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ABSTRACT Density Peak Clustering (DPC) is known for its rapid identification of cluster centers and suc-
cessful clustering tasks. However, traditional DPC encounters several issues, which include simplifications
in local density and distance metrics, a non-robust single-allocation strategy and limited fault tolerance.
To address these challenges, this study introduces an innovative density peak clustering algorithm, named
Graph Distance and Adaptive K-Nearest Neighbors Selection-Based Density Peak Clustering (GAK-DPC).
Our goal with the approach is to enhance the algorithm’s adaptability to non-linear and complex data
structures. We achieve this by replacing the traditional Euclidean distance with graph distance. Additionally,
we redefine the method for computing local density based on information from K-nearest neighbor data
points. By introducing the concept of natural neighbors, the neighborhood radius r is obtained when all
instances in the dataset have at least one natural neighbor. Then for the current data point, the number
of data points falling within a circle centered on it with radius r is counted as the K-value of that data
point. Thus, we achieve the adaptive selection of the K-value. This adaptive K-value strategy takes into
account the dataset’s characteristics and inter-point neighbor relationships, which enhances the algorithm’s
adaptability and robustness. Finally, we optimize the secondary allocation strategy for sample points to
improve the algorithm’s fault tolerance. By conducting comparisons with traditional clustering algorithms
on UCI datasets and synthetic datasets, we demonstrate the effectiveness of GAK-DPC.

INDEX TERMS Adaptive K-neighbors, allocation strategy, density peak clustering, graph distance, natural
neighbors.

I. INTRODUCTION social studies [1], psychological research [2], biology [3],

Data mining stands as a cornerstone technology within the
fields of both the information industry and artificial intelli-
gence. Within the domain of data mining, cluster analysis
stands as a profoundly significant technique. Its primary
objective is to categorize data into separate groups or clusters
by assessing the similarities among data points. This ensures
that data points within a common cluster share high similar-
ity, while data points belonging to separate clusters exhibit
reduced similarity. Cluster analysis holds pivotal importance
as a fundamental technique across various fields, including
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statistics [4], recognition of patterns [5] and information
retrieval [6] and so on.

There are five types of traditional clustering algorithms:
partition-based clustering algorithms, hierarchical cluster-
ing algorithms [7], density-based clustering algorithms [8],
model-based clustering algorithms [9] and grid-based cluster-
ing algorithms [10]. For specific types of data or applications,
each algorithm possesses its own set of advantages and
disadvantages. Within density-based clustering, clusters are
delineated as regions that have elevated density in comparison
to the remaining dataset. Laio and Rodriguez proposed a
new density-based clustering technique known as DPC [11].
The rest of the samples are allocated to cluster with the
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highest nearby density after cluster centers are determined
based on relative distance and local density of samples. While
DPC performs well on various datasets, it still has some
limitations. For example, DPC cannot handle data with high
density variations; DPC’s use of the Euclidean distance for
density computation and density peak search is not suitable
for streaming structures and there is a domino effect of DPC
on point assignments. Moreover the choice of the truncation
distance § has a significant impact on the final result of DPC.

To address the aforementioned issues, several researchers
have proposed various enhancements to the DPC algorithm.
Xie et al. [12] introduced an improved DPC algorithm that
relies on fuzzy weighted K-nearest neighbors. This algorithm
computes point’s local density by summing the distances to
neighboring points within a specified truncation distance.
The inclusion of distance information from nearby points
effectively influences local data points’ density and incor-
porates their contributions. Du et al. [13] presented the
Density Peaks Clustering Based On K-Nearest Neighbors
(DPC-KNN) algorithm, which accounts for the spatial struc-
ture of sample points by considering k-nearest neighbors.
This approach provides a local density calculation that accu-
rately reflects the spatial characteristics of the sample points.
DPC-KNN addresses the issue of cluster loss by consider-
ing the spatial structure of sample points. Rui et al. [14]
introduced the Shared-Nearest-Neighbor-based Clustering
by fast search and find of Density Peaks (SNN-DPC)
algorithm, which redefines the formulas for relative distance
and local density by using the number of closest neighbors.
They also employ a secondary allocation method based on
shared nearest neighbors as part of allocation strategy. The
SNN-DPC algorithm effectively enhances clustering perfor-
mance. Du et al. [15] incorporated geodesic distance to
adapt to manifold structures. Wang et al. [16] proposed a
variational density peak clustering (VDPC) algorithm. The
algorithm can systematically handle initial clusters span-
ning different density levels by categorizing data points
into different density levels and integrating the advantages
of DPC and DBSCAN to finally obtain robust clustering
results. Wang et al. [17] proposed the multi-center density
peak clustering (McDPC). The algorithm uses a hierarchi-
cal strategy to first obtain representative data points based
on the assumptions in DPC and automatically categorizes
these representative data points to different density levels.
Finally, McDPC can merge micro-clusters of specific levels
into one cluster when needed. This algorithm effectively
solves the problem that DPC may not be able to recognize
clusters with multiple density peaks. Guo et al. [18] pro-
posed a density peak clustering with connectivity estimation
(DPC-CE). The algorithm estimates the connectivity between
them using a graph-based strategy by selecting points with
large relative distances as local centers and incorporating the
connectivity information into the distance calculation. Thus,
it effectively solves the problems of incorrectly identifying
clustering centers and the “‘chain reaction” phenomenon of
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DPC in the case of uneven density. Cheng et al. [19] intro-
duced a dense member density peak clustering algorithm
based on local cores, which is called the Dense members
of Local Cores-based Density Peaks Clustering (DLORE-
DP) algorithm. By using newly defined graph distances
and local cores to handle manifold datasets, DLORE-DP
enhances clustering efficiency and robustness against noise
and intricate data. Wang et al. [20] proposed a density
peak clustering algorithm guided by pseudo labels (PLDPC).
The algorithm avoids manual pre-specification of parameters
by applying the mutual information criterion, thus solving
the time-consuming problem of DPC for determining the
optimal parameters. Experimental results show that PLDPC
outperforms three classical and eight state-of-the-art cluster-
ing algorithms in most cases. Wang et al. [21] introduced
a novel density peaks clustering algorithm for automatic
selection of clustering centers based on K-nearest neighbors.
The algorithm overcomes the problems of DPC that need
to determine the clustering centers manually when dealing
with complex datasets as well as the poor performance in the
case of varying densities or non-convexity by automatically
selecting the clustering centers based on k-nearest neighbors.
Vu et al. [22] proposed the Constrained Density Peak Clus-
tering (CDPC) algorithm that aims to optimize the clustering
results through “must link™ and ‘“‘cannot link™ constraints.
It combines constraints and k-nearest neighbor graph tech-
niques to accurately filter peaks and find the center of each
cluster. This method addresses the limitation that DPC has
difficulty in clustering on datasets with both high and low
density clusters. Xu et al. [23] proposed an automatic density
peaks clustering based on a density-distance clustering index
(ADPC) algorithm. The algorithm introduces a new clus-
tering effectiveness metric called density-distance clustering
(DDC), based on which the cut-off distance is automatically
selected without additional parameters. Experimental results
show that the algorithm is able to automatically determine the
optimal number of clusters and cut-off distance and outper-
forms DPC, AP and DBSCAN.

In conclusion, each of the above papers improves DPC
in terms of local density definition, similarity measure,
cluster center selection and microcluster merging, respec-
tively. However, it is difficult to simultaneously satisfy the
requirements of adapting the algorithm to complex structured
datasets, adaptively adjusting according to the dataset charac-
teristics when calculating the local density and avoiding the
propagation of data point errors. In this work, a new density
peak clustering approach named GAK-DPC is presented.
Firstly, by introducing graph distances, the relationships
among data points are represented as the shortest paths in
a graph. This allows the algorithm to capture interactions
among data points more accurately, overcome the limitations
of the distance metric and handle nonlinear and complex data
structures efficiently. Secondly, a K-nearest neighbor-based
approach for calculating local data point density is proposed.
Unlike manual setting of neighborhood radius and K values,
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this algorithm automatically adapts based on the intrinsic
characteristics of the dataset when calculating local density.
This enhances the versatility of the algorithm and allows
the algorithm to better meet the different needs of various
datasets, thus improving the quality of clustering. Finally, the
allocation strategy for data points has been optimized to better
handle exceptional cases within the dataset. By constraining
the possible assignment of points, the algorithm more accu-
rately identifies cluster boundaries and noisy points, which
enhances the robustness of the algorithm. In summary, this
paper improves the algorithm by proposing a novel adaptive
method of calculating local density points and module com-
bination innovation. It solves the problems that the cut-off
distance of DPC is difficult to determine, the data point
allocation is prone to cascading errors and it is difficult to deal
with nonlinear and complex data. The experimental results
show that the clustering quality of the improved DPC is
greatly improved. The first part of this paper introduces the
current status of research at home and abroad and introduces
the algorithm GAK-DPC proposed in this paper. The second
part describes the algorithmic steps of DPC and the concepts
related to GAK-DPC. The third part describes the implemen-
tation process of GAK-DPC in detail. The last part validates
the experimental results of GAK-DPC on UCI datasets and
synthetic datasets. Finally GAK-DPC is analyzed for param-
eter sensitivity and time complexity.

Il. PRELIMINARIES

A. DPC ALGORITHM

Two fundamental presumptions underlie DPC: (1) other data
points with lower densities within the cluster surround the
center of cluster; (2) relatively long distances among cluster
centers. A decision graph can be made by examining each
data point’s distance value § and local density parameter p.
Under the Gaussian kernel, for each data point the determi-
nation of the local density parameter is carried out in the
following manner:

dii 2
pi =D expl— (=) ] (1)
— de
i#j
where dj; is the Euclidean distance between points x; and x;;
d, is the cut-off distance, which is usually set to 1 to 2 percent
of the distance in descending order.
The data point local density under the truncated kernel is
specified as follows:

pi= > x(dj—de) )
i#]

where yx (x) is a logical judgment function, the function value
is I if x < 0 and O otherwise. The original paper on DPC
suggests that for larger-scale datasets, the clustering perfor-
mance is better when using the truncated kernel calculation
method. Conversely, for smaller-scale datasets, the Gaussian
kernel calculation method yields more noticeable clustering
results.
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Each data point and data points with higher local densities
have a minimum distance value, §;, of:

min (d;), others
_ J:Pj>Pi (3)
max(dy),  £; = max(p)
J

where j: p; > p; is assemblage of data points with local
densities higher than data point x;. As there are no places
in the sample with the highest density, DPC designates this
point as a density peak (cluster center) and artificially assigns
its relative distance from the maximum. Two conditions must
be met for the remaining density peaks: a significant relative
distance § and a high local density p. To achieve this, the
initial paper of DPC finds such density peaks using a decision
value and the following equation provides the definition of y:

y=px34 4

Using the decision values in (4), the user can determine
the clustering centers. Alternatively, a decision diagram as
shown in Figure 1 is constructed using the local density as the
horizontal axis and the relative distance as the vertical axis.
The clustering centers are manually selected peak density
points with large values of p and §.
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FIGURE 1. The decision graph of DPC on the spiral dataset.

After determining the cluster centers, labels are assigned
to these cluster center points. Then, for data points with-
out assigned labels, the clustering process is completed by
assigning labels based on the nearest data points with a higher
density that are already labeled. Algorithm 1 displays the
steps involved in DPC.

B. BASIC KNOWLEDGE

Definition 1 (K-Nearest Neighbors): Given a dataset X
containing n data points {x1, x2, ..., x,}. Compute distances
between data point x; and the dataset X’s remaining points,
then sort these separations in ascending order. Let d (x;, k)
represent the K-th distance and record the first K distances’
indices. The equivalent data points are the K-nearest neigh-
bors of x;, which is described as:

NN (x) = {xj € D(x;, x)) < d(x;, k)} (5)
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Algorithm 1 DPC Algorithm

Input: Dataset X = {x1, x, ..., X, }, parameter p

Output: C = {C1, C2, ..., Cn}

1: Calculate distance matrix Dy x»,

2: Determine (. value

3: Compute 0; and §; for each data point in accordance
with (1) and (3)

4: Make a decision graph and select cluster centers

5: Distribute non-cluster center points

Definition 2 (Reverse K-Nearest Neighbors): Given a
dataset X containing n data points {x1, X2, . .., X, } and a query
point ¢g. Finding the K-nearest neighbor data points of the
query point g or points which have the query data point ¢
as one of their K-nearest neighbors, is the goal of reverse
K-nearest neighbor. This can be described as:

RNN (q9) ={x € D|qg € NN(x)} (6)

C. GRAPH DISTANCE

First, we calculate the Kj-nearest neighbor neighborhoods
(K1 is the first input parameter) for each point and construct
a graph by connecting all neighboring points. Then we use
Euclidean distance between respective connected points as
the weight to label each arc in the graph. In the end, the graph
distance between two points is estimated as the sum of the
arc lengths along the shortest path connecting them and we
compute the shortest paths between any two locations in the
graph by using Floyd algorithm.

If data point i is one of the K-nearest neighbors of data
point j, then by joining i and j, a graph G is defined over all
data points. Calculate the edge length d (i, j) between points i
and j using the Euclidean distance, which is:

dGi, j) = [xi—x| )

The graph distance between points i and j is represented by
the symbol dg(i, j), which is:

d(, j),
00, otherwise

if i,j are linked by an edge
J y g 8)

dg(i, j) = I
Then, we replace every entry in the graph with the shortest
pathways, as defined in (9).

dg(i, ) = min{dg(i, j), dc(i, 1) + dc(l, )} ©))

where /| = 1,2,...,N. Eventually, a novel distance matrix
D¢ = {dg(i,))} is generated, which lists the shortest path
distances between any two graph locations.

ill. THE PROPOSED ALGORITHM

Firstly, it replaces the Euclidean distance with graph distance,
which enhances the algorithm’s performance on manifold
datasets. Secondly, it defines a K-nearest neighbor-based
approach for calculating local point density and adaptively
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determines the value of K based on dataset characteris-
tics. Lastly, we optimize the secondary allocation strategy
for samples, which effectively solves issues that DPC did
not consider spatial properties among data points and the
one-step allocation problem.

A. DISTANCE MEASUREMENT

Most existing DPC algorithms are unable to discover mani-
fold clusters because traditional Euclidean distance calcula-
tion methods cannot capture the complex relationships among
data points and handle the nonlinear data structures well.
According to [15], it is evident that geodesic distance can
effectively handle manifold data and offer a more precise
representation of the relative positions of data points. In [24],
the author points out when there are a sufficient number
of samples, geodesic distance can be estimated using graph
distance. Therefore, in this paper, the graph distance intro-
duced in section II is used for distance measurement. This
type of distance calculation constructs a connectivity graph
among data points by considering their K-nearest neighbor
connections and calculates the shortest paths to measure the
distances among them.

B. ADAPTIVE LOCAL DENSITY CALCULATION

In this work, we utilize the K-nearest neighbor information of
points to establish local density. Doing so avoids the use of
the cut-off distance 4., which relies on the specific dispersion
of data and is difficult to determine. Therefore how to choose
the appropriate value of K becomes a problem we need to
solve.

Inspired by DPC’s approach, which establishes cut-off
distance 4, by calculating the proportion of locations with a
distance on average lower than 4, typically ranging from 1%
to 2% of the total points, this paper attempts to find a suitable
neighborhood radius r for each dataset. For the current data
point x;, it calculates the quantity of data points that fall within
a circle centered at x; with a radius of r as x;’s K-value.
Therefore, the K-value k; for the current data point x; is (10):

ki =Y I(d(i.j) <) (10)

J=1

where n is the dimension of dataset and indicator function /(-)
yields 1 in the case when the condition included in parenthesis
is true and O in the other case.

Next, we obtain the local density of the point x; by modify-
ing k; using the redefined density formula. The local density
p(x;) of point x; is:

ki
p ) =D exp(—da (i, j)*) (1D
j=1
where dg(i, j) denotes the graph distance between x; and its
J — th neighbor.
This method yields a more accurate local density estima-
tion according to the distribution of surrounding points by
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allowing an adaptive modification of the quantity of neigh-
bors when computing the local density of points.

Natural neighbor [25] is a novel idea of neighbors, whose
search algorithm can independently find neighbors without
human intervention. Moreover, each point’s neighbor count is
mutually independent, which reflects a natural way of think-
ing. Applications include clustering evaluation [26], instance
minimization [27] and outlier detection [28] illustrates its
effectiveness.

Definition 3 (Natural Neighbors): Given a dataset X con-
taining n data points {x, x2, ..., x,}. Natural neighbor of x;
is defined as follow:

Xj € NN(x;) & (x; € NNt(x)) A (x; € NN(x)  (12)

Natural neighbor’s underlying idea is that we continuously
widen the range of objects we are searching for and we
compute each time how many of those objects are neigh-
bors of other objects. This process continues until either
all objects are neighbors or the number of objects that are
not neighbors of other objects remains constant. Introducing
KD-tree [29] into the natural neighbor search algorithm can
reduce its time complexity. According to [19], Algorithm 2
provides a description of the Natural Neighbor searching
algorithm.

In typical situations, neighborhood of an object in a sparse
region should be small, while the neighborhood in a dense
region should be large. Using a fixed K value may lead to
neighborhoods that are too crowded in some areas and too
sparse in others. In Algorithm 2, the natural neighbors in
the dataset are searched by iteratively adjusting the » until
the exit condition is met, i.e., all instances in the dataset
have at least one natural neighbor. The r represents the
range of the number of natural neighbors rather than a direct
radius value. However, it can be interpreted as an indirect
neighborhood radius because it is the result of a number
dynamically selected based on the dataset, which reflects
the range of the number of natural neighbors for each data
point. Thus it can be used to some extent as a measure of
the spatial extent around the data point. Therefore, according
to (10) and (11), we use the r obtained in Algorithm 2 after
shrinking it by a factor of 100 as the neighborhood radius for
calculating the local density. Too large a reduction radius may
result in too few points in the local neighborhood, making
the clustering results deviate from the actual data structure.
On the contrary, too small a shrinkage radius may make the
local neighborhood still contain too much noise and outliers.
Through experiments, we found that shrinking the radius by a
factor of 100 can balance these two extremes to some extent.
Therefore, shrinking by 100 times is regarded by us as a
relatively reasonable balance point, which can improve the
accuracy and stability of the clustering results while main-
taining the performance of the algorithm.This can better take
into account the non-uniformity of data distribution, which
reduces the risk of overfitting and enhances the algorithm’s
adaptability and performance.
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Algorithm 2 NaN- Searching.

Input: Dataset X

Output: r

1: Initializing: r = 1, nb(i) = 0, NNo(i) = ¢, RNNo(i) = ¢
2: For the dataset X, find the rth nearest neighbor n of the
current data point m

3: Record the number of nearest neighbors of n. Increase the
nb value of n by 1 to indicate that n is a nearest neighbor point
of m

4: Add the newly found nearest neighbor 7 to the set NN ,.(m)
of rth nearest neighbors of point m

5: Add m to the set of reverse rth nearest neighbors RNN ,(n)
of point n

6: Iterate over the next data point, if the next data point exists
then skip to step 2, if not then proceed to step 7

7: Compute the number of points with no neighbor (i.e.,
nb(m) = 0) Numb;

8: If the value of Numb remains unchanged then skip to
step 10, if it still changes then proceed to step 9

9: Accumulate the value of r: r = r + 1 and jump to step 2
10: Output the r

C. CLUSTER CENTER SELECTION AND THE ALLOCATION
OF THE REMAINING DATA POINTS IN CLUSTERING
In this study, cluster centers are chosen based on (3) and (4).
Cluster centroids are selected manually, based on the y value.
Higher y values correspond to higher p and § values. A clus-
ter center is more likely to form at this point.

Definition 4 (Inevitable Subordinate Point): When Xx; is
allocated to the corresponding cluster and x; has not been
assigned yet, this happens only if it fulfills:

{plp € KNN(x;))Np e KNN(xp} =1 x K2 (13)

It is considered that point x; should be a part of the same
cluster as data point x;. Where K> is the second input factor,
while [ represents the proportion of shared neighbors to total
neighbors that two data points need to satisfy in order to
be grouped into the same cluster. The value of / provided
in [14] is 1/2, while in reference [30], it is given as 3/4.
For most datasets, the challenge lies in dealing with the
overlapping regions between clusters, where they intersect
and overlap. To reduce the risk of allocation errors, this paper
has raised the conditions for reachability by increasing the
value of /. Experimental results have shown that setting / to
18/23 achieves optimal results for most datasets. Specifically,
when [ is set to 0.753, it produces the aggregation dataset’s
best results. For the remaining unallocated data points,
their neighbor characteristics are considered and they are
assigned to the cluster that has the most relationships with its
neighbors.

D. THE STEPS OF THE GAK-DPC

GAK-DPC adheres to the fundamentals of DPC and intro-
duces improvements in crucial steps. The entire process is
displayed in Algorithm 3.
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Algorithm 3 GAK-DPC.

Imput: X = {x1,x2,...,x,} (n is the number of entries),
number of neighbors X and K>

Output: result of clustering C = {Cy, C2, ... Cn} (m is the
number of clusters)

1: Initialize dataset X

2: Calculate distance matrix D" = {d;}"*"
to (9)

3: Apply Algorithm 2 to calculate neighborhood radius r

4: Calculate local density p according to (10) and (11)

5: Determine distance from the closest bigger density point &
according to (3)

6: Calculate decision value y according to (4), and sort it in
ascending order and note the new order of all elements

7: Create a decision graph and choose the cluster centers

8: Allocate non-cluster center points according to (13)

9: Data points that do not satisfy (13) are assigned to the
cluster that has the most relationships with its neighbors
10:Output the clustering results

according

E. TIME COMPLEXITY ANALYSIS

For the dataset X = {x{, xp, ..., x,}, the number of nearest
neighbors K1 and K>, the time complexity of GAK-DPC
proposed in this paper consists of the following parts:
(1) Calculate the matrix of graph distances between all the
data points O(n3); (2) Calculate the radius of the neighbor-
hood according to Algorithm 2 O(nlog n); (3) Calculate the
local densities of all the points O(n?); (4) Determine the
distances to the nearest points of larger densities § O(n?);
(5) Calculate the decision value and order it O(nlogn);
(6) The number of clusters in this part is counted as m. For
the assignment of unavoidable slave points there is O(mn?),
and for the assignment of possible slave points there is
O((Kp +m) n?). Thus, the overall computational complexity
of the method proposed in this paper is O(1>).

IV. EXPERIMENT AND ANALYSIS

This experiment uses a set of UCI datasets and synthetic
datasets to evaluate the clustering effect of GAK-DPC.
Detailed information of the datasets used in this study is pro-
vided in Tables 1 and 2, which include sample size, attributes
and classes for each dataset.

We compare the experimental results with several clus-
tering algorithms, including SNN-DPC [14], McDPC [17],
DPC-CE [18], DPC [11], DBSCAN [31] and K-Means [32].
For DBSCAN and K-Means algorithms, we use implementa-
tions available in the Python sklearn library [33]. SNN-DPC,
McDPC, DPC-CE and DPC all employ publicly available
source code, with DPC utilizing Gaussian kernel cluster-
ing. Among them McDPC and DPC-CE are implemented in
MATLAB, other than that the algorithms are implemented in
Python.
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TABLE 1. Synthetic datasets.

Datasets Size Attributes Classes
Atom 800 3 2
Aggregation 788 2 7
Spiral 312 2 3
Pathbased 300 2 3
Flame 240 2 2
Rings 1500 2 3
Chainlink 1000 3 2
Complex 3031 2 9
2circles 600 2 2
Halfkernel 1000 2 2
Twomoons 200 2 2
Threecircles 299 2 3
Fourlines 512 2 4

TABLE 2. Real-world datasets.

Datasets Size Attributes Classes
Iris 150 4 3
Wine 178 13 3
Seeds 210 7 3
Segment 2310 19 7
Waveform 5000 21 3
Parkinsons 197 23 2
Spect Heart 267 44 2

A. CLUSTER EVALUATION INDEX

This study uses Adjusted Mutual Information (AMI) [34],
Adjusted Rand Index (ARI) [34] and Fowlkes-Mallows Index
(FMI) [35] as evaluation metrics. AMI and ARI have a range
of values between —1 and 1, while FMI’s range is between
0 and 1. The optimal results for all three metrics are achieved
when the value is 1. When the value is close to 1, it indicates
a greater clustering ability. When AMI and ARI are nega-
tive, the labels are dispersed separately, which indicates poor
clustering.

At first, we apply the “min-max normalization” approach
to preprocess the data. This preprocessing step not only elimi-
nates the impact of various dimensions on the outcomes of the
experiment but also reduces the algorithm’s execution time.
By normalizing the data, we ensure that features at different
scales would contribute equally to the clustering analysis,
thereby we enhance the algorithm’s robustness and reliability.
This preprocessing step is crucial to ensuring the fairness and
accuracy of the experiments.

, X;j — min(x;)

Y= max(x;) — min(x;) (14

where x; is a primary data in the entire j — th column, x;; is the
original data for the i — th data point in the j — th data entry
and xlfj is a re-scaled data for the i — th data point in the j — th
data entry.
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B. ALGORITHM PARAMETER SETTINGS

The parameter settings for each method utilized in the studies
are shown in Table 3 based on the previously mentioned
datasets. The parameters for each algorithm are selected
based on their optimal values.

In this study, GAK-DPC requires the specification of two
parameters: K, which is used when computing geodesic
distances and K>, which is used for allocating the remaining
data points. We have designed a nested loop function, where
K1 acts as the outer loop and K> is the inner loop. The outer
loop is kept constant while the inner loop is incremented by 1
from 3 until it reaches a threshold value of 40 when it jumps
out of the inner loop. Then, the outer loop is also incremented
by 1 from 3 until the traversal stops when both the inner
and outer loops reach the threshold 40. At each parameter
change, we calculate the ARI value of the dataset under the
current parameter and record the current parameter. If a better
solution than the current ARI value is found, the record is
replaced to find the optimal solution. This range was chosen
because for certain datasets, a small value of K may result in
infinite computations which can lead to errors. Meanwhile,
the results of the algorithm will not be much affected by a
large value of K. Therefore, further exploration beyond this
range may not be meaningful. In addition, in parentheses after
the parameters we indicate the 1 values for each dataset, which
is presented in the form of a score. SNN-DPC has a single
integer parameter, K. The allowable range for these K values
is also between 3 and 40 and they should be positive integers.

McDPC has four parameters, which are y, 6, A and pct.
Parameters y and 6 perform p-cut and §-cut, respectively,
A is the threshold for identifying micro-clusters and pct is
used to generate decision diagrams. DPC-CE has two fixed
parameters 7, and P,, whose values do not require additional
tuning for all datasets. For DPC, the authors provide an
empirical rule that suggests modifying the parameter “d.”
to influence clustering outcomes. Even when the number of
neighboring points falls within 1-2% of the overall amount
of points, this experiment varies this proportion to achieve
the greatest outcomes.

DBSCAN has two parameters, which are minpts (an inte-
ger) and ¢ (a floating-point number). K-Means takes the
quantity of clusters in the dataset as its input parameter.

C. EXPERIMENTAL RESULTS ON SYNTHETIC DATASETS
We use a variety of synthetic datasets in this part to test dif-
ferent clustering strategies. These datasets vary according to
the number of point clusters and total distribution. They serve
to simulate different scenarios and allow for the comparison
of the effectiveness of different clustering algorithms under
diverse conditions.

Table 4 provides the clustering evaluation metric values
for seven algorithms on thirteen synthetic datasets, including
ARI, AMI and FMI. The results in bold indicate the optimal
values for a particular metric within the same dataset. It is
evident from the table that GAK-DPC performs the best
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when it comes to clustering on the majority of the datasets.
Regarding the flame dataset, which is made up of two clusters
and exhibits a balanced distribution, the algorithm’s metrics
may not be the best. However, the clustered images obtained
from the experiments show that the results of this algorithm
differ only slightly from those of DPC in the overlapping
regions of the two clusters. The algorithm fails to accurately
depict this data point. DPC employs a simple and efficient
allocation approach that gives the cluster with the highest
density ratio a data point and the closest allocated data point.
While this strategy is effective, it is susceptible to the data
point’s structural characteristics and lacks robustness. In this
study, GAK-DPC demonstrates greater clustering robustness
than DPC on the majority of the datasets.

For the thirteen synthetic datasets, the clustering findings
of the technique suggested in this work all obtain values
above 0.95, which indicates that GAK-DPC can produce
excellent clustering outcomes on complex-shaped datasets.
In contrast, other clustering algorithms yield suboptimal
results on certain datasets. For instance, on the spiral dataset,
K-Means shows unsatisfactory clustering performance.
On the twomoons dataset, only GAK-DPC, DPC-CE and
DBSCAN exhibit relatively ideal clustering results. SNN-
DPC and McDPC also demonstrate satisfactory clustering
outcomes on only some of the datasets. Meanwhile, DPC
performs well on the aggregation, flame and spiral datasets
but did not excel on others.

Then, we will provide the clustering findings for a few of
the experimental datasets. In the figures, points of the same
color represent data points assigned to the same cluster, while
distinct clusters are depicted in different colors. Addition-
ally, except DBSCAN, McDPC and DPC-CE, cluster centers
obtained by all other algorithms are represented by cross-
shaped symbols.

According to the clustering outcomes shown in Figure 2,
the aggregation dataset’s clusters may be found using all six
algorithms listed in the figure. However, these algorithms
differ in their clustering results mainly in their assignment
of data points at the intersection of the two rightmost ellipse
clusters. SNN-DPC incorrectly divides some data points from
the upper ellipse to the lower ellipse, whereas GAK-DPC,
DPC-CE and DPC incorrectly assign only one data point at
the articulation of the two ellipses. DBSCAN, while having
some noise, correctly shape each cluster they identify.

Figure 3 displays the outcomes of various algorithms on
the flame dataset. It can be observed that the clusters can
be appropriately identified by GAK-DPC, SNN-DPC, DPC-
CE, DPC and DBSCAN. GAK-DPC and SNN-DPC have
slight variations in their assignments compared to DPC and
DPC-CE. Only one point is misclassified at the upper-lower
boundary. DBSCAN has some noise. McDPC fails to cor-
rectly identify cluster divisions, as it incorrectly divides the
right end portion of the lower cluster into a third cluster,
whereas the flame dataset has only two categories.

The pathbased dataset’s clustering results from several
techniques are shown in Figure 4. As the image illustrates,

71789



IEEE Access

Y. Sun et al.: Graph Distance and Adaptive K-Nearest Neighbors Selection-Based DPC

TABLE 3. Experimental parameter values.

Data GAK-DPC __ SNN-DPC McDPC DPC-CE DPC DBSCAN K-Means
Atom 5/1(18/23) 3 0.1/2/5/2 025/03 2.0  0.06/20 2
Aggregation  7/28(0.753) 15 0.5/0.1/2.9/4 02503 3.9  0.04/6 7
Spiral 3/1(18/23) 5 0.1/0.03/3.52 02503 2.0  0.042 3
Pathbased  6/29(18/23) 9 0.12/0.8/3.5/0.5  0.25/0.3 3.8  0.08/10 3
Rings 6/1(18/23) 4 0.1/1.8/0.32.5  025/03 19  0.07/20 3
Chainlink  5/1(18/23) 3 0.2/1/1/1.8 025/03 2.0  0.08/20 2
Complex  7/1(18/23) 3 0.1/0.7/20/2.1 025/03 14  0.08/20 9
Flame 8/14(18/23) 5 0.02/0.5/32.5  025/03 28  0.09/8 2
2circles 5/1(18/23) 37 0.2/2/3/2 0.25/03 2.0 3/3 2
Halfkernel  7/1(18/23) 3 0.5/5/7/4 02503 1.0 3/4 2
Twomoons  7/9(18/23) 10 0.2/0.26/0.065/3.56  0.25/0.3 2.0  0.45/3 2
Threecircles  6/1(18/23) 5 0.1/1/0.08/2 02503 17 0279 3
Fourlines  5/1(18/23) 11 0.3/0.2/0.07/4  0.25/03 2.0  0.09/11 4
Iris 5/19(18/23) 15 0.03/0.5/1/0.8  0.25/0.3 02  0.12/5 3
Wine 20/28(18/23) 18 0.01/0.1/250/0.2  0.25/0.3 2.0  0.50/21 3
Seeds 8/8(18/23) 6 0.2/0.01/2/2 025/03 0.7  0.24/16 3
Segment  14/15(18/23) 7 0.1/0.5/37/1.4 02503 15  0.1572 7
Waveform  7/7(18/23) 7 0.1/1/52/0.73  0.25/03 0.1  0.38/5 3
Parkinsons  7/20(18/23) 5 0.2/0.009/482  0.25/0.3 12  0.50/17 2
Spect Heart  3/22(18/23) 32 0.2/0.1/1.5/5 0.25/03 2.0 1.5/8 2

GAK-DPC Clustering of Aggregation Dataset

SNN-DPC Clustering of Aggregation Dataset

DPC Clustering of Aggregation Dataset
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FIGURE 2. The clustering results on aggregation by 6 algorithms.

while GAK-DPC, SNN-DPC and DPC are able to identify
cluster centers, DPC incorrectly divides one cluster into three.
The half-ring cluster’s left and right sides are wrongly asso-
ciated with the other two clusters, so it leaves only a small
portion of the top of the half-ring cluster. DPC-CE also
incorrectly divides the semicircular ring into three parts and it
incorrectly assigns data to the right-of-center clusters in more
circular regions, leading to more incorrect division of data.
SNN-DPC has some misclassifications at the intersection
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of the middle two clusters with the half-ring cluster. For
DBSCAN, despite correctly assigning the other two clusters,
the half-circle cluster as a whole is labeled as noise due to its
significantly lower density compared to Minpts. Therefore,
only GAK-DPC and McDPC correctly partition this dataset.

Figure 5 showcases the clustering results of various algo-
rithms on the spiral dataset, highlighting the algorithms’
ability to handle intertwined datasets. These algorithms all
perfectly classified the dataset. The difference lies in the

VOLUME 12, 2024



Y. Sun et al.: Graph Distance and Adaptive K-Nearest Neighbors Selection-Based DPC

IEEE Access

TABLE 4. Comparison of clustering results on synthetic datasets.

Data Index | GAK-DPC | SNN-DPC | McDPC | DPC-CE | DPC | DBSCAN | K-Means
ARI 1 1 1 0.2468 | 0.0955 1 0.1821
Atom AMI 1 1 1 03428 | 02157 1 0.2923
FMI 1 1 1 0.6694 | 0.6463 1 0.6547
ARI | 0.9978 0.9594 1 0.9978 | 0.9978 | 0.9779 | 0.7300
Aggregation | AMI | 0.9956 0.9500 1 0.9956 | 0.9956 | 0.9529 | 0.7935
FMI | 0.9983 0.9681 1 0.9983 | 0.9983 | 0.9827 | 0.7884
ARI 1 1 1 1 1 1 —0.0060
Spiral AMI 1 1 1 1 1 1 —0.0055
FMI 1 1 1 1 1 1 0.3274
ARI 1 0.9294 1 04738 | 04717 | 09011 | 0.4613
Pathbased | AMI 1 0.9001 1 0.5725 | 0.5212 | 0.8234 | 0.5098
FMI 1 0.9529 1 0.6938 | 0.6664 | 0.9340 | 0.6617
ARI 1 1 0.9278 | 0.5167 | 0.2158 1 0.1148
Rings AMI 1 1 0.9421 | 0.7014 | 0.2815 1 0.1987
FMI 1 1 0.9524 | 0.7378 | 0.4910 1 0.4401
ARI 1 1 0.0872 | 0.6225 | 0.2678 1 0.0879
Chainlink | AMI 1 1 02133 | 0.7424 | 0.3564 1 0.0644
FMI 1 1 0.6764 | 0.7888 | 0.6753 1 0.5435
ARI 1 0.6631 | 0.4166 | 04775 | 0.5124 | 02145 | 0.3458
Complex | AMI 1 0.8389 | 0.6927 | 0.6626 | 0.7604 | 0.4352 | 0.6098
FMI 1 0.7234 | 05141 | 0.5850 | 0.5969 | 0.5326 | 0.4514
ARI | 09833 0.9502 | 0.7338 1 1 0.9388 | 0.4534
Flame AMI | 0.9634 0.8975 | 0.7162 1 1 0.8234 | 0.3863
FMI | 0.9922 0.9768 | 0.8649 1 1 09712 | 0.7364
ARI 1 03164 1 1 0.0127 1 0.0017
circles | AMI 1 0.3778 1 1 0.0921 1 20.0012
FMI 1 0.6891 1 1 0.6719 1 0.4983
ARI 1 1 1 1 0.4132 1 0.0011
Halfkernel | AMI 1 1 1 1 0.4409 1 0.0008
FMI 1 1 1 1 0.7163 1 0.5021
Twomoons | ARI 1 0.4068 | 0.0915 1 0.6064 1 0.1325
AMI 1 0.4557 | 0.1239 1 0.5953 1 0.1022
FMI 1 0.7175 | 0.5235 1 0.8057 1 0.5646
Threccircles AR 1 0.5310 1 1 0.0308 | 0.8739 | 0.0547
cecireles [ AMI 1 0.6857 1 1 0.1792 | 08637 | 0.1632
FMI 1 0.7160 1 1 04876 | 09193 | 0.4031
ARI 1 1 1 1 0.4680 1 0.4514
Fourlines | AMI 1 1 1 1 0.6112 1 0.5617
FMI 1 1 1 1 0.6045 1 0.6011

fact that the clustering centers of the GAK-DPC algorithm
are closer to the endpoints, which aids in the allocation of
the remaining data points. The clustering result charts of all
synthetic datasets except the four mentioned above will be
displayed in Figure 6.

D. EXPERIMENTAL RESULTS ON REAL-WORLD DATASETS

To further evaluate the clustering performance of GAK-
DPC, this section conducts a comparative analysis, pitting
GAK-DPC against six alternative algorithms across seven
distinct real-world datasets featuring diverse structures and
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dimensions. Table 5 displays the results of clustering evalua-
tion with bold data representing the best clusters.

From the table, it is evident that GAK-DPC delivers the
most favorable clustering outcomes among the datasets pre-
sented. In particular, on the waveform dataset, the ARI of this
algorithm is improved by 60.45% over DPC; on the wine
dataset, the ARI of this algorithm is improved by 35.84%
over DPC; on the parkinson dataset, the ARI of this algorithm
is improved by 29.25% over SNN-DPC; in terms of per-
formance metrics on both the seeds and segment datasets,
the method performs at least 2% better than the other six
algorithms. Combining the bar charts of clustering evaluation
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GAK-DPC Clustering of Flame Dataset

SNN-DPC Clustering of Flame Dataset

DPC Clustering of Flame Dataset

FIGURE 3. The clustering results on flame by 6 algorithms.

GAK-DPC Clustering of Pathbased Dataset

SNN-DPC Clustering of Pathbased Dataset

DPC Clustering of Pathbased Dataset
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FIGURE 4. The clustering results on pathbased by 6 algorithms.

metrics in Figure 7 offers a more transparent and intuitive
depiction of the overall clustering performance and versatility
of GAK-DPC.

E. SENSITIVITY TESTS ON PARAMETERS

The algorithm in this paper involves two adjustable param-
eters, namely the number of nearest neighbors K; for
calculating the geodetic distance and the number of nearest
neighbors K for assigning the remaining data points. In this
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0.6

section, the waveform dataset is used as an example for
sensitivity testing of the algorithm parameters. The samples
in this dataset usually have a certain degree of overlap in
the feature space, i.e., samples of different categories may
have similar feature distributions and the dataset is large in
size. For DPC and some existing improved algorithms, the
presence of overlapping samples when dealing with the wave-
form dataset increases the difficulty of clustering because the
density of neighboring samples may be similar, which leads to
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FIGURE 5. The clustering results on spiral by 6 algorithms.
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FIGURE 6. The clustering results of the remaining synthetic datasets.
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TABLE 5. Comparison of clustering results on real-world datasets.

Data Index | GAK-DPC | SNN-DPC | McDPC | DPC-CE | DPC | DBSCAN | K-Means
ARI 0.9222 0.9222 0.8858 0.7891 | 0.8857 0.6120 0.7163
Iris AMI 0.9133 0.9124 0.8689 0.8026 | 0.8606 0.5692 0.7331
FMI 0.9479 0.9479 0.9234 0.8407 | 0.9233 0.7291 0.8112
ARI 0.9134 0.8992 0.3910 0.3715 | 0.6724 0.5292 0.8685
Wine AMI 0.8810 0.8735 0.4247 0.4172 | 0.7065 0.5484 0.8473
FMI 0.9425 0.9330 0.6024 0.5834 | 0.7835 0.7121 0.9126
ARI 0.8361 0.7890 0.7027 0.7687 | 0.7670 0.5291 0.7049
Seeds AMI 0.7910 0.7509 0.6955 0.7826 | 0.7299 0.5302 0.6705
FMI 0.8903 0.8589 0.8026 0.8184 | 0.8444 0.6711 0.8026
ARI 0.5965 0.5770 0.4135 0.2944 | 0.5891 0.4543 0.5049
Segment AMI 0.7335 0.6725 0.6056 0.4535 |0.7143 0.4965 0.6102
FMI 0.6634 0.6457 0.4939 0.4580 | 0.6600 0.5277 0.5758
ARI 0.4329 0.4176 0.2956 0.2466 | 0.2698 0.0097 0.2536
Waveform | AMI 0.4362 0.3984 0.3512 0.2768 | 0.3261 0.0856 0.3630
FMI 0.6405 0.6164 0.5416 0.5617 | 0.5292 0.4813 0.5037
ARI 0.3769 0.2916 0.1497 0.0058 | 0.1256 0.0252 0.0520
Parkinsons | AMI 0.2990 0.1529 0.2130 0.0003 | 0.2478 0.0071 0.2129
FMI 0.8256 0.8032 0.6458 0.7498 | 0.6187 0.5775 0.5957
ARI 0.2663 0.1903 0.0468 0.0358 | 0.0273 0.1209 -0.0059
Spect Heart | AMI 0.1399 0.1117 0.1288 0.0556 | 0.0846 0.1113 0.0942
FMI 0.7329 0.6819 0.4009 0.6848 | 0.5936 0.6336 0.5900
TABLE 6. ARI values of waveform dataset after clustering with different parameters.
K 3 4 5 6 7 8 9 10 11
ARI | 0.2491 | 0.4224 | 0.1471 | 0.3394 | 0.4329 | 0.3114 | 0.3090 | 0.3090 | 0.3090
K 12 13 14 15 16 17 18 19 20
ARI | 0.3087 | 0.2675 | 0.2568 | 0.2676 | 0.2676 | 0.2697 | 0.2697 | 0.2697 | 0.2697
K> 2 3 4 5 6 7 8 9 10 11 12 13
ARI | 0.1616 | 0.1615 | 0.3228 | 0.3711 | 0.4063 | 0.4329 | 0.4325 | 0.3032 | 0.2919 | 0.2463 | 0.2424 | 0.2399
K> 14 15 16 17 18 19 20 21 22 23 24 25
ARI | 0.1507 | 0.2090 | 0.2145 | 0.2170 | 0.2196 | 0.3939 | 0.4217 | 0.2071 | 0.4103 | 0.4075 | 0.3923 | 0.3767
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FIGURE 7. Cluster evaluation index comparison chart of GAK-DPC, SNN-DPC, McDPC, DPC-CE, DPC, DBSCAN, K-means algorithm on real-world datasets.

difficulties in accurately determining the center of clustering.
In addition, when the amount of data is large, the performance
of DPC may decrease and it is difficult to ensure the accuracy
of the clustering results.

However, the algorithm proposed in this paper performs
well in clustering the waveform dataset and has obvious

71794

advantages over other algorithms. Table 6 demonstrates the
values of the Adjusted Rand Index (ARI) for the waveform
dataset after clustering for different values of the parameters
K1 and K»>. The clustering effect is best when both X; and
K> are taken as 7. Therefore, with K> set to 7, the test is con-
ducted for the values of K1 from 3 to 20 and the values of ARI
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are recorded in the table under the variation of K| and its mean
value is calculated as 0.2931 with a variance of 0.0040; while
for K», tests are conducted for K, values from 2 to 25 with
K1 set to 7 and its mean value is calculated as 0.3013 with a
variance of 0.0096. The calculated mean value can reflect the
overall trend of clustering effect under different parameters,
the mean value of ARI obtained by this paper’s algorithm
for clustering waveform dataset under different parameters is
greater than the optimal value of ARI value for the majority
of comparison algorithms in this paper’s experiments. And
the variance indicates the degree of dispersion of the data,
which can help to assess the stability of the algorithm under
different parameter settings. The variance of the above ARI
data are smaller, which indicates that the performance of the
algorithm under the change of the parameter value changes
less and has a better stability.

In summary, the algorithm in this paper is robust to param-
eter selection and has some flexibility in parameter setting.
It can be adjusted according to the characteristics of the
dataset and the actual needs, while it is easy to find a relatively
optimal combination of parameters.

V. CONCLUSION

To address the limitations of DPC, which has constraints
related to distance measurement methods in data distribu-
tion, simplistic density definitions and a single allocation
strategy prone to chaining issues, this paper introduces a
new clustering algorithm called GAK-DPC. The proposed
algorithm enhances traditional DPC in the following key
aspects: Firstly, it replaces the traditional Euclidean distance
in DPC with graph distance. This improvement allows for a
more accurate description of the relationships between data
points, particularly in non-Euclidean spaces. This approach
finds more extensive applications and provides better adapt-
ability to diverse data distributions. Additionally, it redefines
the method for determining the local density of data points
by using the K-nearest neighbor theory. Simultaneously,
an adaptive K-value selection method is introduced. This
method dynamically determines the K-value based on the
dataset’s characteristics. This adaptive K-value selection
approach offers a more precise reflection of the proximity
of data points and enhances the algorithm’s adaptability and
robustness. In this way, it provides a better consideration of
data distribution diversity and the relationships among data
points. Finally, to enhance the algorithm’s fault tolerance,
an optimization is performed on the secondary allocation
strategy for sample points. Compared to the DPC’s sin-
gle allocation strategy, this approach significantly improves
clustering accuracy and reduces the occurrence of misclassi-
fications.

Across multiple synthetic and real-world datasets, this
algorithm is compared to SNN-DPC, McDPC, DPC-CE,
DPC, DBSCAN and K-Means. Clustering evaluation metrics
and visualization of experimental results consistently shows
that the proposed GAK-DPC outperforms the others on most
datasets.
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However, while the experimental results show advan-
tages over other methods, the challenges of achieving a
parameter-free algorithm and reducing algorithm complexity
remain. Achieving these goals requires deeper research and
methodological improvements to ensure that the algorithm
performs well and is easy to apply in various scenarios. Fur-
thermore, applying this algorithm to real-world power system
data to address practical issues is an important future research
direction. Such practical applications will further validate the
utility of the algorithm and help solve real-world problems,
which can provide more insights and opportunities for its
application in the real world.
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