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ABSTRACT Sporting event outcome prediction is a well-established and actively researched domain, with
a particular focus on college basketball’s March Madness tournament. Researchers, fans, and gamblers
alike seek accurate game-level predictions using features such as tournament seeds, season performance,
and expert opinions. While machine learning algorithms have been harnessed to build prediction models,
no perfect model or human-created bracket has emerged. This paper explores a novel approach to basketball
game outcome prediction by utilizing the power of social networks and large language models (LLMs).
LLMs are trained to understand and generate text, often eliminating the need for a feature engineering step.
Consequently, our method utilizes tweets from official Division I college basketball team Twitter accounts in
the days leading up to a game as context for knowledge discovery and winner prediction with LLMs. To do
this, we have compiled a comprehensive dataset of over one million tweets from both men’s and women’s
teams spanning two consecutive seasons. Instead of relying on traditional numeric features, we employ only
tweet text with few-shot/zero-shot learning, thereby offering an emerging social network-based approach
for sporting event outcome prediction. Furthermore, using chain of thought prompting we investigate the
information in team tweets that are predictive of future game performance.

INDEX TERMS Few-shot/zero-shot learning, in-context learning, large language models, March Madness
prediction, NCAA college basketball, social networks.

I. INTRODUCTION
Sporting event outcome prediction is a long-standing and
highly active research area spanning multiple disciplines.
When it comes to college basketball and more specifically
March Madness, researchers, fans, and gamblers alike want
tomake the best game-level predictions possible.While many
prediction approaches exist, people often use tournament
seeds, regular season matchup results, expert opinions, and
their own intuition [1], [2], [3], [4], [5], [6], [7]. More specif-
ically, statisticians and data scientists typically use large
amounts of numeric data, like historical team performance,
custom ordinal rankings, and player information, to train
machine learning algorithms to try and build accurate pre-
diction models. These techniques range from classical algo-
rithms like k-nearest neighbors, logistic regression, support
vector machines, random forests, and neural networks [7],
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to more recent methods like tree boosting and deep learn-
ing. Since 2014, Kaggle, the world’s largest data science
community, has hosted an annual March Machine Learning
Mania competition [3], [4]. In 2023, this competition offered
a $50,000 award to the team or individual submitting the
best predictions as measured by the highest Brier score on
the competition leaderboard [8]. While many submissions
are based on predictions from deep neural networks, recent
winning submissions have used XGBoost [9]. Even with
incredible amounts of data, expert feature engineering, and
unprecedented compute power, no perfect prediction model
or human-created bracket has been created [10].

A simple, yet reasonably well performing approach to
creating a bracket or predicting a game winner is to always
choose the team with the higher seed/rank [6]. This baseline
technique correctly predicts tournament game winners about
71% of the time [11]. Considering the best machine learning
models typically yield accuracies in the range of about 67%
to 75% [2], [7], [12], higher seed-based prediction offers a

84774

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0001-9935-9950
https://orcid.org/0000-0003-0368-8923


G. Sprint: Social Networks and LLMs for Division I Basketball Game Winner Prediction

reasonable benchmark for comparison. Of the 20+ million
brackets submitted for the 2023 men’s tournament, the high-
est ranked bracket correctly predicted 50 out of 63 games,
which is a remarkable 79% accuracy [13]. Considering the
variability from year-to-year, these numbers suggest that
about a quarter of all tournament games will be difficult-
to-predict upsets, with men’s basketball typically exhibiting
more upsets than women’s basketball. Clearly, predicting
basketball game winners is still an open research problem
with opportunities for innovative solutions.

Recent advancements in natural language processing and
large language models (LLMs) have redefined what machine
learning is capable of in terms of solving new problems
and revisiting the solutions of existing problems. LLMs are
large transformer models trained to ‘‘understand’’ language
by being fed large amounts of text from various sources dur-
ing pre-training. LLM abilities have recently skyrocketed in
depth and breadth due to several breakthroughs, most notably
in terms of computational power, number of model parame-
ters, and training dataset size [14]. These advances have been
most noticeable and accessible via open-ended chat interfaces
like OpenAI’s ChatGPT. Models like those in the GPT family
are generally used to accept text input in the form of a prompt
(often with context about a task) and produce a text output
in the form of a completion (hopefully performing the task).
With text input, this format eliminates the need for a numeric
feature engineering step, allowing text to be used directly
for a wide variety of learning tasks [15]. Furthermore, in-
context learning techniques, such as few-shot learning where
examples of a task are provided [16], can prompt an LLM to
perform diverse tasks without explicit training.

Since previous March Madness prediction approaches
have focused on using numeric input data, we were interested
in leveraging timely social network text and LLMs for an
entirely new approach to basketball game winner prediction.
To do this, we used recent tweets from each team’s offi-
cial Twitter (recently rebranded as X) account as context to
prompt an LLM to predict which team will win the upcoming
game. For few-shot learning, we included demonstrations of
recent tweets/game outcomes. LLMs are particularly well
suited for this task because predictive information is embed-
ded in team tweets in diverse and latent forms. Subsequently,
this work offers a new perspective on how timely social
network activity, LLMs, and in-context learning can impact
the field of sports analytics. To enable future work in this area,
the dataset and code are available in our Github repository.1

II. RELATED WORK
Due to recent breakthroughs in LLM development and
deployment, researchers in nearly all fields are exploring
using text directly as input for prediction tasks. Recent studies
have shown that LLMs can be used as a high performing
approach for text-based understanding, generation, and pre-
diction in a variety of domains [15], such as education [17],

1https://github.com/gsprint23/DivisionIBasketballTwitter

medicine [18], energy consumption [19], human mobil-
ity [19], [20], and stock prediction [21]. With this work,
we expand the scope of LLMs to the sports analytics domain.
With our new, large-scale social network dataset and LLM
classification approach, we present a novel attempt at game
outcome prediction.

While our approach to game prediction work is first-of-its-
kind, research using social media for sports analytics has been
investigated for over a decade [22]. Twitter has historically
allowed liberal access to its massive database via its appli-
cation programming interface (API), allowing researchers to
create big datasets and investigate a wide variety of topics.
In sports, most of these studies analyzed tweets from fans [23]
or players [24], [25] for sentiment analysis [26] and/or social
network analysis [27]. Far fewer studies have focused on
collecting and analyzing tweets from official sport teams
at the collegiate level [28], [29], [30]. One example is the
work by Chen et. al which collected data from the official
websites, Facebook pages, and Twitter accounts of South-
eastern Conference institutions [29]. The goal of the work
was to compare the men’s and women’s team coverage and
usage of these communication platforms. Though not Twitter-
based, another relevant study is the work of Wallace et al.
that analyzed how institutions in the Big 12 Conference used
Facebook for fan interaction and brand management [30].

Most similar to the present study, some investigations
have used crowd opinions on social media to predict sport-
ing event outcomes [26], [31], [32], [33]. UzZaman et. al
used Twitter data to make game outcome predictions for
the 2010 FIFA World Cup, motivating their approach by
stating: ‘‘The main idea of using social media to predict
the game is to let people do all these analysis and write
about it in the social media, so that we can aggregate their
predictions to make a guess on the outcome of the game.’’
The authors created a system called TwitterPaul that parsed
tweets and extracted predictions, achieving a precision of up
to 88% [31]. Schumaker et al. also explored using tweets
to predict game outcomes; however, their approach focused
on using tweet sentiment to predict wins and spread in the
English Premier League [26]. The authors found positive
tweet sentiment to be predictive of match outcomes and point
spread, possibly yielding higher betting payouts than tradi-
tional metrics like odds-favorites. In conclusion, the authors
suggested there is predictive power in the hidden information
contained within tweets. Beal et. al also predicted match
outcomes for the English Premier League; however, they used
machine learning with both statistical match data and text
from sports journals to achieve a 63.2% accuracy, represent-
ing a 6.9% improvement over traditional methods with match
statistics [34].

To advance social network and sports analytics research,
our approach exhibits several differences from the previously
described studies. First, our collegiate dataset is more com-
prehensive. We used social media data from all Division
I men’s and women’s basketball teams from all confer-
ences and across multiple seasons. Second, we explored the
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predictive power in the hidden information of official team
tweets instead of fan tweets. If such predictive power exists,
a deployed prediction system needs to only monitor two
social media accounts instead of streaming tweets/posts from
several stakeholder accounts and/or all relevant hashtags.
In same-day betting scenarios, these just-in-time predic-
tions could augment traditional game outcome prediction
approaches (like the approach of Beal et. al) to increase
prediction accuracy and/or predict an upset.

III. METHODS
Figure 1 provides an overview of our proposed LLM-based
gamewinner prediction approach. To undertake the approach,
we first collected social media text and game matchup infor-
mation. Though text from any social media platform could
be utilized, we used Twitter to collect tweets created by each
team due to its popularity and generous API access2 for aca-
demic research that was available at the time. To collect the
most recent season schedules and game outcome information
for each team, we used the ESPN website. We collected
this data for the most recent two college basketball sea-
sons (2021-22 and 2022-23) to observe year-to-year social
network trends and to provide a sufficient dataset for our
LLM-based prediction approaches. These approaches were
evaluated using the 2023 men’s and women’s tournament
games.

A. DATA COLLECTION AND PROCESSING
To build a multi-season college basketball Twitter dataset,
we first identified the current Division I institutions from
the NCAA institution directory website.3 For the 2022-23
season, this list included 363 institutions, including one
new institution starting its reclassification in 2021 (Univer-
sity of St. Thomas) and five new institutions starting their
reclassifications in 2022 (Lindenwood University, Queens
University of Charlotte, University of Southern Indiana,
Stonehill College, Texas A&M University – Commerce).
Of these 363 institutions, 2 did not have women’s basketball
teams (The Citadel and Virginia Military Institute). For each
Division I institution, we searched for their official men’s
and women’s basketball team Twitter handles (also known
as usernames), compiling a list of 724 official team Twitter
handles. Using the Twitter API /2/users/by endpoint,
we were able to lookup the unique Twitter user ID for each
handle. While a Twitter user may change their handle, they
cannot change their account’s user ID, though they can create
a new account. Henceforth in our analysis, we used these user
IDs to represent the team accounts to avoid any ambiguities
should a team change their handle. On the men’s side, all
but four of the accounts were created prior to the 2021-22
season. On the women’s side, this number was five. In these
cases, the team may have had a previous Twitter account that
was deleted or suspended, causing the team to move to a

2https://developer.twitter.com/
3https://web3.ncaa.org/directory/

FIGURE 1. Overview of LLM-based game winner prediction.

new account (and hence receive a new user ID). The oldest
account on the men’s side was Duke University, created on
12/20/2008. On the women’s side, the oldest account was
Vanderbilt University, created on 2/19/2009.

Our data collection period spanned the most recent 2021-
22 and 2022-23 seasons.We used the following dates, starting
at 00:00 EST and ending at 23:59 EST, to represent the
regular season and the NCAA tournament:

• 2021-22 regular season
◦ Men’s: 11/9/2021 – 3/13/2022
◦ Women’s: 11/9/2021 – 3/6/2022

• 2021-22 NCAA tournament
◦ Men’s: 3/15/2022 – 4/4/2022
◦ Women’s: 3/18/2022 – 4/3/2022

• 2022-23 regular season
◦ Men’s and women’s: 11/7/2022 – 3/12/2023

• 2022-23 NCAA tournament
◦ Men’s: 3/14/2023 – 4/3/2023
◦ Women’s: 3/15/2023 – 4/2/2023

Using the Twitter API /2/tweets/search/all endpoint (also
known as full archive search) and user IDs, we fetched tweets
for each season that were created between the start of the
regular season and the end of the NCAA tournament. In total,
we downloaded 1.1 million tweets via the Twitter API from
5/4/2023-5/6-2023. Pulling tweets in May after the 2023 sea-
son ended presented a few limitations. First, teams might
have changed their Twitter accounts between the two seasons.
Second, the 2021-22 season tweets had a longer opportunity
to acquire likes, retweets, quotes, and replies before we down-
loaded the public metrics. The first limitation affected 6 out
of 724 teams. Addressing the last limitation, recent research
has shown that no relevant number of impressions can be
observed for ∼95% of tweets after 24 hours [35], suggesting
the two seasons’ numbers can be compared.

Following prior work [36], we parameterized our full
archive search requests to include several additional tweet
fields, including the author ID, when the tweet was created,
public metrics (e.g., like counts, retweet counts, etc.), refer-
enced tweet data if applicable (e.g., if this tweet is a retweet
then the author ID of the original tweet, if this tweet is a
reply then the author ID of the tweet replied to, etc.), and
tagged entity data (e.g., mentions, hashtags, etc.). With this
extra tweet information, we were able to perform interesting
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analyses of the tweets, such as using the tweet creation time
to assign which part of the season the tweet was published in.

Once we fetched the team tweet data, we turned our
attention to collecting each season’s schedule and game
outcome information for each team. To do this, we scraped
public facing ESPN webpages that contained a list of men’s
college basketball teams4 and women’s college basketball
teams,5 grouped by conference. Upon page inspection,
each team’s unique ESPN ID was obtained from the
team’s ESPN page link. For example, clicking on the
men’s Gonzaga Bulldogs link redirects to their ESPN team
page: https://www.espn.com/mens-college-
basketball/team/_/id/2250/gonzaga-
bulldogs. From this URL, we extracted the ESPN ID
for the Gonzaga Bulldogs (2250). This ID represents the
institution and is therefore the same for both men’s and
women’s teams at the same institution. With each team’s
ESPN ID, we were able to visit and scrape schedule infor-
mation for each season of interest. For example, the men’s
Gonzaga Bulldogs 2022-23 schedule and game outcome
information were available on the webpage accessible by
replacing the display name gonzaga-bulldogs with
season/2023 in the above URL.

Following the game detail links on the schedule pages,
we extracted attributes about each game, including the game
time, opponent, outcome (e.g., win, lose, tie, forfeit, etc.),
score, and team ranks. After we processed all team sched-
ules, we aligned the Twitter user IDs with the ESPN IDs.
This was performed manually by comparing Twitter han-
dles/descriptions with ESPN display names. As an example
of the alignment process, the Gonzaga University men’s bas-
ketball team’s Twitter handle (at the time of writing) was
@ZagMBB, while their Twitter ID was 602989093, ESPN
display name was Gonzaga Bulldogs, and their ESPN ID was
2250. Once aligned, we could merge the Twitter data and
the ESPN data. To do this, each tweet was aligned by team
ID, then timestamp aligned by tweet creation and game times
from ESPN. To prevent misalignment due to different time
zones, all timestamp alignment was performed using UTC
localized timestamps.

After collecting, cleaning, and aligning data from Twitter
and ESPN, we performed exploratory data analysis to deter-
mine the structure and content of the team tweets and social
networks at a high level. This included calculating simple
summary statistics such as counts and means for tweet public
metrics (e.g., likes, retweets, quote tweets, and replies) and
tweet references (e.g., mentions, hashtags, and links). For
further exploration, we grouped the tweets by time (e.g.,
part of season: regular, tournament, or in between; day of
week), team characteristics (e.g., gender and tournament per-
formance), and conference (e.g., SEC, Big Ten, etc.). While
the dataset was rich enough to support additional interesting
groupings, such as by regular season rankings, in this paper

4https://www.espn.com/mens-college-basketball/teams
5https://www.espn.com/womens-college-basketball/teams

we present the analyses most relevant to social network mod-
eling and tweet-based game winner prediction.

Next, we modeled and visualized team interactions on
Twitter via social networks. Each social network is comprised
of nodes (in our case, teams) and edges that connect the nodes
(in our case, interaction on Twitter). We calculated inter-
action following prior work that created a social influence
network using official Twitter accounts from U.S. Congres-
sional members [37]. This approach creates a weighted,
bi-directional network by measuring ‘‘influence’’ between
two Twitter accounts. Influence is the interaction between the
two teams via retweeting, quoting, replying, and mentioning.
When constructing the influence network, we only included
teams if they created at least 100 tweets during the time
period of interest. This inclusion criterion helped ensure the
empirically calculated edge weights weremeaningful. For the
2022-23 season, there were 9 men’s teams and 13 women’s
teams that did not meet this inclusion criterion.

B. GAME WINNER PREDICTION
Besides tweet metrics, team rankings, and game scores, the
datawe collected in the days leading up to a college basketball
matchup were primarily text-based in the form of tweets.
To predict the winner of a college basketball matchup using
these tweets, we aligned the two team’s recent tweets at the
game level. For each game, we identified the game time
and which two teams were playing. For each team, we then
identified their N most recent tweets that were created before
the game started. During this process, we performed minimal
pre-processing of the tweets, including replacing links with
‘‘<URL>’’ and appending the tweets together using spaces.
Each team’s N-tweets were then paired (the order of which
team’s N-tweets were presented first was chosen randomly)
and matched with the game outcome. The recent N-tweets
pairs could then be used as input to LLMs. To leverage
the established high performance of XGBoost for March
Madness prediction, we utilized LLMs with two different
approaches to next game winner prediction:

1) Embeddings+XGBoost: using an LLM to get numeric
embeddings for each team’s N-tweets. The embeddings
were then combined and used as input into a XGBoost
classification model trained to predict game winners.

2) In-context learning [38]: using the N-tweets pairs as
context when constructing a prompt that asks an LLM
to predict a game winner. We did this using:
a. Zero-shot learning (no examples in the prompt)
b. Few-shot learning (K examples in the prompt)

For both approaches, we utilized LLMs from OpenAI using
their API.6 For approach #1, we utilized OpenAI’s text-
embedding-ada-002 model (8,191 token limit; 1,536
output dimensions) to produce embeddings for each team’s
N-tweets in a game matchup. Embeddings are numeric repre-
sentations of text such that two texts that are related will have
numeric representations that are close to each other in a high

6https://platform.openai.com/
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FIGURE 2. An example few-shot learning prompt for the
2023 tournament with N = 8 and K = 3 (1 example shown).

dimensional space. We combined the two N-tweets embed-
dings to produce a feature vector that could serve as input to a
machine learning classifier. Specifically, we used the Python
implementation of XGBoost trained with logistic regression
for binary classification as the objective and 50 early stopping

rounds on all 2022 games and regular season, non-tournament
2023 games. One third of the training games were held out
for use as the validation set. Using this set, we explored
various ways to combine the two teams’ embeddings, such
as concatenation, averaging, and subtraction, experimentally
finding concatenation yielded the best results. The model
was evaluated with the 134 men’s and women’s tournament
games from 2023. We included the First Four play-in games
to increase the number of test instances used for evaluation.

For approach #2, prompt engineering can be applied to
create prompts from N-tweets pairs for in-context learning
with LLMs in several ways. First, when paired with an
instruction such as ‘‘Two college basketball teams are about
to play a game. Given each team’s recent tweets, predict
which team will win.’’, the recent N-tweets pairs can be
used directly as prompts with zero-shot learning. For few-
shot learning, the instruction can be modified to inform the
LLM that examples will be included. Then, K recent N-tweets
pairs/game outcomes can be provided as examples of the task.
For clarity, Figure 2 shows an example few-shot prompt with
N = 8 and K = 3 (2,406 total tokens). Since our prediction
task focused on the 2023 tournament games, examples were
chosen randomly from the 2022-23 season regular games that
had N recent tweets for both teams. For many teams, this
inclusion criterion eliminated their first few games.

To elaborate, N and K are parameters that must be adjusted
depending on the LLM used. The maximum input length of
an LLM is measured in terms of tokens. OpenAI LLMs have
a long enough maximum input token length for our proposed
approach with few-shot learning. It is worth noting that the
N-tweets pairs can be used to further train LLMs as part
of a fine-tuning task. In this work, we primarily explored
in-context learning because LLMs are already familiar with
the core concepts of our prediction task (e.g., basketball,
tweets, etc.) and we wanted to evaluate the viability of using
off-the-shelf LLMs without explicit training, which increases
the likelihood that this approach could be adopted without
a significant investment in LLM training resources. For in-
context learning, we utilized OpenAI’s gpt-3.5-turbo
and gpt-3.5-turbo-16k models (4,097 and 16,385
token limits, respectively) with temperature set to 0.0 and
the following system message to help set the behavior of the
model: ‘‘You are an expert in sports analytics. Please follow
instructions to forecast college basketball game winners.’’
According to OpenAI, these models were trained on data up
to September of 20217 and therefore have not been exposed
to the 2021-22 or 2022-23 basketball season game results
or team tweets; however, these models have likely distilled
some historical knowledge about the teams/institutions, and
this should be kept in mind when interpreting their outputs.

Using the OpenAI API, we requested predicted comple-
tions for all 134 men’s and women’s NCAA tournament
games in the 2022-23 season. To determine the winning
team name from the predicted completion, a text similarity

7https://platform.openai.com/docs/models/gpt-3-5
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TABLE 1. Men’s tweet public metrics and tweet content references.

TABLE 2. Women’s tweet public metrics and tweet content references.

measure based on the Levenshtein Edit distance was com-
puted for each team in the matchup and the predicted
completion. Of the two teams, the team with the high-
est similarity result was considered the predicted winner.
We evaluated the prediction approach using the simple accu-
racy metric (# of correct predictions / # of total predictions)
with comparisons to a few baselines. First, from a statistical
perspective, predicting the winner of a game is a binary
classification task where each team is equally likely to win
if no prior knowledge is used in the prediction. Using the
inverse survival function of a binomial distribution, we can
determine a critical value, pcritical, at which n Bernoulli trials
are expected to exceed 0.5 at a significance level α [39]. If a
model’s prediction accuracy ≥ pcritical, then we can conclude
the model performed significantly better than random and the
two teams’ recent tweets hold some predictive power. For
134 games and α = 0.05, pcritical = 0.575. Second, we con-
sidered a baseline prediction model that always chooses the
team with the higher seed as the winner of each game. Next,
to account for models’ prior learned notions of the teams from
training, we requested gpt-3.5-turbo predictions for
zero-shot/zero-context learning as well, meaning the prompts
contained only the team names (no examples from other
teams and no team tweets as context). The final baseline
predictions we used were from the 2023 Kaggle Competi-
tion winning submission [8]. From the winning submission’s
predicted probabilities, we determined the predicted winning
team using a 0.5 probability threshold.

Finally, we leveraged the ability of LLMs to explain their
reasoning process to provide insight about what hidden infor-
mation and/or social network interaction in an official team

FIGURE 3. The number of tweets by part of the season and by game day
for the 2022-23 season.

tweet is responsible for its predictive power. Chain of thought
prompting [40] is a promising prompt engineering approach
to achieve this because it has been shown to increase the
explainability of domain-specific predictions [21]. To apply
chain of thought prompting, we modified the end of each
prompt to include, ‘‘Let’s think step by step.\nUse format
Reasoning process: . . . \nWinner: . . .’’ (see Figure 2 for an
example of the original prompt).

IV. RESULTS
Beginning with summary statistics, 540,726 tweets were cre-
ated during the 2021-22 season and 560,006 tweets were
created during the 2022-23, representing a 3.57% increase.
We break these seasonal differences down by team gender,
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FIGURE 4. Social media influence networks for the 2022-23 season. Team nodes are positioned using GPS coordinates with a no-overlap policy to
spread the nodes out. Team node size is relative to out degree and edge thickness is relative to influence.

with men’s in Table 1 and women’s in Table 2. These tables
also provide per tweet averages for public metrics and tweet
content references. When interpreting seasonal comparisons,
it is worth noting again that there were fewer teams in our

2021-22 season subset due to division reclassification and
Twitter account changes. Next, Figure 3.a shows the number
of tweets in three different parts of the season, Figure 3.b
shows the number of tweets on game days versus non-game
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TABLE 3. Game outcome prediction accuracy for the 2023 NCAA
tournament games.

days, and Figure 3.c shows the number of tweets per day of
the week.

To model and visualize the interaction among the teams
on Twitter, we generated two social influence networks, one
for the men’s teams and one for the women’s teams. There
were 354 nodes and 2,702 edges in the men’s network and
the top three influencers in the network by node out-degree
were @BoilerBall (23), @ZagMBB (23), and @VandyMBB
(21). Figure 4.a shows a graph visualization of the men’s
network with@BoilerBall and its conference (Big Ten) high-
lighted. On the women’s side, there were 344 nodes and 2,296
edges and the top three influencers in the network by node
out-degree were @GamecockWBB (32), @LSUwbkb (out-
degree 32), and @UConnWBB (out-degree 27). Figure 4.b
shows a graph visualization of the women’s network with
@LSUwbkb and its conference (SEC) highlighted.

For game winner prediction, we explored values of N and
K that would fit within the gpt-3.5-turbo max token
length.We foundN= 8 andK= 3were the largest values that
produced all 134 game prompts under thegpt-3.5-turbo
token limit. For context, the average men’s team produced
5.46 tweets per day and the average women’s team produced
5.11 tweets per day. This suggests N = 8 represents about a
day and a half of recent team tweets, though as Figures 3.b
and 3.c show, tweeting behavior is not consistent from day
to day. With gpt-3.5-turbo-16k, we could provide
even more context to the model for prediction. Consequently,
we ran a second experiment with double the number of
recent tweets (N = 16), representing about three days. For
comparison, we also used N = {8, 16} for our embeddings +

XGBoost (approach #1) experiments, yielding 20,371 (N =

8) and 20,047 (N = 16) games for training/validation.
Table 3 provides the accuracies from these experiments and

from our baseline prediction approaches. We do not report
accuracies for the chain of thought prompting experiments
because the responses occasionally contained predicted win-
ner text such as ‘‘Cannot determine’’ or ‘‘Based on the
analysis of the recent tweets, it is difficult to determine a
clear winner.’’ We do however provide two example chain
of thought prompt responses containing valid predictions in
Figure 5. Finally, it is worth noting that for the zero-shot/zero-

FIGURE 5. Example chain of thought reasoning responses.

context learning experiment, the model would sometimes
return a safe-guarded non-answer, such as ‘‘. . . It is not pos-
sible to accurately predict the winner of a specific college
basketball game without considering various factors such
as . . .Additionally, as an AI language model, I do not have
access to real-time data or the ability to analyze current
team dynamics. Therefore, I cannot provide a definitive
answer. . . ’’ In these cases, we forced a predicted winner by
choosing a winning team at random.

V. DISCUSSION
In this paper, we investigated the predictive power of men’s
and women’s Division I college basketball social network
data. Specifically, we aimed to use tweets and LLMs from
OpenAI to predict which team will win in a game matchup
during the 2022-23 NCAA tournament.

A. TWEET ACTIVITY AND SOCIAL NETWORK INFLUENCE
Beginning with the results in Tables 1 and 2, it appears
that the official team Twitter account usage between seasons
exhibited a different trend for the men’s teams versus the
women’s teams. The total number of tweets for the men’s
teams was surprisingly stable from the 2021-22 season to
2022-23 season; however, their reception by the Twitter
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community appeared to become less impactful, with negative
percent changes for like, retweet, and quote tweet averages.
The women’s public metric stats told a conflicting story,
with an increase in number of tweets and average likes and
retweets per tweet. While we cannot infer the cause of these
differences directly, we suspect the increased spectatorship
of women’s sports during the NCAA tournament due to
the record-breaking performance of Iowa’s Caitlyn Clark
impacted the numbers in some fashion. As for the structured
content of the tweets, both teams appear to be reducing their
use of mentions and hashtags, while increasing their use of
links. The links could be referencing a variety of media types,
such as websites, images, GIFs, videos, etc. Following these
links and replacing the<URL> placeholder with link content
information represents a potential direction for future work.

Figure 3.a shows when the teams were tweeting (regu-
lar season, between the regular season and tournament, and
during the tournament). While the total tweet numbers were
not surprising given the duration of these timeframes, it was
interesting that the teams that made it to the tournament
appeared to tweet more than their fair share during the regular
season. Figures 3.b and 3.c showwhen these tweets were hap-
pening relative to when the teamswere playing. Clearly teams
tweeted more on game days (and particularly on Saturdays)
while still being quite active on non-game days. Lastly, Fig-
ures 4.a and 4.b show there was a lot of interaction amongst
the men’s and women’s teams on Twitter during the 2022-
23 season. In each network, the highlighted nodes/edges
represent the teams/interactions within the conference with
the most influential team in the network. Following the edges
from these highlighted nodes shows there was a high amount
of interaction amongst teams within and outside of their con-
ference, particularly in the denser men’s network. The tweets
used for game winner prediction capture these interactions
as mentions, replies, retweets, and quote tweets in the days
leading up a game matchup between two teams, offering
insight that social media activity can be useful for game
winner prediction.

B. GAME WINNER PREDICTION
For winner prediction of the 134 tournament games in 2023,
we considered a prediction accuracy greater than 57.5% to
be better than random (based on pcritical). All but two of the
experimental results in Table 3 using LLMs exhibited accura-
cies greater than this cutoff, indicating both LLM approaches,
approach #1 (embeddings + XGboost) and approach #2
(in-context learning), hold predictive power for this social
media-based forecasting task. As expected, the winning
Kaggle Competition submissions for the 2023 tournament
produced the best accuracy with 73.1% overall, performing
particularly well for the women’s tournament (80.6%). When
comparing the men’s accuracies to the women’s accuracies,
except for approach #1 most of the methods performed better
for the women. This is not surprising since the women’s tour-
nament tends to experience fewer upsets. Note that theKaggle
accuracies are not directly comparable to our tweet-based

accuracies for a few reasons. First, the Kaggle predictions
were made in advance of the tournament and therefore did not
have access to timely information on social media. Second,
the Kaggle Competition was scored by the Brier score, not
accuracy like we are reporting.

The best overall performing LLM approach for men’s and
women’s teams was few-shot learning with N = 8 (accuracy
64.9%), although for the men’s games, both embeddings
+ XGBoost experiments outperformed in-context learning,
with N = 8 matching the Kaggle accuracy. This suggests that
both LLM approaches demonstrate predictive merit, espe-
cially when used with fewer recent N-tweets. Between the
two similarly performing approaches, one reason to favor
few-shot learning over embeddings + XGBoost is it uses
tweet text directly and does not require a feature engineering
step.

Zooming in on approach #2, few-shot learning generally
outperformed zero-shot learning and it outperformed zero-
shot/zero-context by about 10%, proving that tweet context
was predictive of next game performance; however, few-shot
learning was barely better than zero-shot/zero-context for the
men’s teams (∼1%) and quite a bit better for the women’s
teams (∼20%). The poorer zero-shot/zero-context accuracy
for women’s teams suggest that the original LLM training
set likely contained more historical performance information
about the men’s teams than the women’s teams.

Though we were limited by model token lengths,
we explored two values of N to see the effects of historical
tweet context length on prediction accuracy. For in-context
learning, it appears that a shorter tweet context (N = 8) led
to a slightly higher accuracy than a longer tweet context (N
= 16). Future work aims to explore additional values of N,
as well as K (the number shots used with in-context learning).
The latter is important because the choice of shot number can
be tuned to achieve greater LLM performance [41], with 4 –
8 exemplars generally yielding good results [42].

Chain of thought prompting provided insights into the
reasoning processes LLMs employed when making predic-
tions. The enumerated reasons provided in the response
shown in Figure 5.b suggest showing confidence, mention-
ing/interacting with the opponent, and conveying an energetic
tone are signs a team is likely to win their upcoming game.
The response in Figure 5.a is less structured and suggests that
tweets containing spirited hashtags, notable achievements,
and support from credible sources such as a ‘‘prominent bas-
ketball personality’’ are informative. These diverse predictive
qualities are all embedded in social network data, eliminating
the need to collect this information from disparate sources.

C. LIMITATIONS AND FUTURE WORK
While this work provides promising prediction results, there
are several limitations to discuss. First, this technique cannot
be used to make March Madness brackets before the first
tournament game. This is because, by design, the recent
N-tweets pairs used for inference are not available until
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shortly before a game starts. On the other hand, these just-
in-time predictions can be useful for sports betting or posting
predictions on social media, without the need for deploying a
custom trained model (e.g., an inference API like OpenAI or
a chat interface like ChatGPT can be used to produce game
winner predictions directly from social media text). Another
limitation includes the recent transition from Twitter to X.
With this change, Twitter removed their generous API access
and replaced it with several pay-walled access tiers, reducing
the likelihood of future social media research (of any kind)
with their platform.While this work as presented used Twitter
data and its API, it is a general game outcome prediction
framework that can use text from team posts on any social
media platform.

Given the novelty of this work, there are several promising
directions for future exploration. First, recent prompt engi-
neering techniques such as iterative bootstrapping in chain
of thought prompting [43], self-consistency [44], generated
knowledge prompting [45], [46], or least-to-most prompt-
ing [47] can be leveraged to improve the few-shot learning
results. While we briefly explored chain of thought prompt-
ing in this paper, a more thorough analysis of what social
media information LLMs find predictive would shed more
light on the reasons why LLMs predict certain teams to win.
Additionally, once this information is identified, it could be
extracted and fused with the more traditional team/player
performance and expert opinion features to increase the pre-
dictive power of state-of-the-art models. Given the success of
a similar approach by Beal and colleagues, this performance
gain seems likely [34]. Finally, though we did not pursue
fine tuning LLMs as a third prediction approach, perhaps
parameter efficient fine tuning with our in-context learning
prompts [38] may offer an improvement in accuracy as well.

VI. CONCLUSION
In this paper, we presented a large-scale social media dataset
containing the tweets of all men’s and women’s Division I
college basketball teams during the most recent two seasons.
We used this dataset to explore the first application of social
network data and in-context (few-shot/zero-shot) learning for
sporting event outcome prediction. While the goal of this
work was not to beat the state-of-the-art prediction models
with tweets alone, our work has provided evidence of the
predictive power of official team tweets, interactions amongst
teams in a social network, and LLMs for forecasting game
outcomes. For the 2022-23 season, embeddings + XGBoost
yielded a 65.7% prediction accuracy for the men’s tourna-
ment games and few-shot learning yielded a 70.2% prediction
accuracy for the women’s tournament games. These accura-
cies support future work exploring the application of LLMs
in the field of sports analytics.
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