
Received 7 May 2024, accepted 15 May 2024, date of publication 20 May 2024, date of current version 29 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3403451

A Trend Detection-Based Auto-Scaling Method
for Containers in High-Concurrency Scenarios
HAIPENG LIU 1, WENHAO ZHU 1, SIYI FU 1, AND YONGJUN LU2
1School of Computer Science, Shanghai University, Shanghai 200444, China
2Shanghai Center for Student Affairs, Shanghai 200235, China

Corresponding author: Yongjun Lu (luyongjun@shec.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61572434, and in part by Shanghai
Science and Technology Committee under Grant 19DZ2204800.

ABSTRACT Cloud computing technology is widely embraced due to its ability to meet diverse computing
resource demands from users. As the user base grows, the challenge for cloud service providers to
dynamically allocate resources to applications according to real-time customer needs becomes more
daunting. Existing auto-scaling mechanisms, such as Horizontal Pod Autoscaler (HPA), lack flexibility in
handling transient and irregular fluctuations in resource demands, making it difficult to respond quickly.
This research focuses on auto-scaling solutions for applications in high-concurrency scenarios. The study
enhances the MAPE structure of traditional auto-scaling models and introduces a trend detection module in
a proactive auto-scaling engine based on predictive algorithms. This module detects trends during transient
irregular request volume fluctuations, corrects prediction algorithm results inconsistent with the current
trend, and provides more reasonable resource allocation for programs. Experimental results, using both real
access peak data and simulated data in a Kubernetes environment, indicate that the proposed auto-scaler
effectively prevents resource shortages in high-concurrency network environments compared to other auto-
scaling mechanisms. It ensures the performance and availability of applications while reducing resource
wastage.

INDEX TERMS Cloud computing, auto-scaler, prediction, proactive controller, high-concurrency, trend
detection.

I. INTRODUCTION
With a strong demand for efficient deployment and man-
agement of applications, cloud computing technology has
witnessed rapid development in recent years. Cloud com-
puting can satisfy the resource requirements of applications
in various environments and architectures. Additionally,
it provides elastic resource allocation policies, allowing real-
time adjustments to program resource utilization. In high-
load scenarios, extra resources can be allocated to ensure
Quality of Service (QoS), while in low-load conditions, the
cloud computing platform reduces the allocated resources to
programs, enhancing resource efficiency and reducing costs
[2]. Typically, users negotiate Service Level Agreements

The associate editor coordinating the review of this manuscript and

approving it for publication was Alberto Cano .

(SLAs) with cloud service providers, and cloud computing
makes scalability decisions for program resource usage
within the constraints of SLAs to achieve load balancing.

Containers are currently the mainstream deployment
method for cloud applications [4]. Unlike virtual machines,
containers are a lightweight virtualization solution that
shares the host’s kernel while encapsulating the application’s
code, dependencies, and runtime environment, making them
more portable [3]. Due to the elastic nature of the cloud,
containers, being easily portable and scalable [5], are more
suitable as the smallest unit of scaling. Various automatic
scaling methods are implementations of the elasticity feature
of the cloud. These automatic scaling methods require
different scaling strategies depending on their applicability.
For containers built for individual programs, autoscalers can
change the resource configuration of the target program

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 71821

https://orcid.org/0009-0002-5831-8284
https://orcid.org/0000-0002-9656-9781
https://orcid.org/0009-0003-5008-9330
https://orcid.org/0000-0001-9027-298X

H. Liu et al.: Trend Detection-Based Auto-Scaling Method for Containers

through horizontal scaling and vertical scaling. Horizontal
scaling is achieved by adding or removing container instances
associated with the application, and HPA [1] is an autoscaling
method that uses horizontal scaling. Vertical scaling involves
changing the resource specifications allocated to containers,
and methods like [12] and [13] adopt vertical scaling. For
popular microservices architecture applications, where each
service in the system is deployed as an independent container,
the response time of requests is affected by end-to-end
latency between services [6]. Therefore, autoscaling methods
for microservices need to consider dependencies between
services when changing resource configurations and cannot
simply scale one service. For edge clusters, autoscaling
methods need to consider situations where cluster resources
are limited [7]. Autoscaling methods for scalable distributed
AI frameworks need to consider optimizing the performance
and cost-effectiveness of AI workloads in the cloud [9]. The
autoscaler proposed in this paper aims to reduce resource
shortages in high-concurrency scenarios.

An ideal autoscaler should rapidly respond to load changes
and make resource adjustments, making the choice of scaling
timing critical. Currently, there are three options for scaling
timing: proactive scaling, reactive scaling, and a hybrid
approach combining proactive and reactive scaling. Proactive
scaling methods typically model historical data, predict
future loads, and make resource allocation decisions in
advance [15]. Reactive scaling methods typically collect
resource utilization metrics at each monitoring cycle and
compare the collected metrics with initially set thresholds.
If the current metric values exceed or fall below the thresh-
olds, the application’s resource configuration is changed [10].
Currently, proactive scaling methods based on prediction
algorithms are more popular. However, web applications in
large-scale internet environments with a large user base often
face sudden spikes in users, such as promotional events or
social media trends [19]. In such cases, proactive scaling
strategies may not adjust in time, and passive methods
lacking historical data support may also struggle to adapt to
the situation. Existing scalability strategies face challenges
in effectively addressing instantaneous and irregular load
fluctuations in high-concurrency environments.

Our work proposes a horizontally automated scaling
engine based on a predictive approach. It proactively
predicts and configures resources based on historical data
and performs trend detection for instantaneous, irregular
load fluctuations in high-concurrency environments before
resource allocation. We have improved the MAPE structure
of traditional automatic scaling models, employing predictive
algorithms to calculate the future pod count n time steps
ahead. Before actual scaling execution, we have incorporated
a trend detection module to identify potential instantaneous,
irregular load fluctuations and allocate resources based on the
fluctuation situation. We conducted tests on a single pod in
a Kubernetes environment under different workload levels,
recommending the most suitable workload for the pod under
SLA constraints. We trained multiple prediction models,

including LSTM, ARIMA, and the Informer [18] model,
using data from university campus network authentication
interfaces, compared their prediction results, and selected the
model most suitable for our auto-scaler. We validated our
auto-scaler’s ability to ensure application performance and
availability under real and simulated peak request data.

II. RELATED WORK
Due to the urgent demand from cloud service users for
elastic resource provisioning, the configuration methods
of elastic resources have been a focal point of research.
Al-Dhuraibi et al. [8] provided a definition of elasticity
in cloud computing and comprehensively classified elastic
mechanisms. According to Tran et al.’s [10] comprehensive
survey on auto-scalers on Kubernetes, current auto-scaling
methods are categorized into different classes based on
various aspects such as the target application architecture,
scaling methods, scaling triggers, and monitoring metrics.

The most common classification method has traditionally
been based on scaling methods, which are divided into
horizontal scaling methods and vertical scaling methods.
ELASTICDOCKER proposed by Al-Dhuraibi et al. [12] and
RUBAS proposed by Rattihalli et al. [13] are both examples
of vertical scaling methods. They adjust container memory
and virtual CPU core resources based on the current workload
and achieve vertical elasticity through real-time container
migration. The advantage of vertical scaling methods is that
they do not lead to resource wastage, but the downside is that
container migration interrupts may affect program service
quality. The most prevalent horizontal scaling method is the
Horizontal Pod Autoscaler (HPA) mechanism [1]. It serves
as Kubernetes’ default auto-scaling solution, monitoring pod
resource usage, comparing it with user-defined resource
usage thresholds, and determining whether to increase or
decrease the number of pods.

Another classification method is based on scaling triggers,
mainly divided into proactive scaling methods and reactive
scaling methods. References [12] and [13] are examples
of reactive scaling methods, where the auto-scaler adjusts
container resources when the load exceeds a threshold. Rossi
et al. proposed a RL-based dynamic multi-metric threshold
strategy [27] for dynamically adjusting the scaling thresholds
for CPU and memory usage, addressing the issue that static
threshold-based scaling strategies for single metrics may not
adapt well to heterogeneous applications. Imdoukh et al. [16]
proposed an auto-scaling framework as a proactive scaling
method, leveraging machine learning techniques to optimize
automatic scaling strategies for containerized applications.
Their approach utilizes Long Short-Term Memory (LSTM)
neural networks to forecast future HTTP workloads and
adjusts the number of container replicas before the actual
workload arrives, thus alleviating delays caused by starting or
stopping containers. Toka et al. introducedHPA+ [17], which
is also a proactive scaling method, predicting the number of
network requests in the future using a combination of LSTM,
Autoregressive (AR), and Hierarchical Temporal Memory

71822 VOLUME 12, 2024

H. Liu et al.: Trend Detection-Based Auto-Scaling Method for Containers

FIGURE 1. Custom auto-scaler architecture.

(HTM) models. Currently, there are also many hybrid meth-
ods that incorporate both scaling triggers. Yadav et al. [23]
proposed a hybrid method combining reactive and predictive
approaches, where the reactive approach primarily scales
running containers when the workload increases, while the
proactive approach is used to scale containers when the
workload decreases.

As microservices architecture gradually becomes the
mainstream approach for enterprises to build scalable and
efficient applications, research on auto-scaling methods is
primarily classified based on the architecture of the target
application. In a microservices architecture, response time
is influenced by multiple microservices [11], making it
challenging for traditional auto-scaling techniques to ensure
overall system performance. Unlike auto-scaling methods
designed for monolithic applications, auto-scaling methods
for microservices must consider the relationships between
microservices. Goli et al. proposed Waterfall [14], designed
specifically for microservices applications. Waterfall consid-
ers the dependencies between microservices in the microser-
vices architecture. It abstracts the target microservices
application into a directed graph called the microservices
graph. In this graph, vertices represent services, and edges
represent dependencies between services. The direction of the
edge determines the direction of request transmission. Water-
fall initially monitors CPU usage and scales microservices
exceeding the threshold. Then, based on the microservices
graph and machine learning models, it evaluates and predicts
the potential impact of scaling one microservice on other
microservices to find the optimal scaling configuration for
the entire system. Ahmad et al. proposed Smart HPA,
also designed for microservices architecture [19]. Smart
HPA combines centralized and decentralized architectural
styles, using a hierarchical architecture that enables flexible
decentralized management when resources are abundant and
effective resource allocation through centralized modules
when resources are constrained. The core of Smart HPA lies
in its resource-efficient heuristic algorithm, allowing resource
exchange between microservices to adapt to changing

workloads. Al Qassem et al. proposed a prediction-based
auto-scaler using Random Forest (RF) for microservice
resource allocation [20]. This method predicts the future CPU
and memory utilization of microservices workloads using
machine learning models to guide vertical and horizontal
scaling. Khaleq and Ra proposed an intelligent auto-scaling
system for microservices in the cloud [21]. The system con-
sists of two main modules: the first module utilizes a general
auto-scaling algorithm on Google Kubernetes Engine (GKE)
to identify the resource requirements of microservices, while
the second module uses a Reinforcement Learning (RL)
agent to learn and determine auto-scaling thresholds to
meet resource demands and QoS constraints. Santos et al.
introduced the gym-hpa framework [22], another reinforce-
ment learning-based auto-scaling framework specifically
designed for complex microservices applications running on
the Kubernetes platform. RL agents determine the scaling
triggers based on real-time monitoring data and select
the most appropriate scaling actions by analyzing current
resource usage, service request volume, and other relevant
metrics.

Most automatic scaling methods perform well in configur-
ing resources for applications based on real-time performance
data and prediction models. However, during periods of
peak request volumes, it’s challenging to predict the exact
number of requests, making it difficult for most automatic
scaling methods to rapidly allocate sufficient resources
to applications. References [21] and [22] propose using
reinforcement learning methods to address unpredictable
request changes, but reinforcement learning requires a large
amount of sample data, and currently, there is limited public
data on peak requests. Reference [28] divides applications
into multiple layers, such as the web server layer, application
server layer, and database server layer, to ensure the quality
of service by considering both hardware resources and
software resources (such as server threads and database
connections).

This paper proposes a trend-based automatic scaling
method to address unpredictable request changes during

VOLUME 12, 2024 71823

H. Liu et al.: Trend Detection-Based Auto-Scaling Method for Containers

TABLE 1. A comparison of related work on autoscaling methods.

peak periods. This method first uses prediction algorithms
to calculate the future number of containers n time steps in
advance. Before actually scaling, a trend detection module
identifies potential transient and irregular request fluctuations
and allocates resources based on the fluctuation situation.

III. AUTO-SCALER ARCHITECTURE
Our custom auto-scaler hasmade improvements to theMAPE
loop followed by traditional scalers, and Fig. 1 illustrates the
structure of our custom auto-scaler. The main improvement
is the addition of a trend detection module before the actual
execution steps. The primary function of this module is to
detect changes in the trend of network requests in the recent
time period and correct the predictions made by the predictive
algorithm. Below, we will introduce each module of the
auto-scaler.

A. MONITOR MODULE
The monitor continuously collects various relevant metrics
and stores the data in a time-series format in the database.
In our proposed auto-scaler, the collected data includes
resource usage information for the program instances man-
aged by the auto-scaler (such as containers), statistical
information on HTTP requests received per second by the
application, and runtime log information for the application.
The logs are primarily used to calculate their actual
throughput per second.

B. ANALYSIS MODULE
The analysis module periodically retrieves HTTP request data
(requests per second) from the database. It then predicts the
number of HTTP requests for the subsequent two moments.
For example, at time t−1, it predicts the request data for times
t and t+1.

C. PLANNING MODULE
After computing the predicted workload of the application
from the analysismodule, The planningmodule calculates the
resources needed by the application. Since we are evaluating
our automatic scaler in a Kubernetes environment, we use
the number of pods to represent the required resources.
The planning module determines the pod quantity at time

t+1 using (1). requestpod represents the optimal number of
requests that a single pod can handle simultaneously, and
Requestt+1 represents the predicted value for time t+1 at time
t−1.

podt+1 =
Requestt+1
requestpod

(1)

D. TREND DETECTION MODULE
Before entering the next time period, the trend detection
module runs periodically. This is done because pod startup
takes some time, and we want to ensure that there are enough
pods working when entering the next time period. The trend
detection algorithm is outlined below.

The primary function of the trend detection module is to
analyze HTTP request data and web application throughput
data within the current time period, determine the real-time
development trend of network requests, and then decide
whether to adjust the number of pods in the prediction
queue for the next time step based on this trend. We
are not concerned with fluctuations in network requests
throughout all time periods; our focus is on whether the
predictive algorithm can accurately forecast future HTTP
request data in situations of resource scarcity or excess. The
trend detection algorithm primarily aims to identify trends
in changes in network requests that might occur in such
situations.

undert =
T∑
i=1

(throughputi ≪ requestsi) (2)

overt =
T∑
i=1

(requestsi ≪ requestpod) (3)

The trend detection algorithm requires multiple input
parameters. Among them, pred[] contains the predictions of
the prediction algorithm for the current time step and the next
time step, based on the previous time step. meant represents
the average number of HTTP requests received per second
in the current time period, while stdt denotes the standard
deviation of HTTP requests received per second, indicating
the magnitude of request changes within the time period.
undert represents the number of time points in the current
time period where the throughput is significantly lower

71824 VOLUME 12, 2024

H. Liu et al.: Trend Detection-Based Auto-Scaling Method for Containers

Algorithm 1 Detect Trend Algorithm
Require: pred[], meant , stdt , undert , overt , CDT , FLAG
Ensure: podt+1
1: if CDT > 0 then
2: CDT −−
3: podt+1← podt
4: else
5: if undert > nunder then
6: if meant < kunder × pred[0] and stdt > kstd then
7: FLAG← FLAG+ 1
8: else
9: ifmeant > kunder ×pred[0] and stdt > kstd then
10: if LinearRegression(data) is up then
11: podt+1←

meant+stdt
requestpod

12: else
13: FLAG← FLAG+ 1
14: end if
15: else
16: if meant > kunder × pred[0] and stdt < kstd

then
17: CDT ← 4
18: FLAG← 0
19: podt+1←

meant
requestpod

20: end if
21: end if
22: end if
23: if FLAG is 2 then
24: podt+1←

meant+stdt
requestpod

25: CDT ← 4
26: FLAG← 0
27: end if
28: else
29: FLAG← 0
30: end if
31: if overt > nover then
32: if meant < kover × pred[0] and stdt > kstd then
33: if LinearRegression(data) is down then
34: CDT ← 4
35: podt+1←

meant+stdt
requestpod

36: end if
37: else
38: if meant < kover × pred[0] and stdt < kstd then
39: CDT ← 4
40: podt+1←

meant
requestpod

41: end if
42: end if
43: end if
44: end if

than the actual requests received. Equation 2 describes the
calculation formula for undert , where throughputi represents
the system throughput at a specific time point and requestsi
represents the number of requests received by the system
at that time point. overt represents the number of time

points where the throughput significantly exceeds the actual
throughput that all pods can handle. requestpod represents the
maximum number of requests that the allocated resources to
the system can handle.
nunder represents the acceptable number of such time

points. When undert exceeds nunder , it indicates a potential
resource shortage. Similarly, when overt exceeds nover ,
it indicates an oversupply of resources. CDT represents
the cooling down time, initially set to 0. If the trend
detection algorithm detects an abnormal trend and scales
the Pods accordingly, CDT is set to 4, indicating that no
scaling will be performed for the next 4 time periods after
scaling to avoid container oscillation. FLAG is used as a
counter; when an abnormal trend such as the number of
requests in several time points within the current period being
significantly higher than the average occurs, it may not affect
the current application’s service instructions but needs to be
recorded. If the abnormal request variation persists for several
consecutive periods, the trend detection algorithm will also
identify it as an abnormal trend and correct the prediction
algorithm’s forecast results.

In addition to the algorithm’s input parameters, there are
also many built-in parameters within the algorithm. kunder
represents the tolerance parameter for resource shortages.
The comparison result betweenmeant and pred[0] multiplied
by this parameter indicates the existence of shortages. kstd
represents the tolerable request fluctuation magnitude within
a time period. The final output of the algorithm, podt+1, is the
number of pods determined by the algorithm for the t+1 time
period.

This algorithm evaluates the accuracy of the prediction
algorithm and the real-time trends of the network. In case
of resource shortage, the algorithm evaluates whether the
prediction result (average requests per second) for the current
time period in the multi-step prediction is within an accept-
able range. If they are tolerable, the auto-scaler continues
with the previous prediction results. However, it observes the
fluctuations in requests. If data shows significant fluctuations
over consecutive time periods, intervention is considered for
the next scalability decision to ensure service quality.

In case the prediction result is intolerable, the algorithm
examines the request fluctuations within the current time
period. If the fluctuations are small, indicating a stable
user count for web services, future resource needs can
be estimated based on the current user request situation.
If fluctuations are significant, linear regression is used to
fit the current request changes. If the trend shows a clear
upward trajectory, the peak is considered as the future average
requests per second, and the prediction algorithm’s results
are adjusted accordingly. If the trend is chaotic, further
observation is postponed until the next time period.

Similarly, in cases of oversupply of resources, the
algorithm evaluates the tolerance of the prediction results
and the request fluctuations. Unlike in resource scarcity
situations, the algorithm is less concerned about whether
the prediction results are tolerable, as it does not affect

VOLUME 12, 2024 71825

H. Liu et al.: Trend Detection-Based Auto-Scaling Method for Containers

FIGURE 2. The working process of the auto-scaler in kubernetes.

the service quality of web services. A significant reduction
in resources may yield adverse results. Resource reduction
is only considered when there is a significant and stable
downward trend in user requests for web services.

IV. EXPERIMENTS AND EVALUATION
This section primarily evaluates the performance of our
custom automatic scaler in high-concurrency network envi-
ronments through experiments. We test the response time
of web applications under different concurrency levels on
a Kubernetes cluster and discuss the tolerance level in
the algorithm. We assess three popular time-series data
predictionmodels to select the most suitable predictive model
for the target scenario. Finally, we test the performance of
our automatic scaler in a Kubernetes cluster using real access
peak data and simulated access peak data.

A. ASSESSMENT ENVIRONMENT
We conducted experiments and evaluations of our auto-
scaler in a Kubernetes v1.23.1 environment. This choice
was made because Kubernetes, as a powerful container
orchestration platform, is widely used in the field of cloud
computing [24]. Our auto-scaler is designed to manage the
scaling of applications in complex network environments,
and experimenting on Kubernetes simplifies the scaling
operations on containers. Figure 2 illustrates the workflow
of our auto-scaler on the Kubernetes cluster. The scaler
determines the number of pods for the next time step based on
the monitoring data collected in the database. Subsequently,
it invokes the API to execute the scaling command, and
finally, the Kubernetes scheduler instructs the respective
worker nodes to start the pods.

B. EVALUATION METRICS
To evaluate the performance of a predictive model, we use
four key metrics: mean square error (MSE), root mean
square error (RMSE), mean absolute error (MAE), and

R-squared. These metrics help evaluate the difference
between the predictions generated by themodel and the actual
observations. MSE measures the mean square error between
predicted values and actual observed values. Equation 4 is its
calculation formula. Among them yi represents the observed
value, ŷi represents the predicted value, and n is the number
of samples. RMSE is the square root of MSE and provides
an estimate of the standard deviation of the forecast error.
Equation 5 shows how it is calculated. where samples is
the number of samples. MAE measures the mean absolute
difference between predicted values and actual observations.
Equation 6 explains how RMSE is calculated. where samples
is the number of samples. R-squared is a statistical measure
that indicates the proportion of variance in the dependent
variable that is explained by the independent variables in
a regression model. Equation 7 is its calculation formula.
Among them, yi represents the observed value, ŷi represents
the predicted value, ȳ represents the average value of the
observed value, and n is the sample number.

MSE(y, ŷ) =
1
n

n∑
i=1

(yi − ŷi)2 (4)

RMSE(y, ŷ) =

√√√√1
n

n−1∑
i=0

(yi − ŷi)2 (5)

MAE(y, ŷ) =
1
n

n−1∑
i=0

|yi − ŷi| (6)

R2 = 1−

∑n
i=1(yi − ŷi)

2∑n
i=1(yi − ȳ)2

(7)

The accuracy of resource allocation is a key metric of
concern. It evaluates the alignment between the resources
allocated by the autoscaler and the current workload of
the program, while considering potential shortages and
surpluses. We calculate this accuracy by comparing the
actual number of pods required by the program with the
number allocated by each autoscaler. To assess the effec-
tiveness of pod changes under different autoscalers, we use
equation (8) to compute the underallocation indicator (2U)
and equation (9) to compute the overallocation indicator (2O)
[25]. In equations (8) and (9), T represents the total number
of time periods, demandt represents the actual resource
demand, and supplyt represents the resources allocated by the
autoscaler.

2U [%] =
100
T

T∑
t=1

max(demandt − supplyt , 0)
demandt

(8)

2O[%] =
100
T

T∑
t=1

max(supplyt − demandt , 0)
demandt

(9)

C. BENCHMARK TESTING
We deployed the web application onto a Kubernetes working
node and conducted stress testing on the web service.
JMeter [26] is a powerful open-source performance testing

71826 VOLUME 12, 2024

H. Liu et al.: Trend Detection-Based Auto-Scaling Method for Containers

FIGURE 3. Response time of programs under different levels of
concurrency.

tool. We used it to conduct the stress tests. Initially, we sent
100 requests per second to the web application for a duration
of 1 minute. Subsequently, we increased the number of
requests per second in increments of 100 for each test.
After each test, we recorded the average response time
for the requests within that minute. Through stress testing,
we obtained insights into the performance of a single pod
under varying levels of concurrency. Fig. 3 illustrates our test
results.

We observed that when the Queries Per Second (QPS)
is below 300, the program’s response time remains nor-
mal. However, when the QPS exceeds 300, the response
time experiences a sharp increase. This indicates that at
around 300 QPS, the program’s throughput is roughly in
balance with the number of requests, signifying a equilibrium
between pod load and resource supply. Beyond 300 QPS,
we start to witness insufficient resource supply.

To optimize resource utilization while ensuring service
quality, we set this balance point as requestpod . Additionally,
we observed that within the QPS range of 300 to 400,
the increase in response time is relatively small, making it
imperceptible to users in the short term. This implies that we
can tolerate slightly higher pod loads for a short duration,
but if the pod load becomes excessively high, the program’s
response time also increases significantly. In other words,
we can tolerate insufficient resource supply when QPS is
higher than 300 but not exceeding 450. The parameter kunder
represents the range beyond which we do not want QPS to
exceed, and we set it to 1.5. Similarly, kover represents the
range above which we want QPS to consistently stay, and we
set it to 0.6.

D. DATASET
The real data used for testing the trend algorithm comes from
the authentication log data of the university campus network
authentication system in early January 2024. We aggregated
the log data by minute. Fig. 5 shows the processed dataset,
where the values represent the number of authentication
requests per minute for the network system. The dataset
directly indicates the real-time growth trend of users on

the university campus network. We aim to select the best
prediction algorithm directly from this dataset for various
network request growth scenarios.

By carefully analyzing Fig. 5, we can observe that although
the overall change in the number of network authentication
requests follows a sinusoidal trend each day, the time periods
of each day’s peak and the amplitude of data change vary.
Traditional automatic scalers can handle regular continuous
growth well, but they struggle with this scenario. We will test
our trend detection algorithm under various changes during
peak periods. We extracted the data during the peak period
on the evening of January 5, 2024, from the dataset shown
in Fig. 5 as experimental data. Due to the small scale of the
actual dataset, in real experiments, we magnify all the data in
this interval by 60 times. Fig. 7 shows the trend of network
request changes per second after processing the peak period
data. The blue line in Fig. 8 represents the average value per
minute after data processing. In Section IV-G, we discuss the
performance of our trend detection algorithm compared to
other automatic scalers on this data.

The dataset shown in Fig. 7 still does not fully represent
the possible request variations during peak periods. In real-
world events like shopping festivals, the number of requests
may experience significant growth within seconds or even
milliseconds. We need to evaluate our automatic scaler in
such scenarios. We need to simulate a period of HTTP
requests that grow rapidly in a short time and then decline
slowly. The blue part in Fig. 12 illustrates the trend of
the average QPS simulated data per minute. We simulated
a peak period lasting about 20 minutes, with the network
requests entering the peak in the second minute, rapidly
rising to the maximum value within two minutes, and then
slowly decreasing after the peak. In the first two minutes,
we used a logarithmic growth model to simulate the increase
in the number of network requests. The logarithmic growth
model can better capture the rapid growth trend of network
load in the initial stage, while in the subsequent decline of
requests, we used an exponential decay model to simulate the
slow decline in the number of network requests. Exponential
decay models are commonly used to simulate the decline in
popularity in scenarios such as computing news relevance,
and similarly, they can express the decline in network traffic
after hot events effectively. We initially simulated the average
QPS value per minute during peak periods using these two
models. To better approximate reality, we added random
errors to each value. Then, we used a normal distribution
model to simulate the number of requests per second for
each minute. Fig. 11 shows our simulation of the number of
requests per second during peak periods.

E. PARAMETER SELECTION
An ideal autoscaler should respond to changes in application
load and resource utilization as quickly as possible. However,
considering the time required for program startup, for
reaction-based autoscalers, the resource adjustment cycle
must cover the program’s startup time; otherwise, the

VOLUME 12, 2024 71827

H. Liu et al.: Trend Detection-Based Auto-Scaling Method for Containers

TABLE 2. Prediction accuracy under different prediction Interval.

adjustment would be meaningless. For example, Kubernetes’
HPA mechanism suggests a minimum scaling period of
30 seconds. For autoscalers using prediction algorithms,
we adopt a method of multi-step prediction. In this case,
the autoscaler can avoid the impact of delayed resource
configuration caused by program startup by starting the
program in advance. Similarly, considering program startup
time, we believe the prediction cycle should be at least
15 seconds. We will evaluate LSTM’s multi-step prediction
performance on the dataset shown in Fig. 4 under prediction
cycles of 15s, 30s, 60s, and 120s in experiments.

Table 2 shows that the shorter the prediction cycle,
the smaller the error between the predicted and actual
values, and the higher the accuracy of the LSTM model’s
prediction. However, this does not necessarily mean that a
shorter prediction cycle is more suitable for the autoscaler.
The comparison in Fig. 4(a), Fig. 4(b), Fig. 4(c), and
Fig. 4(d) illustrates that as the prediction cycle shortens,
the prediction model can detect peak periods more quickly,
and the prediction of peak values becomes more accurate.
However, the shorter prediction cycle makes the prediction
model more sensitive to fluctuations in data within a unit
time, resulting in more frequent fluctuations in prediction
results. This may cause containers to be frequently scaled
within a short period. To avoid this container oscillation,
many autoscalers use a cooldown mechanism, which means
stopping container scaling for a period after significant
container scaling. In cases of shorter prediction cycles, the
cooldown mechanism may prevent containers from scaling
up to the expected scale. Due to the delay in prediction
results caused by program startup time, regardless of the
prediction cycle, themodel’s prediction of peak values always
has a significant error compared to the actual peak values.
Moreover, shorter prediction cycles are not compatible with
trend detection algorithms. In our approach, the prediction
algorithm forecasts the number of requests two time steps
ahead. After obtaining the prediction results, there is a
period of time before the actual scaling takes place, which
is essentially equal to the scaling period minus the time
required for program startup. Trend detection algorithms
precisely detect the trend of request changes during this
period. With shorter scaling periods, the trend detection
algorithm collects fewer samples, leading to lower confidence
in trend detection. Therefore, in this paper, we choose a
prediction cycle of 60 seconds, which can avoid unnecessary

FIGURE 4. Comparison of predicted results versus actual results under
different prediction cycles.

container scaling, leaving the handling of peak periods to
the trend detection algorithm. However, our autoscaler and
trend detection algorithm also support modification of the
prediction cycle.

71828 VOLUME 12, 2024

H. Liu et al.: Trend Detection-Based Auto-Scaling Method for Containers

FIGURE 5. Campus network authentication interface dataset.

TABLE 3. Prediction accuracy of ARIMA, LSTM, and Informer models on
dataset.

F. EVALUATION OF PREDICTIVE ALGORITHMS
Our autoscaler requires the support of prediction algorithms.
To select the appropriate prediction algorithm, we tested three
different models: ARIMA, LSTM, and Informer.

In our experiments, the results of the three prediction
models are based on a forecast of two steps ahead. We aim
for the prediction model in our auto-scaler to accurately
forecast values for multiple future time steps. This not only
aids in assessing data trends but also allows the auto-scaler to
initiate pod scaling in advance, reducing or even eliminating
the waiting time for pods due to Readiness probe. The
sliding window size for both LSTM and Informer models
in the experiment is set to 10. Figure 6 illustrates the
comparison between the predicted results of ARIMA, LSTM,
and Informer models and the actual data.

The models are trained and predicted using normalized
and standardized data. Since the actual values needed are
the de-normalized data, we calculate metrics using the de-
normalized results. As shown in Table 3, the RMSE andMAE
of the threemodels are very close, indicating that the accuracy
of the threemodels is essentially the same on this dataset. Due
to the close performance of the models and considering the
training time and prediction speed, we choose LSTM as the
predictive model inside the auto-scaler.

The R2 values of these models are approximately 0.90,
indicating that the prediction models can effectively capture
features such as seasonality and trends in the data. This
experiment reveals that for network request data with evident
seasonality and trends, all three prediction models perform
well in fitting and forecasting future data. However, real-
world network conditions are dynamic and may involve
sudden, irregular network fluctuations. From the above
graphs, it is evident that the predictive results of the three
models are not satisfactory under such conditions. This

FIGURE 6. Comparison of actual data with predictions from ARIMA(a),
LSTM(b), and Informer(c) models.

suggests that in real-world scenarios, where high concurrency
situations frequently occur, conventional auto-scalers based
on predictive algorithms may struggle to cope with such
unpredictable fluctuations.

G. SIMULATION EXPERIMENTS ON KUBERNETES
1) EXPERIMENT ON REAL DATA
In subSection IV-F, we validated the performance of the
prediction models in multi-step forecasting on a dataset.
To evaluate the performance of our autoscaler in real-world
high-concurrency network environments, we conducted
experiments using the peak period dataset represented in
Fig. 7. Fig. 8 reflects the approximate trend of this dataset,
with the number of requests rapidly increasing and then
slowly decreasing. However, this trend is quite one-sided.

VOLUME 12, 2024 71829

H. Liu et al.: Trend Detection-Based Auto-Scaling Method for Containers

FIGURE 7. Amplified university campus network authentication request
data during a 60x traffic peak.

TABLE 4. The Prediction accuracy of ARIMA, LSTM models, and our
auto-scaler on real data.

We can observe in Fig. 8 that there is no significant change
in the average value per minute during the initial growth
of requests. Yet, in Fig. 7, the number of requests per
second fluctuates significantly, with many instances where
the number of requests exceeds the average value per minute
by a considerable margin. Our trend detection algorithm aims
to extract as much information as possible from these special
moments.

We compared our autoscaler with traditional proactive
and hybrid autoscalers in experimental setups. The proactive
autoscaler scales based on ARIMA model predictions of
future request counts, while the hybrid autoscaler combines
LSTM with HPA. This hybrid approach uses LSTM to
forecast requests, calculates the required workload, and
scales accordingly. Simultaneously, it monitors the resource
utilization of these containers every 30 seconds, scaling when
the utilization exceeds a threshold.

All three scalers predict the average HTTP request count
per second for the next minute at the end of each minute.
Thus, we first compare the three scaling methods’ prediction
results for requests. Figure 8 illustrates the comparison
between the predictions of our method, trained LSTM,
and ARIMA models with actual data in subsection IV-B.
Table 4 provides performance evaluations of their predic-
tions. Obviously, these algorithms show poorer prediction
accuracy during peak access periods. The RMSE, MSE,
and MAE results for LSTM and ARIMA are significantly
higher than those obtained on regular datasets. While these

FIGURE 8. Comparison of ARIMA, LSTM, and our auto-scaler’s prediction
results with actual data.

TABLE 5. Accurate assessment of resource configuration for ARIMA,
LSTM, and our auto-scaler during peak access periods.

metrics suggest LSTM performs better, Figure 8 shows our
autoscaler’s predicted trend aligns more consistently with
actual data trends. Furthermore, in real-world scenarios,
prediction accuracy is not the sole determinant of autoscaler
performance.

The evaluation of the auto-scaler’s performance is mainly
based on the comprehensive assessment of configuration
accuracy and service quality. This requires us to examine
the auto-scaler in a real-world environment. We deploy
the web application on a Kubernetes cluster, and a stress
testing program sends HTTP requests to it, with the request
rate per second matching the data in the dataset. Figure 9
illustrates the comparison between the pod changes using
different scalers and the actual required pod quantity in real-
world scenarios. Table 5 presents the configuration accuracy
results calculated according to the Equation (8) and (9).
We can observe that the proactive autoscaler has the lowest
2O but the highest 2U . On the other hand, the autoscaler
combining proactive and reactive methods has relatively
low values for both 2U and 2O. Meanwhile, the trend-
based autoscaler has the lowest 2U value. This indicates
that in high-concurrency scenarios, our autoscaler is better
at avoiding resource shortages and does not lead to excessive
resource waste.

In high-concurrency scenarios, our primary concern is
whether the service quality of the web application is ensured
during peak periods. Given the relatively small concurrency
levels, we focus on the program’s performance, specifically
the average response time for all requests within one minute.

71830 VOLUME 12, 2024

H. Liu et al.: Trend Detection-Based Auto-Scaling Method for Containers

FIGURE 9. Scaling processes of pods controlled by ARIMA, LSTM, and our
auto-scaler during peak access periods.

FIGURE 10. Response time of pod requests during peak usage: ARIMA,
LSTM, HPA, and our auto-scaler.

Figure 10 shows the trend in the average response time for the
web application using different auto-scalers from the eighth
minute to the twenty-first minute of the experiment.When the
number of requests increases significantly, the response time
of the web service also increases. Among these auto-scalers,
only our auto-scaler identifies the rising trend at the moment
of a sudden increase in requests and proactively initiates
pods, therebymaintaining normal web service response times
during subsequent peak periods. In contrast, other auto-
scalers do not allocate sufficient resources to the application
during this period, resulting in poorer performance.

2) EXPERIMENT ON SIMULATION DATA
Due to the relatively small user base of the school, our
collection of peak data is limited. In the real world, external
factors such as promotions and hot events may lead to a
significant increase in the number of users of a network

FIGURE 11. Simulated data for requests per second during peak periods.

FIGURE 12. Comparison of ARIMA, LSTM, and our auto-scaler prediction
results with actual data during simulated 10-fold peak access.

application within a short period. We need to evaluate
whether our autoscaler can still work effectively in such
scenarios. We simulated data where the number of requests
rises rapidly during peak periods and then declines slowly as
experimental data. In the section IV-D, we describe how the
data was simulated.

We continue to conduct experiments using the three
autoscalers mentioned in subsection IV-G1. We sends
requests to the web application based on this simulated data.
Fig. 12 shows the per-minute predicted data from different
auto-scalers and the simulated request data. Under a tenfold
increase in request data, LSTM, which performed well in
subsection IV-G1, exhibited the poorest performance here.
When the request count rapidly increased, LSTM took the
longest time to achieve predictions equal to or greater than
the actual values. On the other hand, despite the larger error
in our model, its predicted trend closely mirrored the actual
trend.

VOLUME 12, 2024 71831

H. Liu et al.: Trend Detection-Based Auto-Scaling Method for Containers

TABLE 6. Prediction accuracy of ARIMA, LSTM, and our auto-scaler under
10 times the peak access scenario.

FIGURE 13. Scaling processes of pods controlled by ARIMA, LSTM, and
our auto-scaler under 10 times the peak access scenario.

TABLE 7. Accurate assessment of resource configuration for ARIMA,
LSTM, and our auto-scaler under 10 times the peak access scenario.

Table 6 displays the performance metric evaluations for the
predictions made by these auto-scalers in the experiment. The
errors for all three auto-scalers are significant. Our model,
however, achieved lower values in terms of MSE, RMSE,
and MAE, indicating that our model has relatively smaller
prediction errors compared to the actual data.

Similar to subsection IV-G1, we conducted container
scaling experiments on Kubernetes using three types of
autoscalers. Fig. 13 depicts the pod scaling process managed
by different auto-scalers during the experiment. When
the number of requests increases significantly, requiring a
significant increase in the number of pods, only the trend-
based autoscaler and the autoscaler based on the hybrid
method can respond quickly to the changes in the number of
requests. However, in the hybrid method, the reactive method
based on thresholds expands the number of pods less and
slower due to the limitations of the thresholds. It cannot meet
the user demands during peak request periods and still leads
to resource shortages.

Table 7 displays the situations of insufficient and excess
resource supply for each auto-scaler in the experiment.

Although our auto-scaler provides additional resources
during peak periods, it effectively avoids situations of
insufficient supply. Fig. 14 indicates that under a tenfold
increase in request volume, autoscalers based on the hybrid
method and ARIMA do not rapidly increase the number of
pods. This leads to average response times of over 4000ms
during peak request periods for applications managed by
these autoscalers. In contrast, the autoscaler based on our
trend detection algorithm quickly increases the number of
pods after detecting abnormal changes in network request
volume. So applications managed by our autoscaler achieve
average response times during peak periods that are close to
normal response times. Our trend detection algorithm brings
stronger performance to applications during peak request
periods.

Both Fig. 14 and table 7 demonstrate that the autoscaler
based on trend detection algorithms can reduce the time
of resource undersupply during peak periods. Resource
undersupply not only affects program performance but also
reduces program availability. During peak request periods,
if insufficient resources are allocated to the program, leading
to request processing delays, users who do not receive timely
responses may initiate multiple repeated requests. This can
result in a backlog of requests within the containers or
servers running the program, intense resource competition,
and may cause some containers or servers to become
unavailable or crash. To evaluate the impact of such scenarios
on the availability of the web application, we integrated
an Actuator program into the test program and activated
the Readiness probe provided by Kubernetes. Through this
probe, we monitor whether pods are running normally by
requesting interfaces provided by the Actuator program.
During peak request periods, when the probe does not receive
a response or receives an abnormal response from a pod, that
pod is considered unavailable. We adopt a restart strategy
for unavailable pods, and any requests that the pod was
processing or about to process will return with exceptional
responses. By monitoring pod restarts, we can directly assess
the impact of sudden increases in requests on program
availability.

Fig. 15 illustrates the response variation of the web
application managed by different scalers after enabling the
Readiness probe. Comparing Fig. 14 and Fig. 15, it can be
concluded that the peak response time in Fig. 15 is higher
than that shown in Fig. 14, because the crash of pods leads to
a reduction in the number of normally functioning pods. The
scaler also fails to timely expand pods. In reality, this situation
may result in users repeatedly initiating requests, potentially
causing a complete service crash.

We still use the data from Fig. 11 to evaluate program
availability. Fig. 15 shows the change in response time of web
applications managed by different autoscalers after enabling
readiness probes. Compared to Fig. 14, at the beginning
of the peak request period, the average response times of
web applications managed by each autoscaler in Fig. 15 are
higher than those at the same time in Fig. 14. This indicates

71832 VOLUME 12, 2024

H. Liu et al.: Trend Detection-Based Auto-Scaling Method for Containers

FIGURE 14. Response times of web applications controlled by ARIMA,
LSTM, and our auto-scaler under 10 times the peak access scenario.

FIGURE 15. Program response time controlled by ARIMA, LSTM, and our
auto-scaler in the event of program crashes and restarts.

that pods managed by all autoscalers in this experiment
experienced varying degrees of service abnormalities and
restarts. When a pod is deemed unavailable, it will be
restarted, and all requests being processed or waiting to be
processed by the pod will receive abnormal response content.
We can determine the occurrence of pod service anomalies
at a certain time by monitoring the time of occurrence of
abnormal responses and the number of abnormal response
occurrences. Fig. 16 shows the percentage of abnormal
responses per minute in the web application during this
experiment. Programsmanaged by the trend-based autoscaler
only experience a small number of abnormal responses at
the beginning of the peak request period, while programs
managed by other autoscalers experience more occurrences
of abnormal responsemoments andmore abnormal responses
than those managed by the trend-based autoscaler. This
demonstrates that it can bring stronger availability to
programs during peak request periods.

FIGURE 16. The abnormal response ratios of pods controlled by ARIMA,
LSTM, and our auto-scaler in extreme scenarios.

V. CONCLUSION
Currently, many cloud service providers like Amazon and
Alibaba are exploring better scaling methods for users.
However, in high concurrency and frequently fluctuating
load scenarios, these methods struggle to quickly respond to
changes in user traffic. Experiments show that our proactive
auto-scaling engine, combined with a trend detectionmodule,
exhibits higher flexibility and efficiency in cases of rapid
load increases, reducing the risk of resource shortages and
program crashes. However, the resource allocation strategy of
our auto-scaler carries the risk of resource over-provisioning,
and it also lacks consideration for downward load peaks.
In the future, we need to improve the trend detection
algorithm to more quickly and accurately identify a wider
variety of trend changes. Finally, our auto-scaling algorithm
lacks optimization for the currently widespread microservice
applications. It lacks unified management of microservice
systems, which will be the focus of our future work.

ACKNOWLEDGMENT
This work is supported by National Natural Science Foun-
dation of China (No. 61572434) and Shanghai Science and
Technology Committee (No. 19DZ2204800).

REFERENCES
[1] Horizontal Pod Autoscaling Kubernetes. Accessed: Dec. 17, 2023.

[Online]. Available: https://kubernetes.io/docs/tasks/run-application/
horizontal-pod-autoscale/

[2] J. Dobies and J. Wood, Kubernetes Operators: Automating the Container
Orchestration Platform. Sebastopol, CA, USA: O’Reilly Media, 2020.

[3] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, ‘‘An updated
performance comparison of virtual machines and Linux containers,’’ in
Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), Mar. 2015,
pp. 171–172.

[4] N. Zhou, H. Zhou, and D. Hoppe, ‘‘Containerization for high performance
computing systems: Survey and prospects,’’ IEEE Trans. Softw. Eng.,
vol. 49, no. 4, pp. 2722–2740, Apr. 2023.

[5] S. Risco, G.Moltó, D.M. Naranjo, and I. Blanquer, ‘‘Serverless workflows
for containerised applications in the cloud continuum,’’ J. Grid Comput.,
vol. 19, no. 3, p. 118, Sep. 2021.

[6] N. Marie-Magdelaine and T. Ahmed, ‘‘Proactive autoscaling for cloud-
native applications using machine learning,’’ in Proc. GLOBECOM IEEE
Global Commun. Conf., Dec. 2020, pp. 1–7.

VOLUME 12, 2024 71833

H. Liu et al.: Trend Detection-Based Auto-Scaling Method for Containers

[7] L. Toka, G. Dobreff, B. Fodor, and B. Sonkoly, ‘‘Machine learning-based
scaling management for kubernetes edge clusters,’’ IEEE Trans. Netw.
Service Manage., vol. 18, no. 1, pp. 958–972, Mar. 2021.

[8] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, ‘‘Elasticity in cloud
computing: State of the art and research challenges,’’ IEEE Trans. Services
Comput., vol. 11, no. 2, pp. 430–447, Mar. 2018.

[9] N. Mungoli, ‘‘Scalable, distributed AI frameworks: Leveraging cloud
computing for enhanced deep learning performance and efficiency,’’ 2023,
arXiv:2304.13738.

[10] M.-N. Tran, D.-D. Vu, and Y. Kim, ‘‘A survey of autoscaling in
kubernetes,’’ in Proc. 13th Int. Conf. Ubiquitous Future Netw. (ICUFN),
Jul. 2022, pp. 263–265.

[11] M. Filho, E. Pimentel, W. Pereira, P. H. M. Maia, and M. I. Cortés, ‘‘Self-
adaptive microservice-based systems–landscape and research opportuni-
ties,’’ in Proc. Int. Symp. Softw. Eng. Adapt. Self-Managing Syst. (SEAMS),
May 2021, pp. 167–178.

[12] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P.Merle, ‘‘Autonomic vertical
elasticity of Docker containers with ELASTICDOCKER,’’ in Proc. IEEE
10th Int. Conf. Cloud Comput. (CLOUD), Jun. 2017, pp. 472–479.

[13] G. Rattihalli, M. Govindaraju, H. Lu, and D. Tiwari, ‘‘Exploring potential
for non-disruptive vertical auto scaling and resource estimation in
kubernetes,’’ in Proc. IEEE 12th Int. Conf. Cloud Comput. (CLOUD),
Jul. 2019, pp. 33–40.

[14] A. Goli, N. Mahmoudi, H. Khazaei, and O. Ardakanian, ‘‘A holistic
machine learning-based autoscaling approach for microservice applica-
tions,’’ in Proc. 11th Int. Conf. Cloud Comput. Services Sci., 2021,
pp. 190–198.

[15] W. Iqbal, A. Erradi, and A. Mahmood, ‘‘Dynamic workload patterns
prediction for proactive auto-scaling of web applications,’’ J. Netw.
Comput. Appl., vol. 124, pp. 94–107, Dec. 2018.

[16] M. Imdoukh, I. Ahmad, and M. G. Alfailakawi, ‘‘Machine learning-
based auto-scaling for containerized applications,’’ Neural Comput. Appl.,
vol. 32, no. 13, pp. 9745–9760, Jul. 2020.

[17] L. Toka, G. Dobreff, B. Fodor, and B. Sonkoly, ‘‘Adaptive AI-based
auto-scaling for kubernetes,’’ in Proc. 20th IEEE/ACM Int. Symp.
Cluster, Cloud Internet Comput. (CCGRID), May 2020, pp. 599–608, doi:
10.1109/CCGrid49817.2020.00-33.

[18] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang,
‘‘InFormer: Beyond efficient transformer for long sequence time-series
forecasting,’’ in Proc. AAAI, 2021, vol. 35, no. 12, pp. 11106–11115.

[19] H. Ahmad, ‘‘Smart HPA: A resource-efficient horizontal pod auto-scaler
for microservice architectures,’’ 2024, arXiv:2403.07909.

[20] L. M. Al Qassem, T. Stouraitis, E. Damiani, and I. A. M. Elfadel,
‘‘Proactive random-forest autoscaler formicroservice resource allocation,’’
IEEE Access, vol. 11, pp. 2570–2585, 2023.

[21] A. A. Khaleq and I. Ra, ‘‘Intelligent autoscaling of microservices
in the cloud for real-time applications,’’ IEEE Access, vol. 9,
pp. 35464–35476, 2021.

[22] J. Santos, T. Wauters, B. Volckaert, and F. D. Turck, ‘‘Gym-hpa: Efficient
auto-scaling via reinforcement learning for complex microservice-based
applications in Kubernetes,’’ in Proc. NOMS IEEE/IFIP Netw. Oper.
Manage. Symp., May 2023, pp. 1–9.

[23] M. P. Yadav, G. Raj, H. A. Akarte, andD. K. Yadav, ‘‘Horizontal scaling for
containerized application using hybrid approach,’’ Ingénieri des Systèmes
d’Information, vol. 25, no. 6, pp. 1–10, Dec. 2020.

[24] E. Truyen, D. V. Landuyt, D. Preuveneers, B. Lagaisse, and W. Joosen,
‘‘A comprehensive feature comparison study of open-source container
orchestration frameworks,’’ Appl. Sci., vol. 9, no. 5, p. 931, Mar. 2019, doi:
10.3390/app9050931.

[25] A. Bauer, J. Grohmann, and N. Herbst, ‘‘On the value of service
demand estimation for auto-scaling,’’ in Proc. Int. Conf. Meas., Modelling
Eval. Comput. Syst., Erlangen, Germany. Cham, Switzerland: Springer,
Feb. 2018, pp. 142–156.

[26] N. Jha and R. Popli, ‘‘Comparative analysis of web applications using
JMeter,’’ Int. J. Adv. Res. Comput. Sci., vol. 8, no. 3, p. 774, 2017.

[27] F. Rossi, V. Cardellini, F. L. Presti, andM.Nardelli, ‘‘Dynamicmulti metric
thresholds for scaling applications using reinforcement learning,’’ IEEE
Trans. Cloud Comput., vol. 11, no. 2, pp. 1807–1821, Apr./Jun. 2023, doi:
10.1109/TCC2022.3163357.

[28] J. Liu, S. Zhang, Q. Wang, and J. Wei, ‘‘Coordinating fast concurrency
adapting with autoscaling for SLO-oriented Web applications,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 33, no. 12, pp. 3349–3362, Dec. 2022.

HAIPENG LIU was born in Hunan, China,
in 2000. He is currently pursuing the mas-
ter’s degree with Shanghai University. His main
research interests include cloud computing, dis-
tributed systems, and elastic computing.

WENHAO ZHU was born in 1979. He received
the bachelor’s, master’s, and Ph.D. degrees from
Zhejiang University, in 2002, 2006, and 2009,
respectively. From 2012 to 2013, he was a Visiting
Scholar with the Computer Laboratory, University
of Cambridge, for one year. He is currently a
Professor with the School of Computer Engi-
neering and Science, Shanghai University, China.
His research interests include text representation,
information extraction, and web data mining.

SIYI FU is currently pursuing the master’s degree
with Shanghai University. His main research
interests include blockchain technology, high con-
currency, and high throughput research.

YONGJUN LU received the master’s degree from
Tongji University. He is currently an Engineer,
focusing primarily on research in information
management.

71834 VOLUME 12, 2024

http://dx.doi.org/10.1109/CCGrid49817.2020.00-33
http://dx.doi.org/10.3390/app9050931
http://dx.doi.org/10.1109/TCC2022.3163357

