and ReLU
activation is applied to learn high-level representations from
the flattened features. Unprocessed neural network outputs
are transformed into a vector of probabilities. Essentially,
a probability distribution over the input classes using the
equation (7) softmax activation function. where xi is a
standard exponential function for the input vector and xj is
the standard exponential function of the output vector.

softmax(xi) =
exp(xi)∑
j exp(xj)

(7)

The sigmoid σ (ȧ) given in (8) is used for binary datasets,
and softmax is used as an activation function for malimg and
dumpware 10 datasets to classify the images accordingly.

σ (ȧ) =
1

1 + e−ȧ
(8)

B. DCOCO BLOCK
The proposed DCOCO module has two paths shown in
Figure 5. Let Xin be the input to the DCOCO block
derived from the stage 2 output Xstage2, as indicated in
equation (6). The input xin is processed using depthwise
convolution, and the output of path 1 is given in equation (9).
Depthwise convolution encourages feature separability by
learning distinct features in each input channel. This can be
particularly helpful when dealing with diverse and complex
feature representations in multi-channel data like RGB
images, where different channels represent different color
information. When adapting pre-trained models to new tasks
or datasets, depthwise convolution can be advantageous. Due
to its parameter efficiency, depthwise convolution allows for
faster fine-tuning and adaptation to new data, reducing the
risk of overfitting when the target dataset is small.

Outpath1 = ϑ(BN(ϕ(Xin ∗W3×3 depthwise))) (9)

In the second path, input Xin is processed through two
depth-wise convolution layers, Let X2conv be the output given
in (10). Applying depthwise convolution twice allows the

VOLUME 12, 2024 82627



S. Puneeth et al.: RMDNet-DL Paradigms for Effective Malware Detection and Classification

FIGURE 5. Block diagram of proposed DCOCO module.

model to capture hierarchical features from the input images.

X2conv = ϕ(ϕ(Xin ∗W3×3 depthwise) ∗W3×3 depthwise)

(10)

The output of two depth-wise convolutions is processed
through a sequence of ReLU, batch normalization, and max-
pooling layers, as given in (11). BN is applied only once
that is, after the second depth wise convolution, but it still
contributes to training stability. Batch normalization normal-
izes activations within the feature maps, which helps in faster
convergence and reduces the risk of vanishing/exploding gra-
dients during training. This stabilization enhances the overall
training process. performing the max pooling operation
downsamples the feature maps, reducing their spatial dimen-
sions. This downsampling reduces computational complexity
and focuses the model’s attention on the most important
features, leading to more efficient feature extraction and
faster inference.

Outpath2 = ϑ(BN(X2conv)) (11)

The outputs of the two paths, Outpath1 and Outpath2 are
concatenated, and the output of the DCOCO model is
represented in equation 12, The concatenation (
) operation
combines the feature maps from both paths, enabling the
model to learn from different levels of feature representations.
This model is part of the DL architecture, where depth-wise
convolutional layers, batch normalization, max-pooling, and
concatenation operations are skillfully utilized to extract and
learn relevant and hierarchical features from input feature
maps. These operations are essential for the model’s ability
to perform sophisticated image processing tasks, such as
malware classification and detection.

OutDCOCO = (Outpath1
Outpath2) (12)

This combination creates an efficient and effective DL
architecture for malware image classification tasks. The
model becomes adept at feature extraction, providing a robust
and accurate representation for classification.

IV. TRAINING AND IMPLEMENTATION
A. DATASET
Binary and multiclass datasets are the two kinds that are
employed. 48240 malware samples and binary visualization
of images (dataset-1), Malimg (dataset-2), and Dumpware 10

TABLE 1. Description of malware datasets.

FIGURE 6. Binary malware samples (dataset 1).

(dataset-3) are used to carry out the work and Figures 6, 7,
and 8 show the visualization of these datasets respectively.
Dataset-1 contains 24,109 images out of which 11,919
images are malicious, and 12,190 images are benign and
contain other infected files [36]. Dataset-2 consists of
9339 malicious images from 8 malware families, sub-
categorized into 25 malware families, which are contained
in dataset-2. The dataset-2 was constructed by converting
malware binaries into a matrix. This matrix contains an
unsigned, 8-bit integer and is seen as a grayscale image
with values in the [0, 255] range, where 0 denotes black
and 255 denotes white [30]. The dataset encompasses a
diverse array of malware types, providing comprehensive
coverage across a wide spectrum of malicious software,
including viruses, trojans, and other malicious software. This
diversity enables researchers and practitioners to analyze and
classify various types of malware. Among these families,
the largest one is the Allaple.A family, comprising a
total of 2949 malware images. In contrast, the smallest
malware class in the dataset is the Skintrim.N class, which
includes 80 malware images. Consequently, dataset-3 [37]
has 4294 images, comprising 3686 malware and 608 benign
image samples. each malware family has a sample with a
224 × 224 final size and a single channel, containing ten
malware and one benign class.

B. EVALUATION METRICS
The study evaluates RMDNet efficiency in classifying
malware using five evaluation metrics: precision, recall,
F1-score, accuracy and confusionmatrix. It also compares the
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FIGURE 7. Malimg malware samples (dataset 2).

FIGURE 8. Dumpware 10 malware samples (dataset 3).

model’s performance using four computational complexity
metrics and computes the total number of trainable parame-
ters. The confusion metrics predict True Positive (TP), False
Positive (FP), True Negative (TN), and False Negatives (FN).
Accuracy is a metric used to assess a classification model’s
correctness, given in equation (13).With precision, indicating
the proportion of accurately predicted positive observations
relative to the total number as shown in equation (14). Recall
quantifies the percentage of correctly predicted positive
outputs, evaluating the architecture’s ability to acquire
all positive outputs without missing any represented in
equation (15). F1-score calculates the ratio of accurately
predicted positive observations to the actual number of
positive observations in the class represented in equation (16).

Acc =
TNC + TPC

FPC + FNC + TPC + TNC
(13)

where TPC = True Positive Calculated, TNC = True
Negative Calculated, FPC = False Positive Calculated and
FNC = False Negative Calculated.

Pr =
TPC

FPC + TPC
(14)

Re =
TP

FN + TP
(15)

F1 =
2 ∗ Re ∗ Pr
Re+ Pr

(16)

where Re = Recall and Pr = Precision.
FLOPs measure the computational capability of a com-

puting entity, while training and testing time represent the
time required to train a DL architecture. Trainable parameters
represent the bulkiness of the architecture. True Positive
Rate (TPR) measures the proportion of positive instances
correctly classified as positive by a model, presented in
equation (17). While False Positive Rate (FPR) quantifies the
ratio of negative instances incorrectly classified as positive
given in equation (18).

TPR =
TP

FN + TP
(17)

FPR =
FP

TN + FP
(18)

C. TRAINING SETUP
This section gives a detailed overview of the training setup
used for conducting experiments of on the proposed RMDNet
model and benchmark models. The training process was
performed on Kaggle’s cloud based environment with a
preconfigured Linux distribution, utilizing the GPU Kernel-
Tesla P100. The NVIDIA Tesla P100 is a high-performance
GPU with 16 GB High Bandwidth Memory (HBM-2), based
on NVIDIA Pascal architecture having 3584 CUDA cores.
The model is implemented using the Keras API framework
and Tensorflow 2.11.0. The proposed and benchmark models
utilized in this study are trained with a batch size of 32 for
40 epochs on the binary dataset, 100 epochs on the mailing
dataset, and 100 epochs on the dumpware 10 dataset. It uses
the Adam optimizer with early stopping. The best of these
values are reported below after all of these models were
trained five times on each of the three datasets. No data
augmentation was performed on any of these datasets.

D. ABLATION STUDY
Ablation study is the systematic analysis of the impact
of eliminating or changing certain components, features,
or parameters inside a model to understand their individual
contributions to the model’s performance. The purpose is
to determine the importance of each component in overall
operation of the RMDNet.

1) Intermediate stage 3: In this abliation study elimanating
the stage 1 and stage 2 of the RMDNet the model
performance was studies on all the three datasets and
the number of parameters were high.

2) Intermediate stage 2 and 3: In this abliation study
only the stage 1 of the RMDNet was elimated to
observe the model performance on all the three
datasets, the number of parameters were reduced but
their was no significant improvements were found in
the performance metrics. The stage 1 of the proposed
model initially perform the Conv2D operation. From
the results, it is seen that eliminating the Conv2D
operation reduces the accuracy and other performance
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TABLE 2. Ablation study on binary dataset.

TABLE 3. Ablation study on malimg dataset.

TABLE 4. Ablation study on dumpware 10 dataset.

TABLE 5. Performance metrics on binary dataset.

TABLE 6. Performance metrics on malimg dataset.

metrics of the model. To capture the spatial hierarchies
and local patterns efficiently the Conv2D opertaion
must be performed in the initial layers over the
seperable convolution method. The table 2 gives the
ablation study on binary dataset, table 3 and 4 gives
the ablation results of the malimg and dumpware
10 datasets respectively.

V. RESULTS AND DISCUSSIONS
In this section, we present the results of our comprehensive
study. Our study aimed to develop a robust malware detec-
tion & classification model on malware datasets. Compare
the results with the state-of-the-art models using different
performance metrics, as detailed in sections V-A and V-B.

A. COMPARISON WITH BENCHMARK MODELS
Performance metrics play a crucial role and DL pipeline,
providing valuable insights into progress and quantifying

TABLE 7. Performance metrics on dumpware 10 dataset.

it numerically. Regardless of the type of model employed,
be it a statistical model or a neural network approach such
as DNN or CNN, an appropriate metric is indispensable
for evaluating performance. Numerous evaluation metrics
exist for DL problems, and this discussion will explore
some of the popular ones and delve into the insights
they provide regarding model performance. knowing models
perceive the data is crucial for gaining valuable insights
into its strengths, weaknesses, and overall effectiveness.
By examining these metrics, a deeper understanding of
the model’s behavior and decisions about its optimization
and potential enhancements can be determined. Using the
evaluationmetrics, the performance of the proposedRMDNet
model is compared to ResNeXt [39], VGG 19 [34], LiverNET
[38], EfficientNet-B0 [39], and DenseNET 121 [40]. After
training and testing on all the mentioned algorithms for
all three datasets obtained accuracy, precision, recall, and
f1-score are listed in Table 5 for binary dataset, Table 6 for
malimg dataset, and Table 7 for dumpware 10 dataset.
Confusion matrix for binary, malimg, and dumpware

10 datasets are shown in figures 9, 10, and 11 respectively.
Table 8 and 9 presents the TPR and FPR corresponding

to each malware class for different DL algorithms trained on
the Malimg dataset and dumpware 10 datasets respectively.
Loss and accuracy are essential values to consider while
training DL models. We can check whether our model
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TABLE 8. TPR and FPR of different models on malimg dataset.

TABLE 9. TPR and FPR of different models on dumpware 10 dataset.

FIGURE 9. Confusion matrix of binary dataset.

is over-fitting, under-fitting, or better-fitting by taking a
closer look at the train and validation accuracy plot of the
models. The confusion matrix also plays a critical role in
finding accuracy, robustness, and many more performance
parameters. Figures 12, 13, and 14 show the learning curves
of RMDNet on binary, malimg, and dumpware 10 datasets

respectively. In the confusionmatrix ofmalimg dataset shown
in figure 10, and also in table 8 refer T= True, P= Predicted,
columns/rows 1 correspond toAdialer.C, 2=Agent.FY1, 3=

Allaple.A, 4=Allaple.L, 5=Alueron.gen!J, 6=Autorun.K,
7 = C2Lop.gen!G, 8 = C2Lop.P, 9 = Dialplatform.B,
10 = Dontovo.A, 11 = Fakerean, 12 = Instantaccess, 13 =

Lolyda.AA 1, 14 = LolydaAA 2, 15 = LolydaAA 3,
16 = LolydaAT, 17 = Malex.gen!J, 18 = Obfuscator.AD,
19 = Rbot!gen, 20 = Skintrim.N, 21 = Swizzor.gen!E,
22 = Swizzor.gen!I, 23 = VB.AT, 24 = Wintrim.BX, 25 =

Yuner.A. Similarly, in the confusion matrix of dumpware
10 dataset shown in figure 11, and also in table 9 refer
T = True, P = Predicted, columns/ rows 1 correspond to
Malware class Adposhel, 2 = Allaple, 3 = Amonetize, 4 =

AutoRun, 5=BrowseFox, 6=Dinwod, 7= InstallCore, 8=

MultiPlug, 9 = Other, 10 = VBA, 11 = Vilsel.

B. COMPUTATION COMPLEXITY AND ANALYSIS
The evaluation of model complexity is important in
understanding the performance characteristics and resource
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FIGURE 10. Confusion matrix of malimg dataset.

FIGURE 11. Confusion matrix of dumpware 10 dataset.

TABLE 10. Complexity matrices of different models on binary dataset.

TABLE 11. Complexity matrices of different models on malimg dataset.

requirements of a model. For having a comprehensive
understanding of RMDNet model capabilities, Conducted

TABLE 12. Complexity matrices of different models on dumpware
10 dataSet.

an in-depth analysis and calculated several key complexity
metrics. The results of these calculations on binary, malimg,
and dumpware 10 datasets are given in table 10, 11 and 12
respectively. There are some minor differences in complexity
matrices when used to train on the malimg dataset and
dumpware 10 datasets because malimg and dumpware
10 consist of grayscale, which takes less computation while
training and binary classification dataset is a three-channel
RGB image takes more computation, hence the complexity
matrices are high. The training time and testing time columns
represent the duration it takes to train the DL algorithms
and calculate a prediction for one sample image, respectively
on all datasets. The FLOPs column indicates the number
of floating point operations performed during the model
execution. Finally, the trainable parameters column denotes
the total count of adjustable parameters in the architecture
during training. These complex metrics provide valuable
insights into the size, computational demands, and efficiency
of each algorithm. By considering these metrics, decisions
can be made regarding the suitability and scalability of the
algorithms for our specific use case. By incorporating these
complexity metrics, we aim to provide a comprehensive
overview of our model capabilities and the computational
resources required for its training and testing phases.
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FIGURE 12. Learning curve of the binary dataset. Training and validation (a) accuracy graph
and (b) loss graph.

FIGURE 13. Learning curve of mailing dataset. Training and validation (a) accuracy graph
and (b) loss graph.

FIGURE 14. Learning curve of dumpware 10 dataset. Training and validation (a) accuracy
graph and (b) loss graph.

Figures 12, 13, and 14 show the learning curves of
RMDNet on binary, malimg, and dumpware 10 datasets
respectively. Training, validation accuracy and loss of
dataset 1 and 2 are similar compared to dataset 3. The model
is converging prior 15 epochs.

VI. CONCLUSION
A novel RMDNet model was proposed for accurately iden-
tification of malware variants. The performance of several
existing DL models, including VGG19, ResNeXt, LiverNet,
EfficientNet B0, and DenseNet was compared with the
proposed RMDNet. After conducting a thorough evaluation
and analysis, the results demonstrated that the presented

RMDNet model excelled overall in terms of quality metrics
irrespective of the malware datasets. This demonstrates that
proposed RMDNet architecture is capable of identifying and
classifying image based malware in more accurately. The
second best result for the binary dataset was with VGG 19,
for the malimg dataset was with ResNeXt, and for dumpware
10 was with DenseNET 121. By leveraging domain-specific
knowledge and experimenting with different architectural
components, it was possible to design and develop a
robust deep learning model which was able to effectively
captured the essential features and designs of malware
images. The results obtained from proposed RMDNet model
highlighted the importance of exploring custom architectures
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and leveraging domain expertise when dealing with complex
classification tasks, such as image-based malware detection.
While existing DL models provide strong baselines, tailoring
the architecture to the specific task can lead to significant
performance improvements. It was worth noting that the self-
created model’s success does not diminish the significance
of the existing DL models. These models have undergone
considerable study and validation in a variety of domains,
making them useful tools for categorization tasks. However,
in order to obtain the optimum performance, the special
needs of image-based malware detection demanded the
development of a customized DL architecture. This RMDNet
shows the effectiveness of a self-designed DL architecture
in binary and multi-class classification of image-based
malware. The superior performance of the model highlighted
the importance of tailoring the architecture to the specific task
at hand. The findings of this work contribute to the ongoing
research and development of more accurate and efficient
methods for malware recognition and categorization using
DL techniques.
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