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ABSTRACT In the past decade, modern transportation systems have employed various cutting-edge deep-
learning approaches for traffic flow prediction. Due to its significant temporal correlations, researchers
have mainly focused on extracting temporal features from traffic flow data. As a result, time-series models
based on deep learning methods like Gated Recurrent Unit (GRU), Long-Term Short-Term Memory
(LSTM), and Temporal Convolutional Networks (TCN) have been introduced as solutions for traffic
flow prediction. However, the spatial features of the road network have also shown an impact on the
prediction, leading to the application of deep learning methods on spatial dependency modeling for this
problem. This paper defines the traffic flow forecasting problem, considering both time-series information
with and without spatial information and the corresponding techniques of current solutions to depict
spatio-temporal traffic dependency. We propose a new taxonomy of spatial and temporal dependencies
in the fine-grained subcategory and the methods depicting them based on neural network-based models.
Furthermore, we highlight the architecture of spatial and temporal ensembles in Spatio-temporal modelling
based on the fine-grained categories obtained. We point out several open issues and future directions of
traffic flow forecasting, such as graph reconstruction, temporal and spatial information data balance, and
multi-model spatial and temporal correlations.

INDEX TERMS Deep learning, graph neural network, spatial-temporal dependence, traffic flow forecasting.

I. INTRODUCTION
Traffic management is a serious issue worldwide due
to the increase of vehicles on the road every year [1].
An increasing number of road users can potentially bring
continuous traffic congestion every minute, which is able to
decrease the utilization of traffic efficiency. Unpredictable
traffic conditions can reduce traffic management efficiency
and deteriorate passengers’ travel experience [1]. Hence,
an efficient and accurate method for traffic management
is required to solve these problems. In modern society,
intelligent transportation systems (ITS) aim to establish
reliable connections between roads, vehicles, and people,
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leading drivers to travel safely and freely on the road, which
could contribute to improving traffic efficiency [2].

Traffic flow forecasting is imperative to intelligent
transportation systems (ITS). That is because the accurate
prediction of traffic conditions in the next time steps could
lead to a successful ITS [3], [4]. Since state-of-art traffic flow
forecastingmethods can contribute to reducing the possibility
of traffic accidents on the road, attaining the reasonable
and significant utilization of traffic road networks leads
to alleviating urban traffic congestion efficiently. Besides,
the typical traffic applications in the traffic field, such as
real-time traffic signal control [5], [6], traffic demand [7],
route guidance [8], [9], [10], automatic navigation [11], [12],
are all based on the guidance of an accurate traffic flow
prediction, which shows the significance of the reliable and
proper traffic flow prediction.
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The traffic flow prediction problem estimates future traffic
conditions based on historical traffic flow observations and
current real-time information. At the beginning of this
area, solutions mainly focused on extracting the temporal
dependency from the observed data [4], [13], [14] since
the flow fluctuation is directly affected by the recent time
intervals. With further research, the topological structure
of the road network has been found to contribute to the
prediction. Therefore, researchers tried to devise a traffic
forecasting solution based on the combination of spatial and
temporal dependencies mined behind the traffic flow data.

Oswald et al. [15] pointed out that non-parametric
methods, referring to the models without parametric pre-
setted, can contribute better results than parametric models
(machine learning) because of their performance in capturing
the non-linearity feature of traffic flow data. Moreover, deep
learning models can deal with massive quantities of data
generated by advanced transport detection systems every
minute, which outperform machine learning approaches that
limit computation ability for solving ‘‘big data’’ problems.
Due to the outstanding performances of feature learning and
end-to-end modeling on mining information from big data,
NN-based models have shown significant performance on
temporal and spatial feature extraction, which implies its
importance in solving traffic flow prediction problems.

Besides, the ensembles of spatial and temporal feature
extraction should be emphasized with enough importance
to traffic solutions. When we looked through all the
traffic-related competitions in Kaggle, it was interesting
to find that most of the winning solutions are considered
ensemble learning. The answer might be the combination of
each base learner has contributed its own different knowledge
to the whole picture. Therefore, each feature the base learners
learned will complement the others while the errors cancel
out each other. Because of this, the inspiration of the
Spatio-temporal ensembles in this survey can be, what is the
practical and efficient architecture of spatial and temporal
feature expression in traffic flow forecasting?

Moreover, we found that a solid solution to traffic flow
forecasting relies on the thorough consideration of both the
understanding and detailed analysis of the real-life problem.
For example, Guo et al. considered the proposed Spatial-
temporal (ST) block to fuse three fine-grained temporal
dependencies (hourly, daily, and weekly) for prediction to
capture the detailed representations of the features [22];
Geng et al. modeled spatial dependency in three subcate-
gories: neighboring information, region functional similarity,
and geographically distant but reachable regions for richer
spatial information [23]; Yang et al. developed themodel with
benefits of multi-scale spatial and temporal dependency to
extract informative expression of the data [24].
To our knowledge, some related surveys have worked on

how to model the temporal dependencies from traffic data,
how to describe the spatial correlations for traffic networks;
and how to mine the spatio-temporal relationships in traffic
domain [16], [17], [18], [19], [20], [21], [22]. However,

the perspectives of all the surveys were from technical
application - providing the differences of deep neural network
models and introducing the related applications. They mostly
lacked the relationship between real-world needs and applied
technologies.

Moreover, the researchers explored and compared different
types of NN-based temporal methods used in traffic flow
prediction [16], [17], [18], [19] but lacked the discussion of
spatial dependencies extraction. Even though some scholars
mentioned spatial correlations, they only provided related
techniques for extracting spatial features instead of discussing
the link between detailed spatial needs and why these spatial
features can be captured by the model [20], [21], [22]. Luo
and Zhou [25] presented a review of theNN-based ensembles,
while did not show the overview of the techniques applied
for the commonalities and differences of the Spatio-temporal
dependencies. In Table 1, we showcase the comparison of
different models in term of temporal correlations.

After researching the solutions to traffic flow forecasting,
we emphasize the importance of understanding the prob-
lem and exploring the influential characteristics of traffic
observers in this survey. We believe the key to obtaining
the appropriate solution for traffic flow forecasting lies in
deeply understanding the problem and choosing a proper
model to illustrate the dependencies to the fullest, rather
than solely considering applying advanced models as the
solution. This article builds upon the research conducted
in [26], offering a detailed examination of the spatial and
temporal dependencies in traffic flow forecasting, the related
NN-based models applied to depict the corresponding depen-
dencies, and the Spatio-temporal ensembles on modeling
instead of simply concerning the advanced NN-based models
to solution. As for the dataset, most of the surveys have
already mentioned the traffic dataset [16], [18], [19], [20]
used for modelling traffic flow forecasting, we will not repeat
to list the available dataset in this survey again, since they are
already presented in aforementioned references.

Since the solution to traffic flow forecasting aims to mine
as many as detailed features that can be predicted, we define
a good solution to the problem by depending on 1. a deep
understanding of the real scenarios and analyze the related
dependency; 2. picking appropriate models to extract the
corresponding dependency 3. propose a proper architecture
to fuse spatial and temporal ensembles. To sum up, the main
contributions of this paper would be:

• To our knowledge, we are the first to categorize and
summarize the fine-grained factors affecting traffic
flow forecasting, such as periodic temporal dependency,
temporal dynamics, geographical scales, spatial hetero-
geneity, etc., instead of the general spatial and temporal
factors provided by other related surveys.

• We summarize the NN-based models based on their
ability to extract the categorized fine-grained depen-
dency, explainingwhy themodels work.Wewant to save
researchers time in getting familiar with previous traffic
flow forecasting solutions and inspiring their future
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TABLE 1. Summary the main content of related surveys.

approaches. This in-depth investigation of complex
traffic domain dependencies has yet to be shown in
previous surveys.

• we construct a comprehensive review of feature/ ensem-
bles in Spatio-temporal architecture. After reading the
survey, researchers may be inspired to propose new
architectures of the Spatio-temporal dependency in their
solution.

• wefinally highlight the future directions that should gain
further attention on the traffic flow forecasting.We point
out the potential improvement in the reconstruction of
graph structure and the application of the multi-source
spatial and temporal dependency. We also discuss the
diverse representation learning of the feature to express
richer information and whether the weights should be
considered in applying spatio-temporal dependency.

The rest of the paper is organized as follows: Section II
introduces the definition development in the traffic flow
prediction, from the sole temporal domain to the spatio-
temporal domain; and the varying techniques considered
during each stage. Section III elaborates fine-grained spatial
and temporal dependency that current researchers considered
that would affect the forecastings. We categorize it under
temporal, spatial, and spatio-temporal dependency. We also
state multiple NN-based techniques for modeling these
specific fine-grained dependencies. Section IV provides the
state-of-art approaches to modeling multiple temporal and
spatial dependencies and new perspectives of the solutions.
Section V shows the future direction of the solution to
traffic flow forecasting. We demonstrate the potentiality
of the reconstruction of the graph structure, the weights
when considering the temporal, spatial, and spatio-temporal
features in the model, getting the multi-source spatial and
temporal correlations involved in the model, and more
powerful representation learning on feature expression.

II. PROBLEM DEFINITION AND THE PERSPECTIVES FOR
SOLUTIONS
In this section, we define the problem based on the time-series
issue and introduce spatial dependency into the modeling.
In Tables 2 and 5, we demonstrate the corresponding
techniques in temporal and spatial dependency modeling.

In Tables 3, 4, and 6, we present the hyperparameters
that should be considered or fine-tuned when modeling. This
is because we believe that the good performance of the
models depends on the informative dependencies selected,
the appropriate models chosen for feature extraction, and the
suitable parameters that fully exploit the models’ capabilities.

A. PROBLEMS DEFINED WITHOUT SPATIAL DEPENDENCY
The traffic flow forecasting problem can generally be defined
as a time series problem since it aims to predict future traffic
indicators over time steps. The historical traffic indicators can
be denoted as X = [x t−T+1, . . . , x t ] over the past T time
slots, and the future traffic predictors over the next T ′ time
slices is represented as Y = [yt+1, . . . , yt+T

′

]. Given the
relevant historically observed data until time slice t , the t+T ′

th-step traffic flow forecasting problem can be stated as

Y = F(X )

[yt+1, . . . , yt+T
′

] = F([x t−T+1, . . . , x t ]) (1)

where

T ′
=

{
1, one− step prediction
n, multi− step prediction

Some statistical theories, including the history average
ARMA model, Kalman filtering model, linear regression,
and non-parametric regression [44], were the first to be
introduced into traffic flow forecasting. These models are
relatively simple due to the assumption that future conditions
will exhibit the same patterns and characteristics as historical
flow data [45].

However, as a nonlinear time-varying system, real-world
traffic conditions are significantly affected by complex
and irregular previous states on the road. Additionally, the
variables in statistical approaches are manually selected,
relying on domain knowledge.Moreover, because of outdated
equipment used for collecting traffic data, the usable
observations in the traffic domain are limited; only part of
the traffic conditions can be reflected due to bias. Therefore,
classic mathematical models are adequate for simple tasks
and limited datasets. However, due to complicated real-world
conditions and requirements for robustness and accuracy,
a more reliable approach is needed.
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TABLE 2. Summary of models that describe temporal correlations behind the traffic flow data.

Machine learning techniques are regarded as a new solu-
tion for modeling time-series traffic data following classic
statistical approaches. Compared with statistical methods,
Yang et al. [46] demonstrated the impressive ability of
data-driven strategies to model non-linear correlations. Data-
driven approaches, such as K-nearest neighbor (KNN) [47],
support vector machine (SVM) [15], [48], [49], random for-
est, and NN-based models, have shown potential in handling
complex traffic conditions. Machine learning algorithms
outperform in capturing non-linearity and high-dimensional
changes due to their capacity to mine information and
understand the underlying relationships between historical
traffic data and future data. Additionally, machine learning
models, such as SVM [50], achieve higher accuracy with
limited datasets.

However, realistic problems must be considered when
applying machine learning techniques to traffic flow predic-
tion. First is feature quality. Since machine learning models
require manual feature selection before use, inappropriate
feature selection can lead to unpredicted errors. Second is
time cost. Due to their structure, machine learning methods
cannot utilize traffic data efficiently. Furthermore, with
advanced intelligent transport equipment and various data
sources, such as video image processors, radar sensors, GPS,
cellular phones, social media, etc. Reference [45], dealing
with ‘‘Big Data’’ efficiently remains a challenge for machine
learning methods [2]. Hence, the introduction of NN-based
models in traffic flow prediction is expected due to their
powerful ability to derive time series patterns from large
amounts of data.

1) RNN
Multiple NN-based networks, such as the classic recurrent
neural network (RNN), LSTM, and GRU, have been adapted
to the traffic prediction task because of their capability to
model basic temporal dependencies in traffic flow data.

In a recurrent neural network (RNN), the input of an
RNN layer contains information (X ) at the current time

step t and a hidden state (h) that stores the historical
information corresponding to the previous sequence in t − 1
time steps. Hence, RNN is better at handling the explicit
temporal order from consecutive traffic records. Assuming
the historical indicators over T time slices in sequence as
X = [x t−T+1, x t−T+2, . . . , x t ], we can have the hidden state
for the next step as:

ht = σ (U · x t +W · ht−1
+ b) (2)

where U , W , and b are the learned weights and bias, and σ

is the activation function. To obtain the output of the current
time step, we have:

yt = σ (V · ht + c) (3)

where V is the weight to be learned and c is the bias. The
structure of RNN is shown in Fig.1. The RNN network has
shown better performance than regression models and other
machine learning time series models in expressing the context
of observations over time [28].

FIGURE 1. The structure of RNN model.

However, as we can see from Fig. 1, in RNN, a neuron
can only accept information from the previous time step.
In other words, the distance between the current state and the
corresponding time step should not be too far. It is important
to note that time-series forecasting in real-world traffic flow
prediction focuses on long-term temporal dependency. For
example, traffic flow consistently repeating patterns over
time show periodicity, leading to the expectation that the
model should learn information over a long distance under
certain conditions. Moreover, the existing vanilla RNN faces
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the problem of vanishing gradient–the amount of extracted
information may decrease exponentially as the distance of
time steps increases due to errors in the obtained training
parameters.

2) LSTM
The RNN variant, long short-term memory (LSTM) network,
was proposed [51] to address the inherent deficiencies of
RNN. First, it was developed to deal with the vanishing
gradient and exploding gradient problems of the classic RNN
during the back-propagation process. Additionally, while
RNN only considers the state at the most recent moment,
LSTM adds a filter function to the past state based on RNN,
thus preserving the long-term sequential information that has
more influence on the current moment instead of simply
choosing the most recent state. Furthermore, LSTM employs
the sigmoid function as a gate to filter the state or input
to control the state of the transmitted information, enabling
better performance. In essence, LSTM can store memory
from a longer distance, retaining information over a long time
and overlooking unimportant information. It performs better
in processing time-series traffic data over long distances [52].
The basic architecture of LSTM is similar to RNN but
introduces a cell state to store historical information and
adapts a forget gate to control the past information from the
previous unit, as seen in Fig. 2. The architecture of LSTM
contains three gates to process the time-series data: forget
gate, input gate, and output gate.

3) LSTM
The RNN variant, long short-term memory (LSTM) network,
was proposed [51] to address the inherent deficiencies of
RNN. First, it was developed to deal with the vanishing
gradient and exploding gradient problems of the classic RNN
during the back-propagation process. Additionally, while
RNN only considers the state at the most recent moment,
LSTM adds a filter function to the past state based on RNN,
thus preserving the long-term sequential information that has
more influence on the current moment instead of simply
choosing the most recent state. Furthermore, LSTM employs
the sigmoid function as a gate to filter the state or input
to control the state of the transmitted information, enabling
better performance. In essence, LSTM can store memory
from a longer distance, retaining information over a long time
and overlooking unimportant information. It performs better
in processing time-series traffic data over long distances [52].
The basic architecture of LSTM is similar to RNN but
introduces a cell state to store historical information and
adapts a forget gate to control the past information from the
previous unit, as seen in Fig. 2. The architecture of LSTM
contains three gates to process the time-series data: forget
gate, input gate, and output gate.

The output of the forget gate is f t , which represents the
probability of forgetting the previous hidden state:

f t = σ (Uf · x t +Wf · ht−1
+ bf ),

FIGURE 2. The structure comparison of RNN and LSTM model. Both of
RNN and LSTM have hidden cells to retain the information from previous
intervals where the LSTM introduces a cell state to remove or add
information to the memory.

where the parameters are similar to those in RNN. The
activation function σ is usually softmax, thus, leading to the
output of the forget gate being between [0, 1]
The input gate has two components:

it = σ (Ui · x t +Wi · ht−1
+ bi)

at = tanh(Ua · x t +Wa · ht−1
+ ba), (4)

where Ui,Wi, bi,Ua,Wa, ba are the weights and bias.
The cell state is updated with the obtained output from the

forget gate and input gate as:

C t
= C t−1

⊙ f t + it ⊙ at ,

where ⊙ is the hadamard product.
Hence, we can have the output of the current time step as:

ot = σ (Uo · x t +Wo · ht−1
+ bo)

ht = ot ⊙ tanh(C t ), (5)

4) GRU
Another variant of RNN is the gated recurrent unit (GRU),
which is proposed with a simpler but more efficient structure
than both LSTM and RNN. It has fewer parameters but shows
the same impact as LSTM in temporal modeling [20]. GRU
has a similar simple structure to RNN but with different
operations inside the GRU unit: two gates–reset gate and
update gate. The reset gate controls the importance of the
hidden state (0/1), and the update gate decides if the previous
cell state should be updated with the current hidden state.
The difference between standard LSTM and GRU is not
significant, so the choice between LSTM and GRU depends
on the specific task.

r t = σ (Ur · x t +Wr · ht−1
+ br )

zt = σ (Uz · x t +Wz · ht−1
+ bz)

ot = σ (Uo · x t +Wo · ht−1
+ bo)

ht = zt ⊙ ot + (1 − zt ) ⊙ ht−1, (6)
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FIGURE 3. The cell structure of GRU.

5) CNN
In time series models, recurrent neural networks (RNNs)
are a traditional approach that gathers global information
sequentially through recursion without the use of parallel
computation. Sequential datamay also bemodeled using con-
volutional neural networks (CNNs) with a two-dimensional
‘‘block’’ (mn matrix). Time series data can be considered
a one-dimensional object (1n vector). A sufficiently large
receptive field can be attained using CNN’s multi-layer
network structure, although this requires significant time due
to the multiple layers.

6) TCN
However, due to the advantage of processing in a large-scale
parallel structure and increasing the speed of network
training, Duranton et al. [40] adapted the temporal convo-
lutional networks (TCN) model to predict traffic flow. The
TCN model is based on the CNN model and incorporates
improvements in causal convolution, dilated convolution,
and residual connections [53]. Results showed that TCN
outperformed the latest LSTM and typical GRU models.
Additionally, TCN avoids the issues of gradient dispersion
and gradient explosion in RNN, making it more adaptable
in processing various lengths of historical information [41],
[42]. An example is shown in Fig. 4.

FIGURE 4. The structure of TCN.

Assume we have the time series data as X =

[x t−T+1, x t−T+2, . . . , x t ] to make the prediction in Y =

[yt−T+1, yt−T+2, . . . , yt ], with the filter as Ff = (f1, f2, f3)
since θ = 3. Hence, the hidden state in the first hidden layer

at time step t with causal convolution is

ot1 = Ff ⊙ X =

K∑
k=1

fkxt−K+k

= f1xt−2 + f2xt−1 + f3xt . (7)

Since the size of the convolution kernel determines the
amount of information extracted, TCN introduces dilated
convolution to the model to increase the receptive field and
avoid losing information. The dilated convolution is achieved
by inserting holes into the ‘‘block’’ to expand the receptive
field. It introduces a dilation rate, which refers to the number
of kernel intervals (the dilation rate in standard CNN is 1).
The advantage of dilated convolution is that it expands the
receptive field without losing information, as it avoids the
pooling operation used in CNN. For example, if the dilation
rate in the first hidden layer is 2, the dilated convolution in
the second hidden layer is:

ot2 = Ff ⊙ ot1 =

K∑
k=1

fko1t−(K−k)d

= f1o1t−2d + f2o1t−d + f3o1t , (8)

The receptive field of which is (K − 1)d + 1. However,
the convolution operation solely focuses on capturing local
information, requiring the stacking of layers to achieve a
larger receptive field and capture richer global information.
Residual connections are introduced into the model to
solve the degradation problem. The degradation problem
occurs when deeper networks, which enlarge the receptive
field, cause the accuracy of the training set to stabilize
or even drop. This makes the mathematical solution space
more complicated, leading to the stochastic gradient descent
method failing to achieve global optimization and getting
stuck in local optima. The deeper the network, the more
abstract the features and the more semantic information
obtained. The residual connections of TCN avoid problems
that exist in deeper layers, such as gradient dispersion,
gradient explosion, and performance degradation [54].

Besides the aforementioned models, we also want to dis-
cuss several model architectures for time series forecasting,
such as Seq2Seq and Transformer.

7) SEQ2SEQ
Seq2Seq is a typical architecture under the Encoder-Decoder
structure, as seen in Fig. 5. While RNN requires the input and
output to have the same length, Seq2Seq provides a solution
for unequal lengths of input and output. c is the latent vector
that contains the transformed information of the input and can
be converted to the output sequence, which is:

ht = f (xt , ht−1)

c = q(h1, h2, . . . , ht )

h′
n = g(c, h′

1, h
′

2, . . . , h
′

n−1)

yn = G(h′
n) (9)

76560 VOLUME 12, 2024



H. Mu et al.: Spatio-Temporal Feature Engineering for Deep Learning Models in Traffic Flow Forecasting

FIGURE 5. The structure of Seq2Seq.

There are also drawbacks of Seq2Seq when applying it
to time-series data:1. Because the length of context x
is pre-defined and fixed, information can get lost during
compression; 2. The impact of each input to the target yi
is treated as the same, while in reality, it is different. For
example, the conditions in past time steps affect the next steps
differently, with the influence of the nearer ones outweighing
that of the distant ones. Bahdanau et al. [55] employed the
attention mechanism to address the different importance of
the target in Seq2Seq. The attention mechanism learns the
attention coefficients of each input from the sequence and
then merges them according to their importance.

Compared with the original Seq2Seq model, every h is
calculated based on the same context c, attention mechanism
generates a different context cn at each time step to solve this
problem (Fig. 6).

cn =

m∑
i=1

αnihi, (10)

where αni is used to measure the influence of the h′
n in the

decoder to the hidden state hi in encoder at the time step i.
The weight αni is:

αni =
exp(score(h′

n, hi))∑m
k=1 exp(score(h′

n, hk ))
, (11)

where score(h′
n, hi) is to calculate the similarity of the hidden

state h′
n in the decoder and hi in the encoder. Finally,

we can have the output of the Seq2Seq model with attention
mechanism in:

h′
n = g(cn, h′

1, h
′

2, . . . , h
′

n−1)

yn = G(h′
n) (12)

However, Seq2Seq only pays attention to the relationship
between the input and the output, ignoring the position
information. This means that the positional information in the
time series data cannot be captured by Seq2Seq.

8) TRANSFORMER
Google proposed an architecture named ‘‘Transformer’’ [56],
which offers a different approach to time-series modeling
based on the Encoder-Decoder structure. The Transformer

FIGURE 6. The structure of Seq2Seq with attention mechanism.

FIGURE 7. The structure of Transformer.

relies on the attention mechanism to obtain global infor-
mation in one step. Previously, researchers captured global
features by applying CNN in multiple layers. The Trans-
former incorporates position embedding and a self-attention
mechanism to obtain hidden states instead of the recursion
structure used in RNN-related models. The application of
the attention mechanism provides the Transformer with
powerful capabilities for time series forecasting [57], thanks
to simultaneous improvements in modeling long-term and
short-term temporal correlations in time series data based on
the multi-head attention structure.

The attention mechanism behind the transformer is similar
to that in Seq2Seq. We assume the time-series input X =

[x t−T+1, . . . , x t ] over the past T time slots to predict
Y = [yt+1, . . . , yt+T

′

]. The input layer converts the data to
the required vector, and the position-embedding layer then
encodes the sequential information of it with the sin-cos
functions as [pt−T+1, . . . , pt ]. In the architecture shown as
Fig. 6, the self-attention mechanism mentions the key(K),
value(V), and query(Q) that are transformed by the matrices
Wk ,Wv,Wq which are calculated with the vector V . The idea
of K, Q, V is from the retrieval system as querying the target
Q from the pairs (K, V). Hence, the attention weights:

αni = softmax(
QKT
√
dk

)

=

t∑
i=1

exp(
< qn, ki >

√
dk

) (13)

The calculation of the alignment score of qn and all the k
can be done by obtaining the similarity of the record at time
step n with all the records from the selected time period.
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TABLE 3. Summary of the hyperparameters that should be chosen/fine-tuned in temporal modeling.

TABLE 4. Summary of the hyperparameters that should be considered in architecture.

The
√
dk term is used to keep the gradient stable. Using the

probabilities obtained by the softmax function to calculate
the weighted average of current V at all times, the output
is the vector that contains the global information at all time
steps according to the self-Attention mechanism. Thus, the
results of the self-attention layer are sn =

∑t
i=1 αnivi. The

multi-head attention mechanism helps the network capture
richer features/information under different subspaces, similar
to applying the multiple convolutional kernels in CNN.
It works by repeating the self-attention in h times, as follows:

Multihead(Q,K ,V ) = Contact(head1, head2, . . . , headh),

(14)

where each head is the output of the self-attention.
Wang et al. [58] used the extracted spatial and temporal

correlations in the transformer architecture to obtain the
long-term temporal features of the traffic flow data. A resid-
ual connection and layer normalization are also applied in the
sub-layer to enhance the features.

B. PROBLEMS DEFINED WITH SPATIAL DEPENDENCY
With further research, the spatial information on the traffic
road network leads to the success of the work in traffic
flow prediction [13]. Hence, how to mine the non-linear
spatial and temporal relationships behind the traffic data is
a challenge. Since the deep learning methods contributes to
mining the non-linear information efficiently, many deep-
learning-based solutions are applied in the traffic domain,
such as traffic flow forecasting, accident detection, and
abnormal detection, to extract the spatial dependency. Given
the previous definition, which only considers the temporal
information in traffic data, the solution here that considers
spatial context can be represented as S, at time slice t as:

Y = f (X , S) = f ([x t−T+1:t ], S).

1) CNN
Before, to depict the topology of the traffic network, the road
segments were regarded as the 2D structured data consisting

of latitude and longitude, which was inspired by applying
CNN to exploit the Euclidean traffic flow data. Zheng et al.
explored the traffic flow graph structure by dividing the route
into more fine-grained sections and adapting the CNN on
the pre-processing matrix [63]. CNN has the sub-sampling
(max-pooling) layers specially designed to reduce the traffic
map into the sub-grid structure. In addition, it can learn the
characteristics of the relations within the grid parts from the
locality, and then combine the extracted local context into a
high-level representation. CNN receives success in capturing
local spatial dependency.

Du et al. [64] discussed the impact of the locality
on the traffic flow forecasting problem and proposed a
hybrid model combining LSTM and CNN. It considers the
performance of CNN to handle the local information in
the sub-grid structure. This model employed the LSTM
to capture the long-term temporal information, and CNN
for the local dependency. The extracted information was
fused before feeding into the model. Henceforth, the
results showed that the consideration of the locality feature
could contribute to the results in satisfactory accuracy and
effectiveness even under complex non-linear urban traffic
conditions.

In general, Convolutional Neural Network (CNN) models
the locality by decomposing the traffic network into grids [59]
but ignoring the topological structure graph-wide of the
transportation network because of the complicated spatial
correlations in reality. In other words, Euclidean structure
cannot fully describe spatial correspondences.

For example, two road sections are very close in Euclidean
space, but the relations of a pair of road links may be in
opposite directions due to the topology. So, it is hard to model
completely different traffic flow patterns under CNN. This
means that the spatial structure in traffic is non-Euclidean and
directional which requires the models to be able to capture
the non-Euclidean topological information. To discover and
make use of the spatial dependence of traffic flow data for
better prediction, a more appropriate method that can express
the traffic network mathematically into a graph is required,

76562 VOLUME 12, 2024



H. Mu et al.: Spatio-Temporal Feature Engineering for Deep Learning Models in Traffic Flow Forecasting

TABLE 5. Summary of spatial models.

TABLE 6. Summary of the hyperparameters that should be chosen/fine-tuned in spatial modeling.

thus leading to the application of graph-based deep learning
methods in traffic flow prediction.

Compared to Euclidean-structured data such as images,
graph-structured data presents more complexity in modeling.
Firstly, the size of non-Euclidean graph data varies with
each input during every time slice, posing challenges to
the application of CNNs for graph data. For example,
in image processing, input images have a fixed size, making
it straightforward to manually predefine the size for each
input, as the neighbors of a target node are at a fixed distance.
In essence, once the center node is identified, the neighboring
nodes are also determined. However, with graph-structured
data, defining a fixed input size is challenging due to the
variability in the number of neighbors each node has and
their multiple distances. Additionally, graph-structured data
lack a strict order, unlike grid-structured data, which can be
sequentially processed in CNNs. Mathematically, the feature
matrix dimensions of each block in a graph differ from those
in Euclidean-structured data, such as grid-structured image
data. As a result, unified operators used in CNNs cannot
directly perform operations like convolution and pooling on
graph-structured data. This limitation has spurred discussions
on handling characteristics like sparse connectivity, weight
sharing, and feature extraction in graph-structured data
processing.

Since the traffic network is usually graph-structured, the
transition between the traffic states of the target node in
the whole network can be defined as a graph Markov
process. In order to handle missing values in the obtained
raw data while anticipating short-term traffic, Williams et al.
introduced the graphMarkov network (GMN), particularly in
the context of edge computing and online learning [65].

At the end of 2018, scientists from companies and
institutions such as DeepMind, Google Brain, MIT, and
the University of Edinburgh jointly proposed the concept
of a graph neural network [66]. Based on Graph Neural
Network (GNN), the traffic network can be regarded as a

natural graph, where each observation is a node and the
connection is the edge. The definitions of a graph are as
follows: G = (V ,E)

2) GNN
An unweighted target traffic graph can be constructed asG =

(V ,E), where, V is a set of nodes on the traffic graph, and
E is a set of edges. V = {v1, v2, . . . , vN } refers to N nodes
on the graph, and each node represents an observation. The
edge E refers to the connection between two nodes, which is
represented by the adjacency matrix A ∈ RN×N , containing
the topological information of the road network. If the targets
are connected to the adjacent ones, the element of the matrix
is 1, otherwise, it will be 0. For each node i, it has its own
characteristics xi, which can be represented in a featurematrix
XN∗D. For the feature matrix XN∗D, N represents the number
of nodes, and D is denoted as the number of features of each
node and can also be regarded as the dimension of the feature
vector. The problem definition with spatial correlations can
be updated as:

Y = f (X ,G(V ,E))

= f ([X t−T+1:t ],G(V ,E)) (15)

Besides the feature matrix, an adjacency matrix plays an
important role in accurate spatial modeling. It is because the
expression of the node feature highly relies on the information
from the neighbors. The adjacency matrix is the key to
describing the spatial relations of the nodes in the graph [22].
In the traffic domain, because of the different assumptions
in the specific scenario, the adjacency matrix is classified as
a fixed matrix and dynamic matrix with the spatial structure
whether changing to the evolving over time [20].

Given the previous achievement in traffic flow prediction,
to better describe the topological structure of the traffic graph,
many researchers tend to extend generalizing the convolution
of CNN in 2-dimensional data to the graph-structured data,
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which leads to the introduction of the convolution operation
applied on graph neural network(GNN).

In image processing, the convolution operation on the
2-d data is to extract features from an input image, which
preserves the hidden relationship between pixels. The core
technique of graph convolution network(GCN) is also the
convolution operation, which is the same as CNN. Hence,
the characteristics of CNN on the structural level are also of
great significance to GCN [67]: (1) A graph is neural in sparse
connectivity. (2) The time cost of the neural network can be
reduced through weight sharing. (3) Multiple layers denote
the features extracted at a different level. However, compared
with CNN, a drawback of GCN is also obvious - it is difficult
to define the local kernels and pooling operations in a graph
directly because of the different number of neighbor nodes
around each target, which leads to the discussion of the
methods on how to aggregate information to a central node
in a graph.

The GCN is typically classified as spatial GCN and
spectral GCN. The spatial GCN works on incorporating the
properties of a node based on its k local neighbors by directly
multiplying the adjacencymatrix to extract the features where
the spectral version transfers the adjacency matrix to the
Laplacian matrix to return the Fourier basis for the graph
to capture the features. The mainstream of the GCN in the
traffic domain are spectral graph convolution and diffusion
graph convolution [20], the variant of vanilla spatial GCN.
Essentially, all kinds of spatial graph-based neural network
models are differentiated on aggregating approaches within
each layer, while the spectral graph-based neural network
models are on the choice of the filter gθ [22].
The update operation for each layer is to update the states

of the nodes in the current layer to the next status, which,
in the graph-based neural network, can be written as a
nonlinear function [67]:

H l+1
= f (H l,A). (16)

A is the adjacent matrix of the traffic graph. H l represents
the information of all nodes in layer l that should be
updated, and H l+1 is the updated layer. f is the update
function. It could be the GRU function in Gated Graph
Neural Network(GGNN) [68], message function in Message
Passing Neural Network(MPNN [69]) or activation function
in GraphSage [70] as the model required.
In the spectral domain, the basic idea of convolution

operation is to first convert the signal from the spatial
domain to the spectral domain by the Fourier Transform as
f (t)− > ˆf (t) = UT f (t), and multiply it with the convolution
kernel gθ (λ) in the spectral domain. And then transformed
the outcome back to the spatial domain through the Inverse
Fourier Transform. This is because the convolution operation
in the spatial domain is the same as the multiple operations
in the spectral domain. The extracted feature in the spectral
domain is ŷ = ˆf (t) · gθ . Since we are working on the
dependency in the spatial domain, the extracted feature
should be converted by the Inverse Fourier Transform as y =

Uŷ, where U is the eigenvalue that is related to the Laplacian
matrix of a graph. The place matrix is an important matrix
used in graph theory. In a graph G = (V ,E), the normalized
Laplacian matrix of a graph is defined as L = D− A, where
D is the degree matrix of the graph, and A is the adjacency
matrix of the graph. Hence, can have

H l
= σ (LH l−1W l) (17)

to describe the update operation in the spectral domain,
where W l is the weighted parameter matrix of the lth layer,
and σ is a nonlinear activation function, such as ReLU.
The Laplacian matrix L is directly multiplied by the feature
matrix H . But there are two problems with this operation: it
ignores the impact of the node itself. We can have Lsym =

D−
1
2 ÂD−

1
2 = D−

1
2 (D − A)D−

1
2 = Ia + D−

1
2AD−

1
2 , which

introduces the Symmetric normalized Laplacian to solve the
self-transmission problem.

H l+1
= σ (D−

1
2 ÂD−

1
2H lW l)

= σ (D−
1
2 (D− A)D−

1
2H l−1W l)

= σ ((In − D−
1
2AD−

1
2 )H l−1W l) (18)

is proposed to solve the mentioned problem.
But we take the original definition as an example. Since

L = U3UT , U is the eigenvalue and 3 is the eigenvector,
we can expend the formulation:

y = Uŷ = U ˆf (t) = UgθUT f (t) (19)

The hidden state of a node refers to the information of a
node we mentioned above, for example, defined as ht+1

v =

f (xv, xc, htn, xn), which represents the hidden state of node
v in the layer t + 1 is updated by the aggregation of the
embedded node feature, the edge feature, the hidden state
of the neighbors, and the edge feature of the neighbors.
The specific node information depends on the specific
requirement. Because the node information and the Laplacian
matrix can be obtained directly from a graph, the difference
of the spectral GCN lies in the filter gθ .

For example, a filter in spectral GCN is Chebyshev
polynomials [71]. The ChebNet method believes that the
value of the convolution kernel in the spectral domain is
a function related to the eigenvalue of a graph, which can
be used to approximate the Chebyshev polynomials. Since
gθ =

∑K
k=0 θkTk (3), the function can be as:

y = UgθUT f (t)

= U
K∑
k=0

θkTk (3)UT f (t)

=

K∑
k=0

θkTk (U (3)UT )f (t)

=

K∑
k=0

θkTk (L)f (t) (20)
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Because the Tk is the Chebyshev polynomials, θk is
the coefficient to be learned. The [72] is based on the
Chebyshev polynomials, which can be regarded as a further
simplification of ChebNet. It only considers the 1st-order
Chebyshev polynomial and each convolution kernel has
only one parameter. However, there is also a drawback of
the spectral GCN, the definition of the Laplacian matrix
limited the graph in an undirected structure. And it assumes
the static graph under the situation, while in practice
the graph always time-varying, especially in the traffic
domain.

In the spatial domain, it can be seen as two steps:
1). aggregation, which refers to how the center node collects
the information from the neighbors, as hl+1

v = f (hl+1
u ),

where u are the neighbors of node v; 2). update operation,
which represents how the nodes update their states to the
next level based on the information aggregated, as hl+1

=

g(hl). Before the aggregation, the nodes on the graph get
the feature representation after the feature embedding. The
aggregating approach designed in the spatial GCN can be
regarded as a message-passing process. The central node,
in the aggregation process, will exchange the information
with that in the nearby k-hops, and update itself until the
equilibrium of all the nodes on the graph is reached. The
aggregation process aims to get the new representation for
each node on the map by considering the information of
the target itself and its neighbors. For example, one of
the simplest convolutional operations is to add the hidden
states of all neighbors to that of the center node. As in
spatial GCN, it is similar to CNN to extract the spatial
features from the topological graph directly. The information
updated in aggregating could be the feature of the target
node n, the information of its neighbors, the edge feature
between the node n and its connected neighbors, the hidden
state of the neighbors, and the previous hidden state of the
node n.

Some of the work considers the spatial graph-based neural
network in their model [61], [73], [74]. However, because
the traffic graph, in reality, is large, which could cause
time-consuming problems when computing the multiplica-
tion of the adjacency matrix, it is not common to employ the
vanilla spatial GCN in the large traffic graph in the graph-
level solution. Unlike spatial GCN, which directly aggregates
the information to get the new representations for each node
one by one and then updates the states of all nodes in the layer,
the spectral graph-based neural network applies the Laplacian
matrix to get the signal in the spectral domain from the spatial
domain and finally inverts it back to the spatial domain. This
is because the convolution operation in the spatial domain
is the same as that in the spectral domain, making feature
extraction simpler and less time-consuming. They are applied
in the node-level solution because the state h, the stacking
of k layers of spatial GCN represent the k-hops of the target
nodewhen it comes to discussing the impact of themulti-hops
on the central node, spatial GCN has been considered to be
adapted [36], [75].

There are some restrictions in the GCN model when
applied to traffic flow forecasting problems:

• The traffic flow dynamically changes all the time. But
GCN cannot reflect the temporal dynamics of the traffic
flow since the model construction relies on the static
property of the graph.

• GCNs capture the spatial information from the neigh-
bors with the same impact, which cannot reflect the
different importance of neighbors to the central node.
For example, nodes on busy commuter lines weigh more
heavily than those that are not on the line. Additionally,
in a road section, the inflow and outflow of the same
node could be contrary during themorning rush hour and
the night rush hour. Hence, it is necessary to describe the
different importance of neighbors to the central nodes
from the spatial perspective.

• The aggregation approach ofGCNdepends on the graph,
or the matrix generated from the traffic network. This
limits the generalization from one region to others.

GAT: Graph attention neural networks have been intro-
duced to solve the above problems based on the attention
mechanism [76]. They consider the weighted summation
of the features among neighboring nodes. The weights
depend entirely on the neighboring nodes, independent of
the graph structure. The attention mechanism has been
developed to improve the performance of models discovering
the spatio-temporal relation in networks [77].

alphaij =
exp(eij)∑n
k=1 exp(eik )

(21)

where αij is the obtained attention coefficient of node i
connected with node j among all its connections.
Both GCN and GAT focus on aggregating the features

of neighboring nodes to the central node and learning new
feature expressions of the node based on the local stationery
of the graph. The core difference between GCN and GAT is
that GAT employs a single attention mechanism to aggregate
the information with different weights. We can notice a
normalized constant in GCN that is designed based on
the graph structure. And because so, it is also why the
generalization ability of the GCN model is unsatisfactory.
In essence, GAT replaces the normalizing constant in GCN
by using the attention weights to contribute to aggregating
the neighboring node feature. It achieves to assign different
weights to different neighbor nodes due to its impact on the
target. To a certain extent, GAT will be powerful because the
feature correlation between vertex is better described in
the model without the effect of the graph structure.

As the original GAT adapted the single attention mecha-
nism, Gated Attention Network (GaAN) Zhang et al. utilized
the multi-head attention mechanism with the self-attention
mechanism to gather information from different heads [78].
The idea behind the multi-head attention mechanism is that
each attention head only focuses on one subspace of the input
sequence, and is independent of each other. It is to obtain
much richer information on features in the subspace.
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TABLE 7. Categorization of the subcategory of the temporal/spatial dependency.

III. CLASSIFICATION OF THE DEPENDENCIES AND THE
RELATED TECHNIQUES
We can see that there has been significant success in applying
deep learning techniques to traffic flow forecasting problems
in recent years. The key to the performance of traffic
prediction models lies in the accurate representation of traffic
features. Before extracting specific features, it is essential to
analyze dependencies at a fine-grained level in detail, which
can enrich the feature information for the final prediction.
In Table 7, we compare different spatial traffic dependencies,
temporal traffic dependencies, and spatio-temporal traffic
dependencies at a fine-grained level in terms of discovering
the multiple expressions of the features that can affect traffic
flow forecasting. In this section, we will review the different
perspectives of the spatial and temporal dependencies that
researchers consider to solve the problem currently and
introduce how they modeled these dependencies.

A. TEMPORAL DEPENDENCY
Traffic flow data naturally exhibits a sequential characteristic,
meaning that previous states of traffic flow can directly lead to
changes in future traffic states. Initially, researchers focused
on depicting the temporal correlations behind the data to
predict traffic flow accurately. Over the years, temporal
dependency has been divided into two clear types: short-term
temporal dependency and long-term temporal dependency.
This division makes it easier to discuss detailed solutions for
short-term flow forecasting and long-term flow prediction.

Short-term temporal correlation reflects how the traffic
state of a previous time step can directly influence the state
in the near future (within a 5-15 minute period). Long-
term temporal correlation shows the periodicity of traffic
states over more extended periods, such as a day or a week.
Additionally, research on long-term temporal dependency
has highlighted the importance of exploring relationships
between the current time step and non-adjacent time steps.

1) SHORT-TERM TEMPORAL CORRELATIONS
Traffic flow shows significant short-term temporal relations.
The task of short-term traffic flow forecasting is to predict the
changes in traffic flow (e.g., flow, speed) of a road in the next
few minutes. For example, due to current traffic congestion,

the traffic condition in the next time slot is highly likely to be
similar to the current time step since it is directly affected by
the states of the last minute. Such strong short-term temporal
dependency is the basic information used to predict future
traffic flow. Since the connections between the units of the
recurrent neural network (RNN) can form a directed loop,
RNN and its variants (LSTM, GRU, etc.) are typically used to
model short-term temporal data. In other words, RNN and its
variants are powerful tools for capturing short-term temporal
correlations in traffic data.

Due to the influences on more distant time states that
can enhance the patterns of short-term temporal relations,
some work has considered adapting the Long-Term Short-
Term Memory (LSTM) network to replace classic RNN in
modeling short-term temporal dependencies. This is because
LSTM can take longer-period temporal information into
consideration, while typical RNN only considers the context
at the most recent moment. Based on the RNN structure,
LSTM adds a filter function to past time states, aggregating
the distant impacts on earlier time steps to address short-term
correlations.

However, LSTM and GRU models cannot overcome the
major drawbacks of RNN-type models, such as gradient
vanishing and the computational time cost during the training
process. To solve these problems, the Temporal Convolu-
tional Network (TCN) architecture combines dilated convo-
lutions and residual connections. The typical convolutional
action, referring to the backpropagation algorithm, employs
different paths from the temporal direction of the sequence,
computing the gradient of the loss function concerning each
weight by the chain rule to address these issues.

Even though TCN appears to be an outstanding architec-
ture, Zhang et al. showed that the choice of the number of
TCN layers requires further discussion for short-term flow
prediction research [79]. On one hand, the shallow structure
of the TCN architecture may struggle to capture complex
temporal relationships, while deeper layers could result in
overfitting.

Therefore, when considering short-term temporal corre-
lations in traffic flow forecasting, the mentioned methods
provide significant insights but should be tailored to specific
conditions.
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FIGURE 8. The temporal dependency in traffic flow forecasting. a. The
short-term dependency in time series. b. The periodic patterns in the
long-term dependency. c. The mismatching of the numerical value in time
series. d. The local trend of dependency in the long term.

2) LONG-TERM TEMPORAL CORRELATIONS
Besides the direct impact on the traffic condition in the
next few minutes, traffic flow data usually contains long-
term information, such as fluctuations over an hour, a day,
a week, or even seasonal periodic patterns over long
temporal distances. As shown in Fig. 8(b), Zhang et al.
demonstrated that exogenous information in more detailed
segmentation, such as the time of day, weekday or weekend,
and historical statistical information, contributes to long-
term prediction [32]. However, this does not mean that
longer prediction intervals always lead to better performance.
Guo et al. showed that the difficulty of prediction increases
with longer time intervals [37]. Additionally, Yao et al.
pointed out that increasing the length of time steps can enlarge
the risk of gradient vanishing, significantly weakening the
effects of periodicity [59].
Variant LSTM models are naturally considered to capture

long-term temporal features in many works because the
memory cell is designed to maintain information over
a long distance. However, LSTM and its variants face
time-consuming issues due to the longer-period information
stored. They also encounter gradient vanishing and explosion
problems during the back-propagation process when training.
Therefore, choosing between GRU and LSTM for modeling
long-term temporal correlations involves a trade-off. GRU
has a simpler structure and requires less training time, while
LSTM can perform better in other cases.

Besides the general definition of long-term temporal
dependency requiring inputs from more distant time steps,
traffic flow also shows periodic characteristics within specific
periods. Such periodicity refers to fluctuations over an
hour, a day, a week, or even seasonal patterns over long
temporal distances, as shown in Fig. 8(b). Zhang et al.

demonstrated that exogenous information in more detailed
segmentation, such as the time of day, weekday or weekend,
and historical statistical information, contributes to long-
term prediction [32]. For example, rush hour typically occurs
every weekday around 9:00 a.m. and 5:00 p.m., which are
peak times for most commuters. This daily and weekly
periodicity captures essential temporal information for traffic
flow. It should be a crucial factor in traffic flow prediction
since it reflects the variability of traffic flow over the long
term.Wang et al. [80] considered this situation and separately
captured temporal information as closeness, period, and trend
using the same ConvLSTM structures with different weights.

Wang et al. also embraced the idea of capturing multiple
temporal components [81]. They proposed a dynamic mech-
anism to employ time-varying hypergraphs for capturing the
hourly, daily, and weekly changes in the traveling OD time.
The applied hypergraph theory outperformed the current
state-of-the-art graph-based and non-graph-based methods
in capturing long-term temporal dependency. Besides uti-
lizing models to extract different components, Wang et al.
manually pre-defined the temporal features from both recent
and periodic time steps for temporal modeling, which is
another common approach to considering periodicity in
prediction [75].

Additionally, another method for depicting long-term
dependency is to construct a stack of CNN layers in the
time domain. The application of CNN in temporal modeling
has shown that it is possible to utilize 1D CNN layers for
sequential modeling, suggesting the superiority of typical
RNNs [37], [82]. This approach effectively reduces issues
inherent to recurrent neural network architecture, such as
vanishing gradient problems, making the model easier to
converge and train. The convolution operation merges the
temporal information at neighboring time slices in the
time dimension to extract long-term temporal dependency,
as shown in Fig. 9. After applying GCN to aggregate the
neighboring information of each node on the graph, Guo et al.
stacked convolution operations in the temporal dimension to
collect the context of the next time slots [37]. They extracted
hourly, daily, and weekly periodicity using the same network
structure with Spatio-temporal (ST) blocks, an ST attention
layer, and an ST convolution layer. Additionally, due to
the advantage of capturing the sequentiality of the traffic
flow graph using CNN, Yang et al. applied a gated dilated
CNN to capture long-term temporal relations for traffic
flow forecasting [24]. The application of dilated convolution
allows the gated dilated CNN to capture long-term temporal
dependency in non-adjacent time steps. They demonstrated
that final traffic flow prediction depends not only on temporal
patterns from adjacent time steps but also on non-adjacent
time steps, contributing significantly to the modeling.

Zheng et al. adapted the encoder-decoder structure for
traffic flow prediction [83]. They embedded the input by
considering the temporal context before encoding traffic
features. The long-term relationship was modeled by a
transform attention layer between the encoder and decoder,
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FIGURE 9. Aggregation of the information from the neighboring time
slices.

which helped ease the error propagation effect. This approach
preserved the long-term temporal relationship by calculating
the relevance of future time steps and historical time steps,
thus enhancing long-term forecasting.

Currently, Transformer [56] has been considered for
long-term dependency extraction because the self-attention
mechanism connects data at distant positions [84]. Due to its
achievements in fields such as text processing and machine
translation for capturing long-term features, the Transformer
has also been introduced to the traffic domain [85], [86],
[87]. Cai et al. [85] pointed out that Li and Moura [84]
ignored the network-wide information in forecasting with
the Transformer. They addressed traffic flow prediction by
considering both long-term temporal dependency and spatial
dependency. They extracted the spatial features using GNN
and then encoded them for the continuity and periodicity of
the time-series data as the global and local temporal features
to the Encoder layer in the Transformer.

Guo et al. obtained global receptive fields using the
multi-head self-attention mechanism in the Transformer
structure [87]. They expanded the self-attention layer based
on the causal convolution operation to fulfill the continuous
trend with the local temporal context. The local temporal
context referred to the local periodicity combined with the
global periodicity as the temporal input. They manually
defined the input with the global periodic pattern, which
was the time segment from the same day in the past w
weeks, while the local periodicity is that in the past d
consecutive days. Then, they concatenated the two pieces
of periodic information into the spatio-temporal encoder-
decoder architecture.

3) TEMPORAL DYNAMICS
In addition to static temporal correlations like short-term and
long-term temporal dependencies, traffic flow also exhibits
dynamic characteristics in the time domain. Yao et al.
revealed that even though traffic flow shows an obvious
periodic tendency, it is not as strictly periodic as one might

intuit [59]. In other words, the exact rush hours are not always
the same every weekday. For example, evening peaks might
be busy from 4:00 pm to 6:00 pm from Monday to Thursday
but vary on Friday from 2:00 pm to 4:00 pm, demonstrating
temporal shifting in the temporal domain. They developed
the Periodically Shifted Attention Mechanism based on
LSTM combined with the attention mechanism to capture
the temporal shifting of periodicity. First, they obtained hp,qi,t ,
which is the representation of the predicted time t between
the time interval q in the region i, by the LSTM models
applied to collect the prior information within the previous
day p.What’smore, the attention coefficientαp,qi,t is calculated
to measure the importance of the time interval q in day
p. And finally, the long-term temporal representation hpi,t
that included the shifting periodic information is formed as
hpi,t =

∑
q∈Q α

p,q
i,t h

p,q
i,t .

Li et al. used the Dynamic Time Warping (DTW) method
to capture shifting temporal information [88]. DTW finds a
suitable matching pair with stronger similarity by considering
the signature features in the time domain, thus calculating the
distance between the similarities of two-time series to obtain
the shifting temporal feature on the time axis. Guo et al.
employed the traditional self-attention mechanism to match
traffic flow with the same numerical value and the CNN layer
to capture the temporal context for the local trend [87].

In this part, we have explained how traffic flow data
represent the sequential nature, where past states affect
future traffic conditions. Early research aimed to uncover
temporal correlations for prediction, distinguishing between
short-term (5)-15 minutes) and long-term (daily/weekly)
dependencies. This led to clearer solutions for extracting
fine-grained short and long-term temporal features in the
further section. We also discussed the temporal dynamic
characteristics in traffic data, which differ from the typical
short-term and long-term dependencies.

B. SPATIAL DEPENDENCY
Because of the significant improvement in performance when
considering graph-structured information in current work,
we should acknowledge that the introduction of graph-based
neural networks in traffic flow forecasting models out-
performs previous non-graph-based network models [24],
[89]. The popular spatial models depicting traffic graph
information are GCN. However, the theory of GCN [71], [72]
shows that existing GCN and its variant models only consider
the static topological structure of the graph, while the traffic
road graph in the real world is dynamic and highly non-linear.
The expected graph-based spatial models should discuss not
only the local impact of nearby nodes but also the multiple
spatial dependencies in reality. For example, the spread of
influence is not isotropic for each node on the traffic graph.
This is because the geographical location of road sections and
the functional role of road segments both significantly impact
the final traffic flow prediction. Thus, the correlation of traffic
states cannot be solely judged by local spatial proximity.
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FIGURE 10. The spatial dependency in the traffic flow graph. A. The
topology of the graph structure. B. The impact of the neighboring nodes.
C. The impact within k-hops. D. The regional similarity.

Initially, when employing graph-based neural networks in
traffic flow forecasting, it was essential to select a model
that best described the different topologies of the local road
network and the spread of influence on traffic conditions.
With further study in this area, the discovery of more detailed
categories of spatial dependencies should be addressed in
future work. It is worth noting that increasing research
focuses on discussing the influence of multiple spatial
dependencies, such as global and local spatial dependencies,
static and dynamic spatial dependencies, and different hops
in spatial scale.

1) STATIC SPATIAL INFORMATION
Yang et al. [24] illustrated that the topological structure
of the traffic graph should be addressed since graph-based
methods outperform grid-structured methods in prediction,
as shown in Fig. 10(a). The graph topology reflects the
global stationary spatial information on a network-wide scale.
An N × N adjacency matrix represents the graph structure
in the graph convolutional network (GCN), reflecting the
connectivity among each node on the traffic road graph. It is
obtained directly when the traffic graph is constructed and is
used throughout the whole process.

When GCN appeared in the traffic flow prediction
field, most work considered the static connective topology
information for prediction and achieved good performance.
In the spatial GCN domain, operations on the graph can
be regarded as extracting the spatial dependency from the
traffic graph. The convolution for each node can be seen
as the update of static local information. On the other
hand, spectral GCN captures static global spatial information
through transformation. Based on its theory, the Laplacian
matrix is transformed by the adjacency matrix, reflecting the
connectivity of each node on the graph, which can directly
convey the global spatial dependency.

2) DYNAMIC SPATIAL INFORMATION
Models that consider topology information have outper-
formed previous ones with non-graph dependencies. How-
ever, the impacts of the weights on neighboring nodes are
not inherently the same, as shown in Fig. 10(b). Affected
by adjacent segments or nearby neighbors, the real-time
traffic conditions of individual segments change over time.

For example, morning traffic congestion will lead to high
volumes for nodes on the commute path from residence to
workplace, while connected neighbors not on the commute
path will not be as significantly affected. Since neighbors do
not affect the target node equally, using equal weights for all
neighboring nodes loses the dynamic spatial information of
the target. Therefore, the solution should not only rely on
the pre-designed static adjacencymatrix throughout the entire
prediction process but should also provide a better expressive
representation of the weights of different nodes.

A simple way to model time-varying spatial correlations is
by using a predefined adjacency matrix with prior knowledge
of the traffic graph. In other words, components referring
to dynamic spatial correlations can be represented by static
properties. For example, Fang et al. considered that the static
adjacency matrix of the graph updated in each time interval
can be used as the dynamic adjacency matrix [30]. Feng et al.
constructed an adaptive adjacency matrix predicted by the
predefined adjacency matrix based on the dynamic graph
learning (DGL) concept [90].
Methods considered for learning spatial dynamics focus

on calculating different weights of the real-time spatial
information obtained directly from the data. Different kinds
of aggregators are adapted to model these locality dynamics.
Zhang et al. pointed out that some GCN and its variants
tried to assign a non-parametric weight, such as graph
pooling aggregator and graph pairwise sum aggregator, to the
connected nodes, thus producing dynamic spatial corre-
lations [78]. However, non-parametric aggregators cannot
differentiate the edge weights between the target and all its
neighbors. The attention mechanism is a popular and more
effective aggregator introduced to specify the weights of
the nodes in the neighborhood without understanding the
topology of the traffic graph.

Some work, such as [37], [87], and [91], defined the
spatial attention mechanism to adaptively adjust the attention
scores with the neighbors to capture the dynamics on the
graph. However, there are differences among the applications.
Guo et al. [37] utilized the attention mechanism to extract the
spatial dynamics before the spatial convolutional operations
on the graph, while Bai et al. [91] and Guo et al. [87]
employed it to obtain the attention coefficients based on
the extracted spatial information on the traffic graph. The
attention mechanism is incorporated in GNNs as graph
attention networks (GAT) [76], where the weights can
be directly represented by attention coefficients under the
graph structure. GAT uses masked self-attention layers for
assigning weights in the aggregation within the same hop.
The application of the standard attention mechanism can
be regarded as a single attention head under a multi-head
attention mechanism, as it represents the data under one
subspace. The multi-head attention mechanism extends this
further by running a single attention head several times
in parallel, enhancing the ability to explore representation
under multiple subspaces. For example, image features
can be regarded as under multiple subspaces since they
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represent different aspects like color, line, and texture spaces.
Lu et al. aimed to get richer latent information from different
representation subspaces [88]. Additionally, Yang et al. [24]
and Zheng et al. [83] extended the self-attention mechanism
to the multi-head one to stabilize the learning process.

3) GEOGRAPHICAL SCALE
Most of the graph-structured models simply consider gener-
ating the spatial representation given the information from
one-hop neighbours, such as GCN and GAT. However, the
impact of a larger scale on the centre node could reflect
the richer informative spatial dependency because the nodes
at k-hops can describe the different influences towards
the target segment [24], as seen from Fig. 10(c). Given a
city-wide traffic network, when traffic congestion happened
in a specific road segment, the linked neighbouring roads
could be actively affected by this great event in varying
degrees. Because the radiation zone could be affected in
multi-hops, the traffic jam trouble can last for several hours
in a specific road segment when happened. A larger k hop of
the node can be involved to help capture the broader spatial
dependency compared with the one-hop model.

To distinguish the contributions of neighbours in different
hops,Wang et al. constructed a stack of k graph convolutional
layers to get the information from different neighbouring
scales and computed the attention coefficients to each
layers [75]. Given the multiple scales of the spatial and
temporal features are discovered to affect the final results,
Yang et al. adapted MST and MSS sub-blocks to capture the
spatial and temporal correlations separately [24]. They fused
the correlations from the different spatial scales and temporal
scales in generating the outputs of the spatial-temporal
relationships. The various impacts of the ST correlations in
multiple scales are based on a weighted sum fusing method,
which expresses the ability of the multi-scale ST correlations.

4) SPATIAL HOMOGENEITY
The time computation on the traffic graph is usually
consuming since the traffic graph is huge in modelling.
The inflow/outflow interactions between adjacent regions
can lead to local similarity(Fig. 10(d)), hence strong spatial
relations might exist in the nearby regions. Zhang et al.
designed the transportation neighbourhood adjacency matrix
based on the spatial proximity between nodes in the road
graph to show the improvement of the model considering
the local similarity [35]. However, some work also pointed
out that the nodes on the traffic road network could own
the similarity no matter the distance between each other.
Wang et al. [92] discovered that even the road segment had
a great similar impact to the one even though it was distant
comparatively, because of the similar road environment. The
more detailed solutions discussing the region similarity will
be shown in the next session since region-level similarity is a
heated topic in recent years.

In this part, we have stated that graph-based neural
networks have significantly improved traffic flow forecasting
compared to non-graph models. On the one hand, popular
models like GNNs capture static graph structures. But
on the other hand, real traffic graphs are dynamic and
nonlinear due to geography and road function, which requires
effective graph-based models to consider local and diverse
spatial dependencies. Significantly, selecting appropriate
spatial models for local road networks depends on a deep
understanding of diverse statical and dynamic impacts of
traffic networks was vital. Current research delves into spatial
dependencies like global/local dependency, static/dynamic
dependency, and different geographical scales and spatial
homogeneity to better model complex traffic patterns.

C. THE RELATIONSHIP OF SPATIAL DEPENDENCY AND
TEMPORAL DEPENDENCY
Even though we can see so many surveys in this area have
realized the importance of utilizing spatial and temporal
correlations to traffic flow forecasting, previous research
still needs to include a view of how to describe the spatial
and temporal dependency relationship to design the spatio-
temporal architecture.

In fact, as the similar idea of ensemble methods in machine
learning, the architecture of spatio-temporal modelling has
shared familiar points with it, which builds the submodels
in a parallel and sequential way. The parallel and sequential
modelling of spatial and temporal dependency shows the
inspiration of the solution to traffic flow forecasting.

After figuring out the spatial and temporal depen-
dency, we further categorize the architecture of capturing
spatio-temporal dependency when considered in modelling,
which can be divided into parallel and sequential modelling.

1) SEQUENTIAL MODELLING IN SPATIO-TEMPORAL
ARCHITECTURE
The basic submodels are integrated sequentially in ensemble
modelling, and the same is in spatio-temporal modelling. The
principle of sequential modelling is exploiting the submodels’
dependencies by assigning hidden relationships that we can
not discover by eyes; the overall prediction performance
can be improved when compared by sole modelling. First,
in sequential modelling, applying the spatial-related models
to get the spatial information from the raw data and then
getting the processed features into the temporal models to
obtain the temporal extraction for the final results, which
can be seen in Fig. 11 A. Zhao et al. proposed the typical
sequential architecture with the separate spatial and temporal
extraction applied to spatio-temporal modelling in the early
research [74] – the spatial dependence referred to the
topology of the traffic road network that is captured by GCN;
and the temporal dependence was represented by temporal
dynamics, with the extraction of the GRU. Zhu et al. were
inspired and developed the sequential modelling for each
moment based on Zhao et al. by introducing an attention
mechanism to capture the importance of information at each
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time slot. For this idea of construing the spatio-temporal
modelling, we can see so many similar consideration in the
following research [39], [93], [94], [95], [96].
Yu et al. and Diao et al. [39], [95] showed the basic

structure of the ST (spatio-temporal) blocks that involved
the stack of multiple spatial and temporal submodels in
capturing the dependencies in sequence in the blocks. A stack
of the ST blocks is also under sequential modeling to capture
the spatio-temporal dependencies for more extended time
information.

2) PARALLEL MODELLING IN SPATIO-TEMPORAL
ARCHITECTURE
In paralleling modelling, the base submodels are constructed
in parallel structure, the principle of which is to exploit
the independence between the submodels and make up the
ignored information of the other learners. Depending on the
dependencies ’ characteristics, the base submodels can be
the same methods. Guo et al. proposed the typical parallel
architecture for processing spatio-temporal dependency in
sub-categories [37]. The input data is divided into sub-
categories (hourly, daily, weekly) first, fed into three branches
with the same blocks extracted the spatiotemporal pattern
from hourly, daily, and weekly levels. The following work,
such as [31], [97], [98], [99], [100], and [101] considered
parallel structure under the similar idea and have different
branches for extracting the sub-category dependency. With
Han et al. [97] and Hong et al. [98] further developed the
spatio-temporal feature extraction of daily, weekly, and
recent information on sub-models in parallel modelling,
The other work employed more branches on extracting
multiple fine-grained dependencies in parallel structure.
Sun et al. proposed the models with seven branches on
extracting spatial and temporal features in sub-categories
separately and then fused for representing spatio-temporal
dependency [99], which is as shown in Fig 11 D. Luo et al.
mined the heterogeneous information in three branches that
were constructed by different sub-models [100]. Within
the branches, the parallel modelling can be achieved with
sub-models which are constructed by parallel modelling
as well. Zhang et al. came up the models with spatial
branch and temporal branch, which are with sub-branches
on extracting fine-grained spatial and temporal dependency
separately [31].

3) SPATIAL-TEMPORAL DEPENDENCY
As that researchers prefer to model the spatial and temporal
dependency separately, it is also necessary to consider how
to fuse the components to can make best utilize of the hidden
spatio-temporal relationship from the combination. With the
discovery of the effective and informative spatial-temporal
expression in traffic flow prediction, multiple fusion methods
have been employed in feature fusion for the different
features, thus further contributing to the improvement of
the model performance. Even the external factors, such as

weather conditions, car accidents, and events hosted near the
target, seems as no directly relationship for the prediction,
some work still shows that the availability of the external
data enhance the model performance [34], [102]. Hence, the
methods on fusing the features in the current traffic flow
forecasting field is worth discussing for integrating the spatial
and temporal features extracted from the raw data. In fact, it is
through the information superposition of the input to enrich
the obtained features, thereby improving the performance of
the model.

a: CONCATENATION
Feature Concatenation is a commonmethod of feature fusion.
It is to contact the different feature vectors directly in the
same order. Assume that we have v1 ∈ Rm and v2 ∈ Rn,
the fused vector could be v = [v1, v2] ∈ Rm+n. The
concatenation of the features has been applied in many
types of research from different perspectives. Reference [83]
concatenated the information of the day-of-week v1 ∈

R7 and time-of-day v2 ∈ RT of each time step into the
temporal vector v ∈ R7+T . Yao et al. [59] reconstructed
the temporal representation that reserved both short-term
and long-term dependencies for traffic flow predicting by
directly concatenating the short-term representation hi,t and
long-term representation hPi,t as hci,t . Yao et al. took the
temporal representation by the concatenation of the spatial
dependency and the external factors before feeding it to the
LSTM. The extracted information is further concatenated
with the feature from the semantic view for the final demand
prediction [93].

Wu et al. and Li et al. introduced the graph attention
network (GAT) with a multi-head mechanism to capture
the dynamic expression of the node feature [29], [62]. The
features under the K independent attention mechanisms are
concatenated after the extraction. Cui et al. enriched the
spatial information by concatenating the features extracted
from the k hops of neighborhood on the traffic road
graph [103]. Guo et al. [104] concatenated the region feature j
with the road feature i if the segment i belongs to the region j.

b: ELEMENT-WISE OPERATION
As we can see that v = [v1, v2] ∈ Rm+n, the dimension
(number of channels) of the features v has increased after the
operation of concatenation, but the processed feature keeps
its original information as v1, v2. The element-wise operation
is to richer the information but keeps the same dimension of
the feature after processing. For example, as the element-wise
product, assume that we have v1 ∈ Rm and v2 ∈ Rm, the fused
vector could be v = v1 ◦ v2 ∈ Rm.

When the different components are fused, the different
weights are learned from the data, and the final results can
be regarded as obtained by the linear weighting method.
Wang et al. applied the element-wise operation to fuse the
closeness TDtc , period TDtp and trend TDtt representation
from three predicted branches to the final result [80].
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FIGURE 11. The differences of sequential and parallel modelling in machine learning and spatio-temporal modelling. A. Sequential
modelling of ensemble learning and spatio-temporal modelling B. Parallel modelling of ensemble learning C. Parallel modelling of
spatio-temporal modelling D. Parallel modelling of spatio-temporal modelling in subcategory.

TDt = Wc ⊙ TDtc + Wp ⊙ TDtp + Wt ⊙ TDtt , where TDt
is the final result, and the Wc,Wp,Wt are the weight matrix
of the three temporal predictors respectively. Reference [37]
considered the hourly, daily and weekly components in
the same way. Other examples (for example, [61], [62],
[102], [103], [105]) with the application of the element-wise
addition and product will not be listed in details.

Zheng et al. [83] employed a gated fusion mechanism
which can adaptively control the spatial and temporal
information H l

= z ⊙ H l
S + (1 − z) ⊙ H l

T , where H l
S

and H l
T represents the spatial and temporal dependency

obtained from the last layer, and z is the gate. Reference [78]
mentioned the fusion methods, such as pairwise sum and
pooling approaches, applied to the node feature. It studied the
gated attention-based fusion method with the consideration
of a multi-head mechanism and outperformed the pairwise
sum and pooling on the graph nodes with fewer number
parameters.

c: LIKELIHOOD
Since the randomwalk-based network embedding approaches
constructed a co-occurrence matrix to help describe the
spatial dependency and temporal dependency [106] and
received a relatively satisfactory result, Liu et al. [107]
proposed to compare the co-occurrence matrix generated
by the random walk approach, to maximize the likelihood
of the time-evolving traffic graphs. It jointly captured
spatial-temporal dependency instead of extracting the spatial
and temporal correlations from two independent sources.

In this part, we mentioned the model structures that can be
considered for spatio-temporal feature extraction: sequential

modeling, parallel modeling, and fusion modeling (spatial-
temporal). When discussing the feature extraction structure
of sequential modeling and parallel modeling, we can find
the similarity with ensemble learning in machine learning.
We also give work under these two spatio-temporal feature
extraction structures. In addition to serial modeling and paral-
lel modeling, we also mentioned the way of direct fusion, and
mentioned three classic methods of spatio-temporal feature
fusion.

IV. DISCUSSION ON THE CURRENT SOLUTIONS
When categorising the solution to traffic flow prediction til
now, they can be mainly divided into two aspects: one is the
introduction of new components, which can be referred to as
the introduction of the graph-based neural network applied to
model the non-euclidean spatial dependency; and the other
is the presentation of the new scenarios, for example, the
general temporal dependency has been detailed categorized
as hourly temporal patterns, daily temporal patterns, and
weekly temporal patterns.

A. FEATURE ENGINEERING ON TEMPORAL PERSPECTIVE
The topic for further research in recent years has attached
to the discovery of informative feature engineering for the
input to the traffic flow forecasting models. For example, the
researchers tend to focus on digging for much more appro-
priate approaches to build the general dependency under the
detailed categories, such as temporal position embedding in
the transformer which enhances the ability of temporal order
expression instead of the time-series models to describe the
general temporal dependency; and, Dynamic Time Warping
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(DTW) algorithm applied as clustering method to describe
the locality of the spatial dependency, etc, instead of the
spatial models to represent general spatial features. This
direction requires researchers to have a comprehensive
understanding of the factors that could affect traffic flow
forecasting. It leads to feature reconstruction considering the
multiple facts from different perspectives of the raw data.
In other words, previous work extracts the features from the
raw data with the spatial and temporal models, while current
work aims to reconstruct the feature vectors before feeding
the raw data. Feature engineering can better reflect and
enhance the spatial and temporal correlations in real-world
traffic conditions.

The combination of the multiple temporal correlations is
necessary to be utilized in the long-term prediction [24].
The temporal features, on one hand, are represented as the
short-term dependency that is affected within the most recent
historical time step; on the other hand, are under the influence
of the strong periodic characteristics in daily and weekly
cycles. Most of the recent papers employed the idea on
trading of the utilization of the short-term and long-term in
the temporal feature pre-construction, the variables of which
are always in hourly, daily, and weekly periodicity to reflect
the variation in the time domain [31], [36], [75], [81], [85],
[108], [109], [110]. The multi-dimension time dependency
shows the periodic variation of the hour, day and week, and
can be fused as the overall temporal input to the model based
on the task required.

B. FEATURE ENGINEERING ON SPATIAL PERSPECTIVE
Besides the multiple temporal dependencies, the spatial
features can also be enriched by the multi-dimensions
representation [31], [35], [36], [109], [111]. Zhang et al.
focused on obtaining the richer spatial information by
introducing the content similarity adjacency matrix, the
transportation neighborhood adjacency matrix, and the graph
betweenness adjacency matrix to represent spatial correla-
tions in traffic flow graph as the geography correlation, region
similarity, and the road connectivity [35]. Li et al. proposed
a multi-scale graph convolutional layer to assign different
weights to three kinds of spatial dependencies [86]. The
three spatial features referred to the normalized adjacency
matrix with the self-connected unit that is represented by the
geographic adjacency matrix, the extraction of hidden spatial
dependencies that are represented by the self-adaptive matrix,
and the similarity of the traffic patterns that is represented
by the similarity matrix. Wang et al. pointed out that the
existing GCNmethods adapted the spatial feature of the latest
structure (e.g., k-hops), ignoring the information of the
previously obtained stages (e.g., before k−1-hops) [75]. They
utilized the completed spatial information obtained from the
previous neighboring range and proved the efficiency of the
spatial enhancement.

Guo et al. considered the feature vectors embedded
in spatial and temporal respective separately [87]. In the

temporal dimension, they manually defined the global and
local periodicity and concatenated them with the time
steps X of the historical traffic records, which finally
led to the new temporal input. In the spatial dimension,
the GCN with Laplacian smoothing form is employed
subsequently to obtain the spatial embedding vectors. This
paper also discussed spatial heterogeneity, which referred
to the observation that the traffic records generated in
different locations obtained different traffic patterns, and
further discussion on regional solutions proposed to model
it. Fang et al. proposed a convolution model named Dilated
Attention Graph Convolution(DAGC) that can generate both
the spatial dependency and temporal dependency [112]. The
non-local spatial correlations in multi hops are captured by
DAGC as the spatial input and the adjusting parameters of
which also applied to fuse the temporal correlations as the
temporal input.

C. FEATURE ENGINEERING ON SPATIO-TEMPORAL
PERSPECTIVE
Besides embedding the spatial and temporal features sep-
arately, Bai et al. adapted the MLP to learn the new
spatio-temporal features from the raw input, which can
directly be used as the predictors in the proposedmodel [113].
It has been proved that direct extraction of the new features
with MLP works well in image recognition and voice
translation. And it is more effective than the manual design
of the new feature from the raw data. Jiang et al. came
up with a similar architecture to capture the dependencies
as previous research. But they introduced a spatio-temporal
relation matrix to represent the traffic road topology as the
spatial input [33]. It is because the spatio-temporal relation
matrix refers to the space-time constraint on the traffic
road conditions. As the spatial proximity matrix is usually
applied to represent the relationship between the target road
segment and its corresponding neighbours, it is utilized
to depict the topology of the road network in this work.
And they supposed the historical time interval to represent
the traffic speed time series in the temporal dimension,
which is the common approach as before. However, because
they adapted a cross-correlation function to fuse the time
information in each time interval, the after-fused spatio-
temporal relation matrix is defined as the one that combined
the spatio-temporal information of the road traffic in a matrix
before feeding into the model.

D. FEATURE ENGINEERING ON EXTRA FACTORS
Except from reconsidering the representation of the spatial
and temporal feature vectors for traffic flow data, Zhu et al.
introduced the external factors to reconstruct the input to the
model [34]. They employed the other factors which could
affect the traffic conditions as the auxiliary attributes, such
as static geographic information, which is a static factor; and
weather condition, which is the dynamic factor because of its
time-varying determinant. The static factors, dynamic factors
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and flow values are combined as the traffic characteristic
information at time t in the proposed model.

E. REGION-LEVEL SOLUTION
Another direction of the work for traffic flow forecasting is
the proposition of region-level solutions for spatial feature
extraction in heterogeneous regions have been proposed.
As the previous work paid much attention to capturing
the spatial dependencies on graph level that depicts the
information of all the nodes on the graph, the researchers
try to mine the spatial relationship among the irregularity of
the region [35], [36], [75], [114], [115], [116]. For example,
every day, the commuters leave the residential area and
driving to the workplace could lead to the morning peak
and the opposite to the evening peak. So this displays an
instinctive transition flow that existed because of the different
regional heterogeneity at different periods in a day. Hence,
it can be concluded that all the nodes on the traffic road
network are not isolated while owning functional similarity
in a certain region. It also leads to the introduction of the
community algorithm [36], [115] in capturing the regional
spatial dependency to rich the extracted spatial features
for prediction. The community structure implies the nodes
with high similarities could belong to the same community,
referring to the same functionality in the traffic road network.

In [83], a group spatial attention mechanism was pro-
posed based on the sub-graph partition of the intra-group
spatial attention part and inter-group spatial attention part.
But the graph-wide computation takes time and mem-
ory consumption. The Louvain algorithm, proposed by
Blondel et al. [117], was adapted in [36] for the discovery of
the different functional communities in the road network and
contributed to the construction of the functional similarity
graph(FSG) for the representation ability of the spatial
dependency. To avoid the bias of the static adjacency
matrix, which only represents the connectivity of each node,
Zhang et al. employed the fuzzy-graph generation network
to enhance the expression of the intrinsic correlation for the
regional spatial feature [116]. The method utilizes the fuzzy
logic relationship among nodes on the traffic road network to
generate the cluster in similarity.

V. FUTURE DIRECTIONS
In this section, we discuss future directions based on recent
advancements in traffic flow forecasting using relevant
spatio-temporal models. These advancements include the
introduction of graph-basedmodels to capture the topological
structure of traffic road networks, as opposed to extracting
grid-based spatial information as done in previous work.
Additionally, new scenarios and more detailed subcategories
of spatial and temporal dependencies in modeling have
been proposed, such as the periodicity in hourly, daily,
and weekly under the category of long-term temporal
dependency. Furthermore, expressive feature engineering
has been emphasized for solving traffic flow prediction
problems. Besides the work mentioned earlier, we believe

other techniques have potential in addressing problems in this
area.

A. THE RECONSTRUCTION OF THE GRAPH STRUCTURE
With the success of region-level solutions, we recognize the
idea behind it: the high similarities among nodes contribute
to the formation of node groups with similar properties.
Based on this inspiration, future solutions should consider
appropriate graph partitioning to reduce redundant graph
information for the targets, thus improving the efficiency and
performance of the model.

In realistic scenarios, the graph-structured traffic road
network is large-scale, bringing unnecessary information for
prediction, which is directly reflected by time-consuming
problems that are often discussed. Two reasons explain this
in a large graph: First, compared to all the nodes on the
traffic graph, the links to the target nodes are limited when
the adjacency matrix is constructed graph-wide. Hence, the
significant traffic graph shows a highly sparse characteristic
when all the nodes are connected only with their neighbors.
Additionally, as the traffic network generally expands in city
size, it brings enormous topological edge information to the
graphmatrix. Second, another relevant factor is the increasing
number of features proposed to model the scenario in recent
work. The feature aggregation for each node could lead to
extensive efforts because more features need to be considered
in the computation.

Researchers have attempted to introduce graph reduction
to tackle this issue in large traffic graphs in recent years.
For example, Guo et al. [104] introduced spectral clustering
(pooling) of the traffic graph on the Laplacian matrix of the
adjacency matrix to reconstruct the graph structure. However,
it was shown that the reduced graph contributes to model
performance in short-term prediction tasks, while long-term
prediction did not see the same improvement. Wu et al. [22]
pointed out that partial information of the graph might be
lost if graph reduction is introduced. Therefore, whether and
when to investigate the performance on the reduced graph
could be a topic for future research.

B. DEPENDENCY TRADE-OFF
Even though the models for traffic flow forecasting empha-
size the importance of the spatial correlations and temporal
correlations, it is still an open question on how to balance
the contribution of the temporal correlations and spatial
correlations in the final prediction [107]. Partially because
the existing methods applied to the traffic flow prediction
have received relatively satisfying results without considering
the spatial or temporal contribution weights; in other words,
does it mean that the importance of temporal dependency
should outweigh that of spatial dependency, or in reverse?
The typical architecture of the traffic flow prediction is to
separately consider the spatial and temporal features, whether
sequential or parallel. However, balancing the importance of
the extracted temporal and spatial information and utilizing it
to the fullest must be considered.
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C. MULTI-SOURCE SPATIAL AND TEMPORAL
CORRELATIONS
Most previous works focused on extracting the spatio-
temporal dependency from a single source. For example,
researchers investigated the hidden relationships between
spatial and temporal perspectives using traffic flow data.
However, Fang et al. [30] discovered that different data
sources from the same or similar traffic areas exhibited
similar distributions in both temporal and spatial dimensions,
guiding future research in exploring hidden traffic relation-
ships from the target area. They verified this with traffic
flow graphs of taxi and bike data in NYC, capturing the
spatio-temporal dependency in a specific NYC area. This
implies that trajectory data from different sources could
be combined to extract hidden complex spatio-temporal
dependencies for traffic flow prediction.

Yao et al. showed another approach to using different data
sources [93]. They provided the graph’s spatial and semantic
views and combined the extracted features for forecasting.
Therefore, future research should emphasize exploring the
shared relationships of multi-source data from the same target
area since it could potentially improve forecasting accuracy.

D. REPRESENTATION LEARNING
Inspired by Transformer, we can see the model’s ability
to express context information through position embed-
ding. Guo et al. [87] adapted spatial position embedding
and temporal position embedding methods to induce order
information in spatial and temporal dependencies, resulting
in more accurate predictions. Hence, applying several
appropriate learning representations on the raw data, which
better represent different dependencies of the datasets, can
potentially contribute to model performance. In addition to
the models for spatial and temporal dependency representa-
tion mentioned in this paper, Zhang et al. [31] revealed that
graph embedding technologies such as DeepWalk [118] and
Node2Vec [119] can extract and mine hidden spatial patterns
by capturing the details of spatial dependency in graph-
structured data.

Zheng et al. [83] considered spatial and temporal
embeddings to provide static and dynamic representations
among traffic sensors, fusing them as spatio-temporal
embeddings to obtain time-variant vertex representations for
combined static-dynamic spatio-temporal feature expression.
Wang et al. [120] proposed an adaptive GCN with multi-
channel to inspire future work in extracting informative
spatial features on traffic graphs. They extracted spatio-
temporal information by adopting two convolution operators
from the given feature and topology information. Therefore,
informative representation learning is still required to mine
hidden spatio-temporal patterns and provide a comprehensive
understanding of the overall behavior of the data.

VI. CONCLUSION
In this paper, we believe that a rigorous understanding of
the task can contribute to the appropriate design of an

efficient deep-learning-based solution to the traffic problem.
Therefore, we analyzed the traffic flow forecasting problem
from spatial and temporal perspectives at a fine-grained level,
which could inspire future researchers to design models
for specific scenarios. First, we presented the problem
definition of traffic flow forecasting from a sole temporal
perspective to a spatio-temporal perspective, along with
corresponding techniques for spatial and temporal feature
extraction, including architectures such as Seq2Seq and
Transformer. Then, we categorized and summarized a new
taxonomy of the fine-grained dependencies in spatial and
temporal features of traffic flow forecasting problems and
provided methods for addressing these dependencies.

In terms of spatial and temporal feature extraction for
constructing spatio-temporal dependencies, we provided
guidance on how to extract spatio-temporal features when
building the ST architecture–sequential modeling, parallel
modeling, and fusion methods. Additionally, we discussed
how current work focuses on addressing spatio-temporal
feature extraction, considering multi-scale temporal infor-
mation (e.g., weekly, daily, and recent temporal data)
and spatial information (e.g., k-hop neighboring informa-
tion and solutions focusing on fusing region-level graph
information).

We pointed out future directions and discussed possibilities
in traffic flow forecasting, such as the reconstruction of given
graph information, balancing the employment of temporal
and spatial information, utilizing multi-source data to capture
hidden shared spatio-temporal information in the target area,
and informative representation learning for traffic context
information.
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