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ABSTRACT The single image super-resolution based on deep learning has achieved extraordinary per-
formance. However, due to inevitable environmental or technological limitations, some images not only
have low resolution but also low brightness. The existing super-resolution methods for restoring images
through low-light input may encounter issues such as low brightness and many missing details. In this
paper, we propose a semantic-aware guided low-light image super-resolution method. Initially, we present
a semantic perception guided super-resolution framework that utilizes the rich semantic prior knowledge of
the semantic network module. Through the semantic-aware guidance module, reference semantic features
and target image features are fused in a quantitative attention manner, guiding low-light image features to
maintain semantic consistency during the reconstruction process. Second, we design a self-calibrated light
adjustment module to constrain the convergence consistency of each illumination estimation block by self-
calibrated block, improving the stability and robustness of output brightness enhancement features. Third,
we design a lightweight super resolution module based on spatial and channel reconstruction convolution,
which uses the attention module to further enhances the super-resolution reconstruction capability. Our
proposed model surpasses methods such as RDN, RCAN, and NLSN in both qualitative and quantitative
analysis of low-light image super-resolution reconstruction. The experiment proves the efficiency and
effectiveness of our method.

INDEX TERMS Low-light image, semantic-aware, super-resolution.

I. INTRODUCTION has the highest share of more than 40%. The efficient and

Among the external information obtained by human beings,
visual information accounts for about 63% to 83%. Fast and
efficient processing of visual information is an important
core of human intelligence. In recent years, with the rapid
development of artificial intelligence (Al) technology, new
technologies such as visual Al, decision-making Al, speech
semantic Al and Al robot have an unprecedented impact in
medical care, technology, education, transportation, finance,
entertainment and other fields. In the AI market, visual Al
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rapid processing of visual information has become a crucial
component of Al technology. The emergence of computer
vision technology based on deep neural network has greatly
promoted the development of visual Al in terms of quality,
efficiency and practical application.

Visual Al is based on high-quality images or video data.
However, due to the influence of hardware cost, equipment
process, shooting time and angle, some of the image or
video data acquired by hardware sensors have low reso-
lution and brightness. Low quality data seriously affects
the accuracy of visual Al, such as target detection, image
segmentation, facial recognition, pattern recognition, image
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classification and other upstream visual Al. Super-resolution
technology belongs to low-level vision Al technology, which
can reconstruct low-resolution images into high-resolution
data without increasing the hardware cost, effectively improv-
ing the accuracy and robustness of upstream vision Al tasks.

Dong Cao et al. first applied deep neural network to super-
resolution reconstruction, and the proposed Super-Resolution
Convolutional Neural Networks (SRCNN) greatly improves
the quality of reconstruction [1]. Subsequently, Dong Cao
et al. proposed Fast SRCNN (FSRCNN), which further
improves the efficiency of super-resolution reconstruc-
tion [2]. After He et al. presented the residual neural
network, Kim et al. applied the idea of residual learn-
ing to super-resolution reconstruction, and proposed method
such as Super-Resolution using Very Deep convolutional
networks (VDSR), Deeply-Recursive Convolutional Net-
work for Image Super-Resolution (DRCN) [3], [4]. The
super-resolution reconstruction uses residual neural networks
as the backbone network, which enables the super-resolution
model to focus on learning high-frequency information.
The low frequency information is transmitted directly from
the input end by using the fast connection, which can
greatly reduce the computation and improve the quality of
super-resolution reconstruction, and become the basis of
constructing super-resolution networks. Subsequently, the
introduction of attention mechanisms, generative adversarial
networks, prior knowledge and other technologies continu-
ously improved the quality and efficiency of super-resolution
reconstruction.

The super-resolution technology based on deep learning
has achieved extraordinary performance. However, existing
super-resolution methods mainly rely on deep neural net-
works to learn the nonlinear mapping relationship between
pixels in low-resolution (LR) images and high-resolution
(HR) images, lacking understanding and utilization of over-
all semantic knowledge of images. In addition, due to
inevitable environmental or technological limitations, some
images not only have low resolution but also low bright-
ness. The existing super-resolution methods for restoring
images through low-light input may encounter issues such
as low brightness and many missing details. To address
the above issues, we propose a semantic-aware guided low-
light image super-resolution method, which uses a semantic
segmentation network pre-trained on a large-scale dataset
PASCAL-Context to provide semantic prior guidance knowl-
edge for super-resolution reconstruction. and we build an
adaptive brightness enhancement module to learn the illumi-
nation component to enhance the brightness of the input low
resolution image. The main contributions of this paper are
summarized as follows:

(1) We propose a semantic-aware guided low-light image
super-resolution framework based on the rich semantic
prior knowledge provided by semantic segmentation net-
work, including intermediate features and semantic mapping.
The framework uses semantic-awareness guidance module
(SAGM) to guide the low-light super-resolution module to
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have the region awareness ability and restrict the reconstruc-
tion authenticity of detail-rich regions.

(2) We design an adaptive lighting adjustment module
(LAM) for learning illumination components, which con-
strains the convergence consistency of each illumination
estimation block through self-calibrated blocks. This module
improves the stability and robustness of the output brightness
enhancement feature, and improves the brightness of the
input low resolution image.

(3) We design a lightweight super-resolution module
(SRM) based on spatial and channel reconstruction con-
volution. On the basis of semantic guidance and LAM,
the ability of SRM is enhanced through feature distilla-
tion, feature aggregation, and feature optimization, as well
as the introduction of attention module. The experimental
results demonstrate large performance improvements by our
semantic-aware guided super-resolution (SAGSR).

Il. RELATED WORK

Early super-resolution algorithms were mostly based on
interpolation, while traditional interpolation algorithms used
pixels around sampling points to recover target pixels,
including nearest neighbor interpolation, bilinear interpo-
lation, bicubic interpolation, etc. Before the application
of deep learning technology to super-resolution recon-
struction, most advanced super-resolution algorithms were
example-based. According to different learning databases,
example-based super-resolution algorithms can be divided
into internal example-based super-resolution algorithms and
external example-based super-resolution algorithms. In 2014,
Dong et al. from the Chinese University of Hong Kong
first applied deep learning to super-resolution reconstruc-
tion and proposed the super-resolution algorithm SRCNN
based on convolutional neural networks [1]. Subsequently,
deep learning based super-resolution algorithms became a
research hotspot, and researchers continuously improved
super-resolution algorithms from aspects such as network
structure, loss function, and learning mechanism, leading to
the development of numerous outstanding super-resolution
algorithms.

A. SINGLE IMAGE SUPER-RESOLUTION

Ma et al. proposed a method of using gradient maps to
constrain the structure of super-resolution images [S]. The
dynamic convolutional network proposed by Xu et al. solves
the super-resolution restoration problem for multiple com-
binations of fuzzy kernels and noisy images [6]. Yoo et al.
presented a super-resolution reconstruction network based on
data augmentation [7]. Hussein et al. solved the problem of
mismatch between test data and training data in practical sce-
narios using the correction filter for super-resolution [8]. Chu
et al. introduced a lightweight and accurate super-resolution
method that leverages Neural Architecture Search (NAS) for
efficient and rapid performance [9]. Wang et al. designed a
degenerated perceptual super-resolution network to solve the
blind super-resolution problem of unsupervised degenerated
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representation learning [10]. The super-resolution method
based on additive neural networks adopted by Song et al.,
which used addition operations in the output layer calculation
to avoid the significant computational power consumption
of traditional convolutional neural network convolution ker-
nel multiplication [11]. Wang et al. introduced a approach
rooted in sparse mask networks. This method utilized sparse
masks to differentiate between crucial regions (e.g., edges
and textures) and less significant areas, thereby concentrat-
ing computational resources on the important regions to
curtail redundant computations [12]. Kong et al. combined
classification network and super-resolution network into a
unified framework, using classification network to classify
sub images into different categories based on the difficulty
of restoration, and then using super-resolution modules to
perform different super-resolution algorithms for different
categories [13]. Deng et al. introduced a Laplacian multi-
level separation framework for achieving super-resolution
reconstruction of panoramic images across various latitude
bands [14]. Liang et al. proposed a method for constructing a
kernel prior modeling approach based on normalized flows by
learning the invertible mapping between anisotropic gaussian
kernel distributions and controllable hidden distributions,
aiming to address the challenge of blind super-resolution
reconstruction [15]. Son et al. developed a super-resolution
network capable of achieving arbitrary image transforma-
tions [16]. Kim et al. [17] proposed a kernel adaptive locally
adjusted blind super-resolution network framework based on
super-resolution features [17]. Bhat et al. designed a multi-
frame super-resolution network framework by composing
information from various actual image signals [18]. Hui et
al. introduced an adaptive modulation super-resolution recon-
struction network tailored for handling multiple degrada-
tions [19]. Jo et al. proposed a search-based super-resolution
reconstruction method for applications with limited compu-
tational power such as smartphones and televisions [20].

B. GUIDED SUPER-RESOLUTION

Wang et al. proposed a super-resolution method based on
spatial feature transformation, which uses prior category
information to solve the problem of unreal super-resolution
textures [21]. Zhang et al. designed an end-to-end depth
model that adaptively transfers textures from reference
images based on texture similarity to enrich the detailed infor-
mation of high-resolution images [22]. Yang et al. proposed a
Transformer-based reference-based super-resolution method,
which utilizes attention mechanisms to discover the deep fea-
ture correspondence between the low-resolution image and
the reference image, thereby transferring accurate texture fea-
tures during the super-resolution reconstruction process and
improving the quality of the reconstruction [23]. Zhou et al.
proposed a reference-based super-resolution network that
takes the underlying scene structure as a clue. This network
incorporates of a plane-aware attention mechanism, a multi-
scale guided upsampling module, and a super-resolution
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synthesis module, collectively enabling high-fidelity super-
resolution reconstruction even at high magnification [24].
Jiang et al. introduced a C2-Matching algorithm with clear
robust matching to solve the conversion and resolution gap
between input image and reference image. To bridge the
conversion gap, the comparative correspondence network
leverages an enhanced representation of the input image
to learn robust conversion correspondences. For the res-
olution gap, knowledge distillation is used to guide low
resolution to high resolution matching from easier high
resolution matching through the teacher-student correlation
distillation method, which effectively improves the qual-
ity of reference-based super resolution reconstruction [25].
Lu et al. introduced a reference image super-resolution tech-
nique that addresses the limitations of current reference-
based super-resolution methods by accounting for potential
distribution disparities between the low-resolution image
and the reference image. The method constructs coarse-to-
fine matching schemes by matching and extracting modules,
and learns the distribution difference between low-resolution
images and reference images by spatial adaptive modules,
and remaps the distribution of reference image features to
the distribution of low-resolution image features in a spatially
adaptive way [26]. Hayat et al. proposed a combined channel
and spatial attention block to extract features incorporated
with a specific but very strong parallax attention module
for endoscopic image super-resolution [27]. Subsequently,
a multi-stage network with a pioneering stereo endoscopic
attention module was proposed to integrate edge-guided
stereoscopic attention mechanisms into every interaction of
stereoscopic features [28].

C. SEMANTIC SEGMENTATION

Semantic segmentation involves labeling each pixel in the
input image with its corresponding category, assigning an
accurate semantic label in the process. Since image segmen-
tation necessitates the consideration of location information
for each pixel, encoder-decoder structures are frequently
employed. The encoder generates a low-resolution fea-
ture map by reducing the spatial resolution of the input
image through downsampling, and the decoder recovers the
low-resolution feature map into a high-resolution segmen-
tation map through upsampling. Vijay Badrinarayanan et al.
introduced a novel deep convolutional encoder-decoder
architecture for image segmentation (SegNet). In this archi-
tecture, the decoder adopts the pooled index nonlinear upsam-
pling of the encoder, which not only solves the loss of position
information caused by multiple pooling, but also effectively
reduces the computational load and improves the efficiency of
semantic segmentation [29]. Lin et al. introduced a Multi-path
Refinement Networks for High-Resolution Semantic Seg-
mentation (RefineNet). By employing residual convolution,
multi-resolution fusion, and chain residual pooling, it has
effectively improve the quantitative indexes of semantic seg-
mentation [30]. Zhao et al. proposed the Pyramid Scene
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FIGURE 1. Overview of our semantic-aware guided super-resolution framework (SAGSR).

Parsing network (PSPnet), which using the spatial pyra-
mid pooling to generate feature maps possessing varying
receptive field sizes, which are then merged to harness the
global scene category cues, ultimately enabling multi-level
semantic feature fusion [31]. Chen et al. introduced Seman-
tic image segmentation with deep convolutional nets and
fully connected CRFs (DeepLab) in their work, and sub-
sequently enhanced the semantic segmentation capabilities
of DeepLab, culminating in the development of four dis-
tinct versions: DeepLabV1, DeepLabV2, DeepLabV3, and
DeepLabV3+ [32], [33], [34], [35]. Wang et al. intro-
duced Deep High-Resolution Representation Learning for
Visual Recognition (HRNet), utilizing parallel connections
of convolutional streams ranging from high to low reso-
lutions to enhance the accuracy of semantic segmentation
by facilitating continuous information exchange among var-
ious resolutions [36]. Aakerberg et al. proposed a novel
framework, semantic segmentation guided real-world super-
resolution, which uses an auxiliary semantic segmentation
network to guide the SR learning [37]. Wu et al. designed
a semantics-aware approach to better preserve the semantic
fidelity of generative real-world image super-resolution [38].
Park et al. proposed a novel semantic SR method that is based
on the generative adversarial network framework and self-
distillation [39]. Li et al. proposed the simple and effective
semantic-aware discriminator to excavate the semantics of
images from a well-trained semantic extractor [40]. We make
a comparison between the strength and weakness of SR meth-
ods in recent years, as shown in Table 1.

Our solution explores the challenges of the previously
proposed approach by building a semantically aware guided
SR framework, integrating LAM and SRM. Low-light image
SR guided by semantic perception can be widely used
in public security, criminal investigation and other fields,
and it is of great significance to actively explore related
solutions.
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TABLE 1. Comparison of super-resolution methods.

Method Year Strength Weakness
HRNet High semantic  Lack of SR
2020 . .
[34] segmentation accuracy  reconstruction
MASA- Robust to handle Loduires reference
2021 . images, and lacks
SR[26] reference images. : .
semantic guidance
SSG- Semantic Lack of low-light
RWSR 2022 . . .
137] Segmentation Guided ~ processing
Reproduce more Texture  distortion
SeeSR [38] 2023 produ ‘ and lack of low-light
realistic image details .
processing
semantic 2024 (I:‘;Zmo " eCitl_lrcnphClt Reconstruct  image
SR [39] BOTy=SP texture distortion
semantic priors
SED [40] 2024 Semantic-aware Lack of low-light

discriminator processing

Ill. THE PROPOSED METHOD

A. PROPOSED SUPER-RESOLUTION FRAMEWORK
Single-image super-resolution refers to the reconstruction
of a high-resolution image based on a low-resolution
image. In existing research, it is commonly presumed
that low-resolution images originate from degraded high-
resolution images. Equation (1) illustrates the degradation
model, with k& denoting the blur kernel, s indicating the
down-sampling scale factor, and n representing noise.

To facilitate the procurement of paired images for training
super-resolution models, numerous super-resolution tech-
niques usually overlook the impact of blur and noise, opting
instead to utilize bicubic down-sampling of high-resolution
images for the construction of training and testing datasets.

Itr = (gg % k) |5 +n (D

In reality, the degradation of images is significantly more
intricate than bicubic downsampling. For instance, owing
to unavoidable environmental or technical constraints, the
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FIGURE 2. The architecture of low-light image super-resolution network (LISR).

brightness and resolution of the image may be low, leading
to a compromised visual perception quality. To recover the
concealed finer points during the super-resolution reconstruc-
tion process, we introduce a semantically perception-guided
super-resolution method, the architecture of which is depicted
in Figure 1 Semantic segmentation is to segment the object
in the image on the basis of understanding the image
scene through the intensive marking of pixels in the image.
We firmly believe that the abundant semantic prior knowl-
edge offered by semantic segmentation networks serves a
crucial purpose in bolstering the effectiveness of low-light
image super-resolution networks and elevating the authentic-
ity of reconstructed imagery. The Semantic Network Module
(SNM), which has been pre-trained on extensive datasets,
can furnish abundant semantic prior knowledge encompass-
ing intermediate features and semantic mappings. SNM uses
semantic awareness guidance module to integrate semantic
features and image features of target features in a quantitative
attention way, and guides the features of low-light images
to maintain semantic consistency. Light adjustment mod-
ule including self-calibrated block (SCB) and illumination
estimation block (IEB). By leveraging the SCB, it ensures
convergence consistency among the output results of each
IEB, enhancing the stability of brightness features. Further-
more, it facilitates rapid, adaptable, and robust illumination
enhancement. The Super-Resolution Module primarily com-
prises a spatial and channel reconstruction distillation module
that replaces redundant convolution operations with spa-
tial and channel reconstruction convolutions. Additionally,
an attention module is employed to further enhance the recon-
struction capabilities of the SRM.

B. SEMANTIC AWARENESS BASED ON
TRANSPOSED-ATTENTION MECHANISM

Current super-resolution methods primarily focus on learning
the mapping between low-resolution image and high-
resolution image pixels, neglecting the comprehension and
utilization of the comprehensive semantic knowledge within
the image. Our designed semantic segmentation module
is capable of providing abundant prior knowledge for
super-resolution reconstruction of low-light images, guiding
the low-light super-resolution module to possess regional
awareness, limiting the reconstruction authenticity of detailed
regions, and ensuring color consistency in SR images [41].
To construct the SNM, we leverage the pre-trained
High-Resolution Network (HRNet) [36] on the extensive
PASCAL-Context dataset, providing semantic prior guidance
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for the low-light image super-resolution reconstruction
module.

In SAGSR, the input image is a low-resolution, low-light
image IR =RW*XHX3 With a height of H and a width of W,
which is limited by the exposure time of the hardware equip-
ment and the shooting environment. Guided by the semantic
segmentation module, the process of super-resolution recon-
struction for low-light images can be formulated as a
function, as demonstrated in Equations (2) and Equations (3).

SP = F(ILR; Oss) 2)
Iyr = Fy (1R, SP; O5) 3)
05 = argminl(Iug, Iug, SP) 4)

In Equation (2), semantic prior knowledge is repre-
sented SP, encompassing multi-scale, multi-dimensional
intermediate features along with semantic segmentation out-
comes. F represents a fully trained semantic segmentation
network, and 6 represents the network parameters for
semantic segmentation, which is frozen during the train-
ing process. In Equation (3), semantic prior knowledge
SP and the low-resolution image I;r serve as inputs to
the super-resolution network Fj,, with 1:1} representing the
resulting super-resolution reconstruction. During the training
phase, 6,; will be guided by semantic prior knowledge SP
to minimize the objective function, with the update process
outlined in Equation (4). Among then, Iyr represents the
ground truth, and E(I;;R, Iyr, SP) represents the objective
function of SAGSR.

To leverage the semantic priors from SNM for enhancing
the features of the Low-Illumination Super-Resolution Net-
work (LISRM), we design a SAGM based on the transposed-
attention mechanism. This mechanism fusions intermediate
features from different scales of SNM and LISRM to obtain
refined feature maps. SAGM serves as a bridge between
SNM and LISRM, establishing a connection between the two
heterogeneous tasks.

We define £ as the intermediate feature of SNM, and f..
as the intermediate feature of LISRM. The SAGM performs
pixel-level interactions between fi 1 fi to obtain refined
features ,‘0 where i = 1,2,3...n. The SAGM employs a
transposed-attention mechanism to compute the cross-modal
similarity between features fi and f. [42], resulting in a
semantically aware attention map AM’. This computation
process is outlined in Equation (5).

AM' = Softmax(LN(CL (f;s) ) x LN(CL (f;’,) )/NC) (5)
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i~ FN (LN(CL (ﬁ,))) x AMi + . 6)

In Equation (5), CL denotes convolution layers, LN rep-
resents layer normalization, and C refers to the number of
channels in the feature. To begin, we employ CL to trans-
form f and f!. into the same dimension and utilize LN to
constrain gradient variations. Then, £ and f. of the same
dimension are computed using matrix multiplication, divided
by the number of channels C of the feature to generate a
semantic-aware graph. Finally, the semantic-aware attention
map AM' for the i-th SAGM is obtained through the softmax
function, representing the interrelationship between f. and
. ;'r. Using Equation (6), with AM‘as the input, refined feature

i is obtained. Among them, FN represents the feed forward
network, and /) represents the final refined feature of the i-th
SAGM.

C. SELF-CALIBRATED LIGHT ADJUSTMENT MODULE

The adaptive lighting adjustment module is designed to learn
the illumination component and enhance the brightness of
low-resolution input images. Based on the retinex theory,
there exists a relationship between the low-light input image
I g and the desired sharp image Isg, given by I g = Isg Q IC,
where IC represents the illumination component. Using the
stage-wise optimization strategy [43], [44], we construct a
self-calibrated light adjustment module with parameters 6
and 9. This LAM includes self-calibrated block and illumi-
nation estimation block, as show in Figure 2.

The IEB is modeled using a stage-wise optimization strat-
egy, with its fundamental unit described by Equation (7). The
illumination component and residual term at the i-th stage
are denoted as IC? and }[g(lCi), andi = 1,2,3,...n. As there
exist linear connections between illumination and low-light
observation in most regions, the parameterized operator Fg
in the IEB learns residual mappings from these two factors,
enabling significant computational savings while enhancing
the quality and stability of illumination.

ICT! = IC" + 3, (ICY) 7
SCl =1C° + Mpuc® @ ICH (8)
ICT! = SC' + 3£5(SCY) 9)

SCB is utilized to constrain the convergence state of each
LAM, and its computational process can be described using
Equation (8). The initial input of LAM for low-light obser-
vation, denoted as IC°, undergoes a series of transformations
mediated by parameterized operators, denoted as My, at each
stage of computation. We have linked the input /C' and the
initial low-light observation IC° from each stage as inputs to
My, and utilize IC 0 to construct residual connections for the
SCB, resulting in stage-wise constrained outputs SC* for the
SCB. By integrating SCB and IEB, the LAM computation
process is detailed in Equation (9). LAM exhibits superior
robustness and adaptability to unknown and complex scenar-
ios through the convergence constraints offered by SCB.
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D. SUPER-RESOLUTION MODULE

To address the challenges of high computational costs and
inefficient reconstruction in single-image super-resolution
models, we employ spatial and channel reconstruction con-
volution, which replaces redundant convolution operations.
Furthermore, we introduce the attention module CCA to
enhance the capabilities of the super-resolution module. The
architecture of our low-light super-resolution reconstruction
network, as depicted in Figure 2, comprises three stages:
feature extraction, feature fusion, and reconstruction.

I = Concat,(LAM (I1R)) (10)
Fi=H;(Fi—1),i=1,2...,n (11
Fruseda = Hfusion (Concat(Fy, ..., Fi_1)) (12)
Isg = Hyec (Ffusea + Fo) (13)

As shown in Equation (10), initially, the output of LAM
is replicated n times and concatenated together to serve as
the input for SRM. Where Concat(-) denotes the operation
of connection along the channel dimension, and n represents
the quantity of LAM (Irg) to be interconnected. During the
feature extraction stage, we utilize SCConv for the initial
extraction of features, followed by multiple SCRDBs for
deep feature extraction. This progressive optimization of
extracted features is described by Equation (11). The struc-
ture of SRCDB, as illustrated in Figure 3, encompasses three
stages: feature distillation, feature aggregation, and feature
optimization. In the feature distillation stage, the input fea-
tures are categorized into distillation features and refinement
features. The distillation features undergo feature aggrega-
tion via Conv-1, while the refinement features are gradually
refined through SRCN and undergo feature aggregation using
SCConv in the fourth layer. Subsequently, the aggregated
features are optimized after undergoing dimension reduction
through Conv-1. By introducing CCA, we aim to enhance
the representational power of SRM while maintaining its
efficiency.

Fully utilizing features of different layers within SRM
can significantly enhance reconstruction quality. As shown
in Equation (12), we fuse F; at different layers to obtain
Ffisea and then map it using Conv-1 and the GELU activation
function. Subsequently, an SCConv is employed to refine
the features. To fully leverage residual learning, we employ
a long skip connection, connecting Fy to the output of
SCConv, and employ pixel shuffle upsampling to achieve
image super-resolution reconstruction. The reconstructed
features encompass both Fsq and Fo, as demonstrated in
Equation (13).

IV. EXPERIMENTS AND RESULTS

A. EXPERIMENTAL SETTINGS

1) DATASETS AND METRICS

In qualitative evaluation, we tested on datasets from different
scenarios, including the MIT dataset [45] and the LSRW
dataset [46]. In the quantitative evaluation, we tested on
the five datasets most commonly used for super resolution,
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(a) SCRDB

(c) SCRB

FIGURE 3. (a)The architecture of SCRDB. (b) The architecture of CCA
Block, consists of a contrast layer, two Conv-1, and a Sigmoid. (c) The
architecture of SCRB, consists of a SCConv and GELU.

including SetS, Set14, B100, Urban100, and Mangal09. The
evaluation metrics employed were peak signal to noise ratio
(PSNR) and structural similarity (SSIM).

2) COMPARED METHODS

We trained SR network models, such as SRCNN, FSRCNN,
VDSR, EDSR, DPBN, RDN, RCAN, NLSN, LKDN etc., for
comparison in the same software and hardware environment,
using the same dataset, setting the same training rounds,
and using Set5, Setl4, B100, Urban100, and MangalQ9 as
test sets to compare semantic perception SR models with
comparative SR models in quantitative evaluation. In qual-
itative analysis, we mainly selected VDSR, EDSR,, DBPN,
RDN, RCAN, NLSN and LKDN as comparative methods.
In quantitative analysis, we mainly selected lightweight SR
methods, including SRCNN, FSRCNN, VDSR, LapSRN,
DRRN, RFDN, VAPSR, LKDN-S, LKDN as well as some
classic SR methods, including D-DBPN, RDN, RCAN, etc.

3) IMPLEMENTATION DETAILS

In the training process, we use random rotation and horizontal
flipping for data augmentation and use the ADAM optimizer
to set the momentum parameters 8; = 0.9, 8, = 0.999, with
the initial learning rate is set to 1 x 10~ and halved every 1 x
10 iterations. Besides, all the experiments are implemented
on a common operating platform (an NVIDIA RTX 3090ti
24G GPU), using Python 3.6.2 for encoding.

B. COMPARISON WITH STATE-OF-THE-ART METHODS

1) QUALITATIVE EVALUATION

SAGSR benefits from the rich prior semantic knowledge
provided by SNM, which can ensure semantic consistency
of low-light image features during the reconstruction pro-
cess. We have selected three different living scene images,
including outdoor rest areas, walls, and corridors. These
images have low brightness and resolution due to issues with
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shooting time and hardware craftsmanship. From Figure 4,
it can be seen that our proposed SAGSR reconstruction
method performs significantly better than the comparison
methods. The rest area image reconstructed by SAGSR
clearly shows three sofas, two coffee tables, and promotional
posters on the wall. The wall image reconstructed by SAGSR
can clearly show a blue and a green triangle decoration,
while other comparison methods can only vaguely see the two
triangle decorations, making it difficult to distinguish colors.
The corridor image reconstructed by SAGSR shows the text
presented on the promotional poster, but other comparison
methods cannot recognize the text on the promotional poster.

In order to clearly compare the reconstruction effects of
various methods, we selected some detailed areas of LR
images and displayed the 4 x reconstruction effect of details
in three life scene images. From Figure 5, it can be seen that
our proposed SAGSR is significantly superior to the compari-
son methods VDSR, EDSR, DBPN, RDN, RCAN, NLSN and
LKDN. Taking corridor promotional posters as an example,
the images reconstructed by SAGSR can recognize most of
the text on the poster, but the comparison methods is difficult
to recognize the text information on the poster. It should
be noted that considering the hardware computing power of
practical application scenarios, our LAM and SRM are both
lightweight modules. The time for SAGSR reconstruction
(4x) of a low resolution image with a resolution of 280 x
210 is approximately 0.07 seconds. In this comparison, the
reconstruction time for a low-resolution image (280 x 210)
using the DBPN method (4x) is approximately 34.63 seconds,
while EDSR takes around 1.12 seconds, RCAN and NLSN
approximately 1.25 seconds, RDN around 1.34 seconds, and
VDSR approximately 1.07 seconds. SAGSR not only outper-
forms comparison methods in reconstructing visual effects,
but also outperforms contrast methods in reconstruction
efficiency.

C. QUANTITATIVE EVALUATION

In quantitative analysis, in order to fairly compare the indi-
cators PSNR and SSIM of various super-resolution methods,
we removed LAM from SAGSR and set the number of SRM
to 8, and the number of channels is set to 64. LAM can
improve the brightness of images, but in PSNR and SSIM,
the adjustment of pixel brightness by LAM can lead to inac-
curate (much lower) PSNR and SSIM values. It is worth
noting that SNM provides rich semantic prior knowledge
composed of intermediate features and semantic mappings
during the training phase, and integrates semantic features
and reconstructed features through SAGM in a quantitative
attention manner. In the inference stage, we froze the SNM to
ensure the lightweight of the SR model. The parameter size
of lightweight SAGSR is 372K, and we can further reduce
the parameter size of SAGSR to 186K by setting the number
of SRM to 4. As shown in Table 2, the PSNR and SSIM
of SAGSR outperform most comparison methods on five
datasets including SetS. Among all the comparison meth-
ods, the parameter size of RFDN is 550K, which is closest
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FIGURE 4. Visual comparison of SAGSR with the state-of-the-art methods on x4 SR.
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FIGURE 5. Visual comparison (details) of SAGSR with the state-of-the-art methods on x4 SR.

to SAGSR. The PSNR value of SAGSR is 0.26dB-1.14dB
higher than RFDN, and the SSIM is 0.037-0.088 higher. The
PSNR and SSIM values of RCAN are closest to SAGSR, with
the PSNR value of SAGSR increasing by 0.02dB-0.07dB and
SSIM increasing by 0.0-0.002 compared to RCAN. However,
the parameter quantity of RCAN is about 16000K, far exceed-
ing SAGSR. Ensuring the lightweight of the SR model during
the inference phase is beneficial for its practical application.

D. ABLATION STUDY
1) EFFECTIVENESS OF SNM
To verify the role of prior semantic knowledge in super-
resolution reconstruction, we tested the PSNR and SSIM
values with and without SNM on five datasets, referring to
the quantitative analysis settings. As Table 3 demonstrates,
the removal of SNM led to a decrease in both PSNR and SSIM
values across all datasets.

The removal of SNM resulted in the largest decrease in
PSNR value on Set5 dataset, reaching 0.52dB, and the largest
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decrease in SSIM value on B100 dataset, reaching 0.088.
On the whole, the removal of SNM resulted in a decrease
of 0.289dB in PSNR and 0.0578dB in SSIM. These findings
clearly highlight the importance of prior semantic knowledge
in super-resolution reconstruction.

2) EFFECTIVENESS OF LAM

To verify the role of LAM in SAGSR, we selected 6 images
from different life scenes and reconstructed them 4 x with
and without LAM, respectively. From Figure 6, it can be
seen that after removing LAM, many details of the SAGSR
reconstructed image are hidden in the dark and difficult to
recognize. For example, the umbrella in (a), the promotional
poster on the wall in (b), the table in (c), and the cups in
(e) and (f) are all hidden in the darkness, and even after
SR reconstruction, it is still difficult to clearly observe their
detailed information. Guided by prior semantic knowledge of
SNM, SAGSR can effectively process low-light and low res-
olution images by integrating LAM and SRM. When SAGSR
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TABLE 2. Quantitative comparison with state-of-the-art methods on benchmark datasets.

. Set5 Setl14 B100 Urban100 Mangal09
SR algorithms Scale

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Bicubic 4 28.42 0.810 26.10 0.702 25.96 0.667 23.15 0.657 24.92 0.789
SRCNN [1] 4 30.48 0.863 27.49 0.750 26.90 0.710 24.52 0.722 27.66 0.851
FSRCNN [2] 4 30.71 0.866 27.59 0.754 26.98 0.715 24.62 0.728 27.90 0.852
VDSR [3] 4 31.35 0.884 28.01 0.767 27.29 0.725 25.18 0.752 28.83 0.881
EDSR [47] 4 32.46 0.897 28.80 0.788 27.71 0.742 26.64 0.803 31.02 0.915
MDSR [47] 4 32.50 0.897 28.72 0.786 27.72 0.742 26.67 0.804 31.03 0.915
DRCN [4] 4 31.53 0.885 28.02 0.767 27.23 0.723 25.14 0.751 28.98 0.882
LapSRN [48] 4 31.54 0.885 28.09 0.770 27.32 0.726 25.21 0.756 29.09 0.890
DRRN [49] 4 31.68 0.889 28.21 0.772 27.38 0.728 25.44 0.764 29.46 0.896
D-DBPN [50] 4 32.47 0.898 28.82 0.786 27.72 0.740 26.38 0.795 30.91 0.914
ESPCN [51] 4 29.21 0.851 26.40 0.744 25.50 0.696 24.02 0.726 23.55 0.795
SRMDNF [52] 4 31.96 0.893 28.35 0.777 27.49 0.734 25.68 0.773 30.12 0.902
RFDN [21] 4 31.96 0.890 28.44 0.780 27.49 0.735 25.77 0.775 30.08 0.900
RDN [53] 4 32.47 0.899 28.81 0.787 27.72 0.742 26.61 0.803 31.00 0.915
SRFBN [54] 4 32.47 0.898 28.81 0.787 27.72 0.741 26.60 0.802 31.15 0.916
RCAN [55] 4 3243 0.931 28.79 0.848 27.71 0.822 26.65 0.854 31.15 0.935
NLSN [56] 4 32.39 0.900 28.79 0.848 27.72 0.822 26.71 0.854 31.20 0.935
VAPSR [57] 4 32.38 0.898 28.77 0.785 27.68 0.740 26.35 0.794 30.89 0913
LKDN-S [58] 4 32.10 0.894 28.62 0.782 27.59 0.737 26.07 0.785 30.50 0.908
LKDN [58] 4 32.39 0.898 28.79 0.786 27.69 0.740 26.42 0.797 30.97 0.914
SAGSR (ours) 4 32.45 0.931 28.81 0.849 27.75 0.823 26.72 0.855 31.22 0.937

TABLE 3. Ablation study of SNM.
. Set5 Set14 B100 Urban100 Mangal09
SR algorithms Scale

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
SAGSR-woSNM 4 31.93 0.893 28.32 0.781 27.52 0.735 26.47 0.797 31.07 0.900
SAGSR 4 32.45 0.931 28.81 0.849 27.75 0.823 26.72 0.855 31.22 0.937

includes LAM, the image reconstructed by 4x SR can not only
improve the resolution of the image, but also recognize many
details hidden in the dark. For example, after including LAM
reconstruction, it can recognize (b) promotional posters on
the wall, and also recognize some of the text and face images
on the promotional posters. In figure (e) and (f), not only the
cup but also the text on the cup can be recognized.

In order to further validate the effectiveness of LAM,
inspired by [59] and [60], we designed LAM-F and LAM-
K, and combined them with SRM to 4x reconstruct the same
6 life scene images in Figure 6. From Figure 7, it can be
seen that the reconstruction effect of combining LAM-F and
LAM-K is superior to direct SR reconstruction of low-light
images. However, the images reconstructed by combining
LAM-F and LAM-K with SRM, the text in (b), the table in
(c), and the text on (e) and (f) cups, were not as clear as the
images reconstructed by combining LAM with SRM.

3) EFFECTIVENESS OF SCConv AND CCA IN SRM
To investigate the role of SCConv and CCA in SRM,
we referred to the quantitative analysis settings and tested the
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PSNR and SSIM values of SRM with and without SCConv
and CCA on five datasets. From Table 4, it can be seen that
removing both SCConv and CCA leads to varying degrees of
decrease in PSNR and SSIM values across the five datasets.
Among them, removing SCConv resulted in the maximum
decrease in PSNR on Set5 and Set14, reaching 0.74dB, and
the maximum decrease in SSIM on B100, reaching 0.093dB.
Removing CCA resulted in the maximum decrease in PSNR
on B100, reaching 0.08dB, and the maximum decrease in
SSIM on Urban100, reaching 0.055dB. Overall, removing
SCConv resulted in an average decrease of 0.56dB in PSNR
and 0.067 in SSIM across the five datasets. Removing CCA
resulted in an average decrease of 0.08dB in PSNR and
0.031 in SSIM across 5 datasets.

The conclusion can be drawn from the above three abla-
tion experiments. Guided by SNM semantic knowledge,
the SAGSR formed by the fusion of LAM and SRM can
reconstruct low-light and low resolution images into visually
perceived clear images. From a quantitative analysis per-
spective, SNM can effectively improve the PSNR and SSIM
values of SRM, and SCConv and CCA in SRM are also key
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FIGURE 7. Visual comparison of SAGSR with LAM-F and LAM-K on x4 SR.

TABLE 4. Ablation study of SCConv and CCA in SRM.

. Setb Set14 B100 Urban100 Manga109
SR algorithms Scale
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
SAGSR-woSCConv 4 3171 0.887 28.12 0.779 27.22 0.730 26.27 0.786 30.81 0.877
SAGSR-woCCA 4 32.40 0.917 28.76 0.807 27.67 0.803 26.55 0.800 3115 0.913
SAGSR 4 32.45 0.931 28.81 0.849 27.75 0.823 26.72 0.855 31.22 0.937

factors affecting PSNR and SSIM values. From a qualitative
analysis perspective, LAM can effectively enhance the bright-
ness of low-light images, making SR reconstructed images
more in line with human visual perception.

V. LIMITATIONS AND FUTURE WORK

Our proposed semantic-aware guided super-resolution model
provides a novel solution for SR reconstruction in low-light
images. However, our model currently does not support real-
time super-resolution due to computational constraints and
the lack of resources for real-time application [28]. Future
improvements include the use of knowledge distillation, repa-
rameterization technique, and updated optimizers to improve
the quality of super-resolution reconstruction while mak-
ing SR models more lightweight. Additionally, hard-ware
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improvements could significantly augment real-time process-
ing capabilities [28]. Although our model is currently used
for SR reconstruction of low-light images, applying it to SR
reconstruction of foggy and rainy days under the framework
of semantic guidance is an attractive direction for our future
research. These studies are of great significance to public
security, criminal investigation and other fields.

VI. CONCLUSION

To solve the problems of low image resolution and bright-
ness caused by environmental and hardware limitations, this
paper propose a semantic-aware guided low-light image
super-resolution method. Utilizing the rich semantic prior
knowledge of the Semantic Network Module, it guides the
low-light image features to maintain semantic consistency
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during the reconstruction process. SAGM integrates refer-
ence Semantic Features and Target Image Features in a quan-
titative attention approach, guiding low-light image features
to maintain semantic consistency during the reconstruction
process. LAM constrains the convergence consistency of each
illumination estimation block through self-calibrated blocks,
improving the stability and robustness of output brightness
enhancement features. SRM uses convolution and attention
modules based on spatial and channel reconstruction, which
can ensure the lightweight of the model on the basis of high-
quality reconstruction.
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