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ABSTRACT Multimodal Question Answering (MMQA) has emerged as a challenging frontier at the
intersection of natural language processing (NLP) and computer vision, demanding the integration of diverse
modalities for effective comprehension and response. While pre-trained language models (PLMs) exhibit
impressive performance across a range of NLP tasks, the investigation of text-based approaches to address
MMQA represents a compelling and promising avenue for further research and advancement in the field.
Although recent research has delved into text-based approaches for MMQA, the attained results have been
unsatisfactory, which could be attributed to potential information loss during the knowledge transformation
processes. In response, a novel three-stage framework named UniRaG is proposed for tackling MMQA,
which encompasses unified knowledge representation, context retrieval, and answer generation. At the
initial stage, advanced techniques are employed for unified knowledge representation, including LLaVA
for image captioning and table linearization for tabular data, facilitating seamless integration of visual and
tabular information into textual representation. For context retrieval, a cross-encoder trained on sequence
classification is utilized to predict relevance scores for question-document pairs, and a top-k retrieval strategy
is employed to retrieve the documents with the highest relevance scores as the contexts for answer generation.
Finally, the answer generation stage is facilitated by a text-to-text PLM, Flan-T5-Base, which follows the
encoder-decoder architecture with attention mechanisms. During this stage, uniform prefix conditioning
is applied to the input text for enhanced adaptability and generalizability. Moreover, contextual diversity
training is introduced to improve model robustness by including distractor documents as negative contexts
during training. Experimental results on the MultimodalQA dataset demonstrate the superior performance
of UniRaG, surpassing the existing state-of-the-art methods across all scenarios with 67.4% EM and 71.3%
F1. Overall, UniRaG showcases robustness and reliability in MMQA, heralding significant advancements in
multimodal comprehension and question answering research.

INDEX TERMS Computer vision, information retrieval, multimodal question answering, natural language
processing, pre-trained language models, unified knowledge representation.

I. INTRODUCTION
In response to the increasing demand for more sophisticated
and contextually aware artificial intelligence applications,
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Multimodal Question Answering (MMQA) has emerged as
a revolutionary paradigm, strategically designed to address
the limitations of traditional question answering (QA)
approaches. MMQA expands the scope and capabilities of
QA systems by seamlessly integrating information from
various modalities, including text, tables, and images [1],
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[2]. As the digital landscape becomes more complex,
MMQA presents itself as a pivotal solution that extends
beyond linguistic comprehension, leveraging the information
from multiple modalities to enhance the understanding and
responsiveness of QA systems. In the context of MMQA,
textual information remains a vital component, providing the
foundation for linguistic comprehension. Additionally, the
integration of tables enables the extraction of structured data,
enhancing the system’s ability to process and analyze tabular
information. Furthermore, the inclusion of images introduces
a visual dimension to the system, allowing it to interpret and
respond to queries based on visual content.

Previously, research efforts within the QA domain pre-
dominantly concentrated on unimodal approaches, with a
specific emphasis on text-centric, table-based, and visual
question answering. Text QA systems focused on extracting
information and generating responses solely from textual
data [3], [4], [5], while table QA methodologies delved into
structured datasets, extracting insights primarily from tabular
formats [6], [7], [8]. On the other hand, visual question
answering aims at deciphering and responding to queries
based on visual content [9], [10], [11]. While these unimodal
approaches have made significant advancements, they have
inherently overlooked the potential synergy that arises
from the simultaneous integration of multiple modalities,
including text, tables, and images. The evolving landscape
of artificial intelligence (AI) research now compels a shift
towards embracing the richness and complexity offered
by multimodal frameworks. This paradigm shift seeks to
bridge the gaps left by unimodal systems, enabling a more
comprehensive understanding of information by leveraging
the collective power of diverse data modalities.

However, MMQA presents formidable challenges due to
the intricate nature of handling multiple modalities [1], [2].
Firstly, the process involves retrieving the relevant supporting
documents from a curated list of candidate documents,
thereby adding layers of complexity to the task. This
preliminary step ensures that the model accesses a diverse
set of information sources, optimizing its ability to respond
accurately to a wide range of queries. Subsequently, a robust
QA model is required to predict answers to the questions
based on the multimodal contexts retrieved. In this case, the
complexity of multi-hop reasoning necessitates the devel-
opment of advanced algorithms and strategies to effectively
navigate and extract meaningful insights from the diverse
information sources encompassed by MMQA. Moreover,
the integration of textual, tabular, and visual data further
complicates the MMQA process, demanding sophisticated
techniques for data fusion and cross-modal understanding
to achieve comprehensive and accurate question answering
capabilities.

In addressing the challenges of MMQA, three primary
approaches have been explored by researchers in recent
research. The first involves training separate QA models
for different modalities and decomposing the questions into

several sub-questions for step-by-step reasoning [1], [2],
[12]. Although this approach is simple and straightforward
for solving MMQA, it may encounter difficulties when
answering questions that require cross-modal reasoning as
there is no established interaction between the models used.
Additionally, information loss may occur during the step-
by-step reasoning process, leading to suboptimal question
answering performance. The second approach advocates for
the development of a single, multimodal model capable
of processing inputs from diverse sources and modalities
simultaneously [13], [14], [15], thereby generating the
final answer to the question. By incorporating strategies
such as vision-language pre-training, the multimodal model
can have a more nuanced understanding of multimodal
contexts, enhancing its capability for cross-modal reasoning
and facilitating enhanced question answering performance.
However, in order to accommodate the variety of inputs,
this approach requires extensive pre-training and fine-
tuning, which leads to the practical challenge of demanding
substantial computational resources and potential issues
related to overfitting.

The third strategy employed in tackling the challenge
of MMQA adopts a text-based approach, providing an
alternative solution to the complexities associated with
multimodal reasoning [16], [17], [18]. In this approach, the
first step involves the conversion of multimodal knowledge
into a unified textual representation. By transforming diverse
modalities into a common language, this method seeks to
overcome the difficulties arising from the disparate nature
of modalities, ensuring a cohesive and standardized input
for subsequent processing. Following the unification process,
the retrieval and question answering tasks are executed using
a text-based approach. This entails leveraging advanced
natural language processing (NLP) techniques and models
designed for textual comprehension to navigate through
the unified representation and derive meaningful responses.
Unlike the first approach, which relies on separate models
for individual modalities, and the second approach, which
demands extensive pre-training for a single multimodal
model, this text-based strategy aims to capitalize on the
inherent strengths of textual understanding while potentially
mitigating challenges associated with information loss and
computational resource demands.

Furthermore, the third strategy harnesses the power of pre-
trained language models (PLMs) to bolster their effectiveness
in handling MMQA. By leveraging the capabilities of state-
of-the-art language models pre-trained on vast amounts of
diverse textual data [19], [20], [21], this approach capitalizes
on a nuanced understanding of language, context, and seman-
tics. PLMs serve as a robust foundation for solving MMQA
using a text-based strategy, enabling effective interpretation
and processing of the unified textual representations derived
frommultimodal data. The strength of PLMs lies in their abil-
ity to capture intricate patterns, contextual relationships, and
domain-specific knowledge, thereby enhancing the system’s
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comprehension of diverse contexts. The utilization of PLMs
not only facilitates more accurate question answering but also
contributes to the adaptability of the system across various
MMQA scenarios. In other words, the strategic integration
of PLMs aligns with contemporary advancements in NLP
and signifies a promising avenue for addressing the intricate
challenges posed by MMQA.

Therefore, in this study, the text-based approach outlined as
the third strategy is strategically adopted to address MMQA
challenges [2]. By mapping multimodal knowledge into a
unified textual representation, the strength of PLMs [19],
[20] is leveraged for enhanced multimodal retrieval and
question answering performance. Specifically, a novel three-
stage framework named UniRaG is proposed for solving
MMQA, encompassing unified knowledge representation,
context retrieval, and answer generation. At the initial
stage, the multimodal knowledge is transformed into a
unified textual representation through advanced image-to-
text and table-to-text techniques. Notably, LLaVA [22] is
utilized for image captioning to generate comprehensive
descriptions of images, which include the distinct features
and objects present in the visual context. On the other
hand, the table data is converted into textual representation
through the table linearization technique [23], which effec-
tively preserves the tabular structure with no information
loss. With the multimodal knowledge represented in text,
the subsequent retrieval and question answering processes
can be strategically solved by incorporating text-based
approaches.

For context retrieval, a cross-encoder trained on sequence
classification [24] is used to predict relevance scores for each
question-document pair. Specifically, the model employed
is the state-of-the-art cross-encoder [24] pre-trained on the
MS Marco Passage Ranking task [25], ms-marco-MiniLM-
L-12-v2. It is derived from a distilled version of the BERT-
Base model with 12 hidden layers and a hidden size of
384 [26]. Meanwhile, a top-k retrieval strategy is adopted
with a specific value set to 3, selecting the top-3 documents
with the highest relevance scores from the list of candidate
documents as the contexts for answer generation. During the
answer generation stage, the question and retrieved contexts
are concatenated as input text and passed into a text-to-
text PLM for generating the final answer to the question.
Particularly, the model used is the large-scale instruction fine-
tuned version of the T5model [20], Flan-T5-Base [27], which
has shown its superiority and robustness across various NLP
tasks. Additionally, this research employs uniform prefix
conditioning on the input text to enhance answer generation,
providing semantic guidance to the model and improving its
adaptability to various queries for more nuanced responses.
Moreover, contextual diversity training is introduced in this
study to enhance the robustness and generalization of the
model by including distractor documents alongside true
supporting documents during training. Exposing the model
to a variety of contexts enhances its ability to differentiate
between relevant information and noise, thereby reducing the

risks of overfitting and improving the model’s resilience and
adaptability.

To validate the effectiveness of the proposed UniRaG
framework, comprehensive experiments were conducted on
the commonly used MMQA dataset, MultimodalQA [2].
The experimental results demonstrate that UniRaG has
significantly outperformed all existing methods, showcasing
state-of-the-art performance across all scenarios of the Mul-
timodalQA dataset. Furthermore, rigorous ablation studies
and experiments underscore the robustness and reliability of
the proposed framework and methodologies in addressing the
challenges of MMQA. In essence, the primary contributions
of this research are as follows:

• Proposing a novel three-stage framework to effectively
tackle MMQA, namely UniRaG. The proposed frame-
work encompasses unified knowledge representation,
context retrieval, and answer generation.

• Employing LLaVA to generate rich and detailed image
descriptions, reducing information loss during image-
to-text transformation. Additionally, utilizing table lin-
earization to convert tabular data into textual representa-
tion, preserving the tabular structure with no information
loss during table-to-text transformation.

• Utilizing a cross-encoder trained on sequence classifica-
tion to predict relevance scores for question-document
pairs and adopting a top-k retrieval strategy to retrieve
the most relevant documents as contexts.

• Fine-tuning Flan-T5-Base, a generative pre-trained lan-
guage model, for answer generation. Applying uniform
prefix conditioning to provide semantic guidance,
enabling more contextually nuanced responses.

• Introducing contextual diversity training, incorporating
distractor or negative documents as contexts during
training. This diversification enhances the model’s abil-
ity to discern pertinent information, reducing overfitting
and improving robustness and flexibility.

II. RELATED WORKS
In the dynamic field of QA research, the progression from
unimodal to multimodal paradigms represents a significant
evolution. The inception of QA systems was characterized by
unimodal models, primarily tailored to process and respond
to textual data using NLP techniques [4], [5]. As the demand
for a more holistic understanding of information grew, the
QA landscape expanded to include bimodal approaches,
wherein the fusion of text with images or tables sought
to enrich the contextual understanding of queries. Visual
Question Answering (VQA) [10] emerged as the pioneer in
this domain, which focused on answering questions based
on visual inputs. Subsequent advancements in this domain,
such as OK-VQA [28] and KVQA [29], have extended
the coverage of VQA by introducing questions that require
knowledge from both image and textual data for accurate
responses. On the other hand, researchers also delved into
hybrid QA tasks that necessitate complex reasoning over
tabular and textual data, such as HybridQA [30], OTT-
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QA [31], and TAT-QA [32]. This leads to the development
of more sophisticated frameworks that integrate both textual
and visual or tabular elements in the context of question
answering.

Building upon this trajectory, Multimodal Question
Answering (MMQA) has emerged as a new focal point
in the QA domain. Several MMQA datasets have been
introduced [1], [2], [12], [33], [34], necessitating information
from multiple modalities to effectively address the intrica-
cies of question answering. Among these datasets, Multi-
modalQA [2] stands out as the quintessential, demanding
proficiency in retrieval and question answering across a
diverse spectrum of modalities, including textual content,
tabular data, and images. In order to tackle the challenge
of MMQA, it is observed that three main strategies have
been adopted by researchers in recent studies. The first
strategy entails training separate QA models for different
modalities and breaking down questions into sub-questions
for step-by-step reasoning [1], [2], [12]. The second approach
facilitates a single multimodal model capable of simultane-
ously processing inputs from different sources and modalities
to solve MMQA [13], [14], [15]. In this research, the
proposed framework is meticulously devised based on the
third strategy, which involves converting information from
different modalities into a unified textual representation and
incorporating text-based approaches to solve MMQA.

While PLMs demonstrate outstanding performance in
various NLP tasks, exploring text-based approaches for
tackling MMQA presents a compelling and promising
avenue for further research and advancement. Numerous
prior studies have actively engaged in exploring text-based
approaches for MMQA [16], [17], [18], contributing valuable
insights and paving the way for continued research in this
domain. To effectively leverage text-based approaches for
MMQA, a crucial step involves unifyingmultimodal data into
textual representations. This process includes generating text
descriptions for image data using computer vision techniques
such as image captioning [35], [36] or object detection [37],
[38], as well as transforming tabular data to text through
methods like table linearization [23] or template-based [39]
approaches. However, the process of converting images to
text may entail the risk of information loss, potentially
compromising the richness and detail inherent in visual data.
In response, the research employed LLaVA [22] for image
captioning, a framework capable of generating comprehen-
sive and detailed image descriptions, thereby mitigating the
impact of information loss during the transformation process.
On the other hand, table linearization [23] is employed for
table-to-text transformation, which retains all the information
with the tabular structure. By consolidating multimodal data
into the text space, text-based methods can be applied for
the subsequent processes, fostering a more integrated and
coherent analysis of diverse data modalities.

Information retrieval is the systematic process of searching
for relevant information from a large corpus of data. In the
context of question answering, information retrieval plays

a pivotal role in extracting pertinent documents or pas-
sages containing answers to queries. Traditional information
retrieval methods such as Term Frequency-Inverse Document
Frequency (TF-IDF) [40] and BM25 (Best Matching 25)
[41] have served as fundamental approaches, using statistical
measures to rank documents based on their relevance to
query terms. Recent advances in NLP have introduced more
sophisticated techniques for effective information retrieval,
particularly neural network-based models such as BERT
(Bidirectional Encoder Representations from Transformers)
[19]. These models utilize contextual embeddings to better
comprehend the meaning of queries and documents, thereby
enhancing the precision of information retrieval and subse-
quently improving the performance of question answering.
In the current landscape of information retrieval, two primary
methods have emerged as prominent strategies for enhancing
the precision and efficacy of retrieving pertinent information.
The first method involves encoding queries and documents
using distinct encoders, followed by computing the similarity
between the encoded representations [42], [43], [44]. This
approach encompasses various techniques such as vector
space models, word embeddings, and sentence/document
embeddings, each offering nuanced ways to capture semantic
relationships and context between queries and documents.
The second method revolves around training a single model
to predict the relevance score of query-document pairs
directly [45], [46], [47]. This approach leverages supervised
learning techniques, utilizing models like ranking models
and Learning to Rank (LTR) algorithms to optimize ranking
performance based on relevance labels in training data.
While the first approach offers an in-depth understanding
of the queries and documents, the second method provides
direct learning of relevance between them, potentially
leading to better generalization and improved performance in
information retrieval tasks.

The QA task has undergone a notable evolution, tran-
sitioning from extractive methods, which directly retrieve
answers from a given context, to generative approaches,
where answers are synthesized based on comprehension
and reasoning abilities. Extractive QA methods [19], [48],
[49] typically involve identifying relevant snippets of text
containing the answer to a given question, often utilizing
techniques such as passage ranking and answer span pre-
diction to get the final answer. However, these approaches
may be constrained in their capacity to generate contextually
appropriate responses. In contrast, generative QA models
leverage language generation techniques to dynamically
generate answers based on the understanding of the question
and contexts. Recent advancements in generative QA have
been catalyzed by the development of large-scale PLMs such
as T5 (Text-to-Text Transfer Transformer) [20] and GPT
(Generative Pre-trained Transformer) [21]. These models
excel in understanding and generating natural language,
facilitating more contextually relevant responses in question
answering tasks. Furthermore, techniques like fine-tuning
and multi-task learning have augmented the performance and

71508 VOLUME 12, 2024



Q. Z. Lim et al.: UniRaG: Unification, Retrieval, and Generation for MMQA With PLMs

adaptability of generative QA systems, heralding a new era of
sophisticated and effective question answering capabilities.

III. METHODOLOGY
MMQA can be defined as a task that involves retrieval and
question answering in a multimodal context. In this task,
a question Q is presented along with a set of candidate docu-
ments D = {d0, d1, . . . , dn}, where n represents the number
of candidate documents. These documents can be presented
in diverse formats, including text, tables, or images. The key
challenges of MMQA revolve around accurately retrieving
the relevant documents and generating precise answers based
on the synthesized information from the documents retrieved.
In this study, a novel three-stage framework named UniRaG
is proposed, which delineates MMQA into three primary
stages: unified knowledge representation, context retrieval,
and answer generation.

Figure 1 depicts the overall framework of UniRaG. At the
initial stage, multimodal knowledge in different document
types is mapped into a unified textual representation. This
process involves generating detailed image descriptions using
an advanced image-to-text approach and transforming tables
into natural language text through a designated table-to-text
transformation. Following this, a context retrieval module
is employed to predict the relevance scores for question-
document pairs and retrieve the top-k documents from the
list of candidate documents. These selected documents will
serve as contextual information for the subsequent question
answering process. Finally, the question and retrieved context
are formatted into input text and passed into a generative PLM
to generate the final answer to the given question.

A. UNIFIED KNOWLEDGE REPRESENTATION
In this study, text-based approaches are employed to address
the challenges associated with MMQA. Preprocessing steps
play a pivotal role in transforming knowledge represented
in different modalities into a unified textual representation,
which is essential for subsequent retrieval and question
answering processes. Notably, the conversion of images and
tables into textual representation stands out as a key aspect of
this initial stage.

1) IMAGE-TO-TEXT
The transformation of images into natural language text
presents a significant challenge due to the potential loss
of information. Traditional image captioning models [35],
[36] predominantly focus on generating concise and succinct
image captions that only include a small fraction of the
intricate details present in the visual content. Unfortunately,
this brevity of the traditional models often results in the
omission of crucial information, such as specific features and
objects within the image. The limited scope of the generated
captions impedes their ability to provide a comprehensive
representation of the visual context, making them ill-suited
for tasks that require a detailed understanding of the

visual context, including information retrieval and question
answering.

To mitigate information loss during conversion, this study
utilizes the Large Language and Vision Assistant (LLaVA) to
generate rich and detailed image descriptions. LLaVA [22],
[50], an open-source Large Multimodal Model (LMM),
was trained through fine-tuning LLaMA/Vicuna [51] on
multimodal instruction-following data generated by GPT,
a process known as visual instruction tuning. LLaVA
comprises three main components: a vision encoder (CLIP),
a vision-language connector (MLP), and a language model
(Vicuna v1.5). Leveraging the advantages of a large language
model with visual instruction tuning, LLaVA is capable of
producing rich and detailed image descriptions that include
specific features and objects within the visual context.

More specifically, the model used for image-to-text trans-
formation is LLaVA-v1.5-7B [22]. In this study, a specific
set of parameters for generation has been applied to enhance
the quality and diversity of the generated content. First, the
maximum number of output tokens is set to 512, whichmeans
that the generated image description will have a maximum
length of 512 tokens. Besides, sample decoding is enabled
with a temperature value of 0.2 and a topp value of 0.7.
The temperature parameter is set to a lower value to control
the level of randomness in the sampling process, leading to
more focused and deterministic text generation. On the other
hand, the topp parameter is set to 0.7 to strike a balance,
allowing for a reasonable level of exploration and diversity
while maintaining a degree of predictability and coherence in
the generated content.

2) TABLE-TO-TEXT
The table-to-text transformation process is relatively simple
and straightforward. No specific model is required for the
conversion, as the table data is already presented in text.
In this study, the table information is systematically formatted
into a text representation that mirrors its tabular structure,
which is commonly known as table linearization [23].
Specifically, in this study, all the information in the cell of
the same row is concatenated into a single line and delimited
by a vertical bar symbol ‘‘|’’. Besides, each row is assigned
a unique identifier, denoted as ‘‘row-id’’, specifying the row
number of the line of table information. Furthermore, ‘‘-’’
is inserted into the table cell with no information provided,
representing that no information is applicable for the specific
cell. In this case, the table data is fully transformed into text
representations, while preserving the tabular structure and
avoiding any loss of information during the transformation
process.

B. CONTEXT RETRIEVAL
Since the MMQA dataset provides a list of candidate
documents for each question, the context retrieval process
plays a critical role in retrieving the supporting documents
that provide answers to the questions. This step is important to
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FIGURE 1. Overall framework of UniRaG.

filter out most of the distractors or negative samples from the
list of candidate documents, and the final retrieved documents
will serve as the contexts for answer generation. In this study,
the strategy used for context retrieval is to select the top-k
documents that are most relevant to each question from the
candidate document list.

After unifying all the documents from different modalities
into text representations, a cross-encoder based on sequence
classification [24] is trained for context retrieval. Each
question and document in the candidate document list are
concatenated and input into the model to predict the relevance
score for each question-document pair. Specifically, a BERT-
based sequence classification model with a linear activation
function is utilized in this study. The relevance score of a
question-document pair can be calculated as (1):

s = Linear(BERT(Q; d)) (1)

where Q is a question, d is a candidate document of the
question, and s is the predicted relevance score to the
question-document pair. This score indicates the relevance of
the document to the given question as well as the necessity
of that document to answer the question. By predicting
the relevance scores of the question and all the candidate
documents, the top-k documents with the highest relevance
scores are selected as the context for answer generation.

C. ANSWER GENERATION
After retrieving the top-k documents for the question,
a generative PLM is fine-tuned for answer generation. The
selected model is T5 (Text-to-Text Transfer Transformer)

[20], a transformer-based language model with an encoder-
decoder architecture. T5’s pre-training on large text datasets
facilitates effective transfer learning, capturing general lan-
guage patterns that are valuable for understanding and gen-
erating answers across diverse contexts. Additionally, T5’s
sequence-to-sequence architecture and attention mechanisms
are crucial for handling variable input lengths and focusing
on relevant information during answer generation. These
attributes are particularly essential forMMQA,which include
questions that require multiple contexts from different
modalities to generate precise answers. Furthermore, the
large-scale instruction fine-tuned version of the T5 model,
Flan-T5-Base [27], is employed, which has shown improved
performance in various NLP tasks such as reasoning and
question answering. Figure 2 shows the detailed answer
generation process and the architecture of the T5 model used
in this study.

As shown in Figure 2(a), the question and the top-k
documents retrieved are concatenated as input text, which
is then passed into the T5 model for generating the final
answer to the question. Notably, uniform prefix conditioning
is applied to the input text to further enhance the performance
of answer generation. The utilization of a standardized prefix
serves as a form of semantic scaffolding for the model,
guiding it to focus on critical elements or information within
the concatenated input. This uniform prefix conditioning
helps the model develop a more generalized understanding of
the relationships between questions and relevant documents,
fostering adaptability across diverse queries and facilitating a
more contextually informed response.
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FIGURE 2. (a) Answer generation process. (b) T5 model structure.

Figure 2(b) illustrates the intricate model structure of the
T5 model utilized in this study, which employs an encoder-
decoder architecture with attention mechanisms [52]. Before
inputting data into the encoder blocks, embeddings are
initially generated through an embedding layer. These
embeddings capture semantic information about the input
tokens, facilitating subsequent analysis and manipulation
within the transformer-based model. Conversely, prior to
entering the decoder block, the expected outputs undergo
preprocessing, wherein they are shifted right by one position
and converted into embeddings. This preprocessing ensures
that during training, the decoder receives the correct target
input at each decoding step, aligning with the autoregressive
nature of sequence generation tasks.

Unlike the original Transformer architecture [52], the T5
model eschews traditional positional encoding for providing
information about the position of each token in the input
sequence. Instead, T5 employs an innovative method known
as relative position representations (RPR) to encode posi-
tional information during self-attention computation. RPR
allows the model to capture positional information relative
to other tokens in the sequence without explicitly encoding
absolute positions, as in traditional positional encodings. This
approach proves more efficient and effective for tasks where
absolute positional information is less important.

The encoder of the T5 model comprises a stack of
N = 12 identical blocks. Within each encoder block,
layer normalization (Layer Norm) is strategically applied
before every layer, including the self-attention mechanism
and the subsequent feed-forward network. This normalization
step stabilizes training by standardizing the activations of
each layer. Subsequently, the model employs a self-attention

mechanism to determine the relative importance of different
words in the input sequence, computing attention scores for
each word to generate context-aware representations. The
output of the attention mechanism is then processed by
the feed-forward network, capturing intricate data patterns
through linear transformations interspersed with non-linear
activation functions. Additionally, a residual connection is
applied after each layer in the encoder block to facilitate gra-
dient flow during training and mitigate the vanishing gradient
problem. Finally, after completing the stack ofN = 12 blocks
in the encoder, a final layer normalization step is applied
to the output, ensuring standardized representations before
passing them to subsequent layers or tasks, maintaining
stability and consistency in the model’s architecture.

The decoder of the T5 model also comprises a stack
of N = 12 identical blocks, with layer normalization
applied before each layer for consistent training. Its self-
attention mechanism operates similarly to that in the encoder
block but focuses on previously generated tokens in the
output sequence, capturing interdependencies within the
target sequence. Additionally, the decoder block introduces
an extra cross-attention mechanism, leveraging information
from the encoder’s output representations. This mechanism
computes attention scores between the decoder’s current
hidden state and the encoder’s output, providing context-
aware representations for each position in the decoder relative
to the entire input sequence. Subsequently, a feed-forward
network processes the output of the attention mechanisms
independently for each decoder position, capturing complex
patterns and relationships within the data through linear
transformations followed by non-linear activation functions.
Residual connections between layers in the decoder blocks
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ensure efficient training and improved model performance.
Finally, a final layer normalization is applied to the decoder’s
output after completing the decoder operations.

After completing the operations of both encoder and
decoder blocks in the T5 model, a single linear layer is
applied to the output representations before proceeding to
further processing or decoding. This linear layer serves as
a final transformation step, mapping the high-dimensional
representations learned by the model to the output space
required for text generation. By applying the linear layer once
after the encoder-decoder processing, the model seamlessly
integrates the accumulated contextual information to generate
coherent and contextually relevant text outputs. This unified
approach ensures that the text generated by the model aligns
with the intended task, providing accurate responses across
various natural language generation tasks. In this study, the
specific task is to generate precise answers to questions
based on the provided contexts. Algorithm 1 summarizes the
proposed UniRaG framework for MMQA.

Algorithm 1Algorithm of the Proposed UniRaG Framework
Input: Question, Multimodal knowledge in different docu-
ment types (text, images, tables).
Output: Final answer to the question.
Procedure:
1: Unified Knowledge Representation:

a. Convert images into text descriptions using LLaVA.
b. Transform tables into text through table linearization.

2: Context Retrieval:
a. Predict relevance scores for question-document pairs
using the chosen cross-encoder trained on sequence
classification, ms-marco-MiniLM-L-12-v2.
b. Retrieve top-k relevant documents as contexts.

3: Answer Generation:
a. Concatenate question and retrieved contexts into input
text with uniform prefix conditioning.
b. Generate final answer to the question with the selected
generative PLM, Flan-T5-Base.

D. MODEL TRAINING
In this research, the training process consists of two distinct
phases: retrieval training and generation training. During
retrieval training, a cross-encoder based on sequence classi-
fication is trained to predict relevance scores for question-
document pairs. Subsequently, in the generation training
phase, a generative PLM is fine-tuned to produce accurate
answers based on the retrieved contexts.

1) RETRIEVAL TRAINING
For training the retrieval model, a systematic binary classi-
fication method is utilized. Each question is concatenated
with every document in the candidate document list to
create distinct question-document pairs for the training
dataset. These pairs are then assigned binary labels, with

1 indicating a true supporting document and 0 representing
a distractor or negative sample. This approach enables the
model to learn the discriminative patterns necessary for
accurately distinguishing between supporting documents and
distractors.

The objective function employed for retrieval training is
the Binary Cross Entropy with Logits Loss, which combines
the Sigmoid activation function and binary cross-entropy
loss. This loss function ensures stable numerical computation
during the training process. Mathematically, the retrieval
training loss function can be expressed as (2):

Lretr = −
1
N

N∑
i=1

(yi · log (σ (xi)) + (1 − yi) · log (1σ (xi)))

(2)

where N is the number of samples in a batch, i is the index
representing the i-th sample in the batch, y represents the
ground truth label, x represents the output logits from the
model, and σ denotes the Sigmoid activation function applied
to transform the logits into probabilities.

2) GENERATION TRAINING
To train the answer generation model, each question and its
supporting documents are concatenated as input text with
uniform prefix conditioning. Since this study employs top-
k retrieval, contextual diversity training is introduced to
enhance the model’s robustness and generalization. Unlike
conventional approaches that only use true supporting
documents for training, this novel approach incorporates
distractor documents into the training samples. This results in
k contexts for each question, comprising both true supporting
documents and distractor documents.

Training the answer generation model on a dataset contain-
ing both relevant and distracting contexts allows the model to
learn to distinguish between essential information and noise
during inference. This enhances the model’s resilience to
diverse input scenarios and mitigates overfitting to specific
document patterns in the training set. Additionally, this
training approach aligns with the retrieval strategy, creating a
harmonized training-validation environment and contributing
to the model’s overall robustness and adaptability.

During training, Negative Log Likelihood (NLL) loss is
used to optimize the model parameters for answer generation.
In this sequence-to-sequence model setting, the NLL loss can
be expressed as follows: Let X be the input sequence and Y be
the target sequence. Themodel is trained to generate the target
sequence Y given the inputX . TheNLL loss is then calculated
as the negative log likelihood of the target sequence under the
model’s predicted probability distribution. Assuming a token-
level probability distribution P (Yi | X ,Y<i) for each token
Yi in the target sequence, the NLL loss for a single training
sample is given by (3):

Lgen = −
1
T

T∑
i=1

logP (Yi | X ,Y<i) (3)
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where T represents the total number of tokens in the target
sequence. This loss is computed for each token in the target
sequence and then averaged over all tokens to obtain the
overall loss for that training sample. In this paper, the input
sequence refers to the input text that contains the question and
contexts, while the target sequence refers to the ground truth
answer to the question.

IV. EXPERIMENTS
A. DATASET
In this research, experiments were conducted on the most
commonly used publicly available MMQA dataset, which is
MultimodalQA.MultimodalQA [2] is an intricate QA dataset
that demands comprehensive reasoning across multiple
modalities, including text, tables, and images. Specifically,
this dataset encompasses 16 question types, with 13 of
them necessitating cross-modal retrieval and reasoning. The
dataset consists of 24K question-answer pairs for training and
2.4K question-answer pairs for validation. Due to the absence
of ground truth labels in the test set, the reported experimental
results are based solely on the validation set. As the provided
answers in the MultimodalQA dataset are mainly short and
concise phrases, the metrics used for evaluating this dataset
are Exact Match (EM) and average F1 score (F1).

B. IMPLEMENTATION DETAILS
In this work, the model adopted for context retrieval is the
cross-encoder [24] pre-trained on the MS Marco Passage
Ranking task [25], which is ms-marco-MiniLM-L-12-v2.
The base model used is a distilled version of the BERT-Base
model with 12 hidden layers and a hidden size of 384 [26].
The retrieval model is trained for 5 epochs with a batch size
of 32. AdamW is employed as the optimizer with a learning
rate of 2e-5, and a linear scheduler is used for learning rate
decay. During inference, the model is used to predict the
relevance scores for all the question-document pairs, and the
top-3 documents with the highest scores will be selected as
the context for answer generation.

For answer generation, the model selected is the large-
scale instruction fine-tuned version of the T5 model, Flan-
T5-Base [27]. The model is trained for 10 epochs with an
effective batch size of 8. The optimizer used is AdamW, and
the initial learning rate is set to 2e-4, with a linear learning
rate decay. During inference, the maximum number of output
tokens is set to 50, which means that the generated answers
will have a maximum length of 50 tokens. Table 1 presents
an overview of the hyperparameters used during the training
and fine-tuning processes.

C. BASELINES
This section describes the baseline models that achieved
state-of-the-art performance on the MultimodalQA dataset.

AutoRouting [2] is a method aimed at addressing ques-
tions efficiently without necessitating cross-modal reasoning.
The approach involves initially identifying the modality

TABLE 1. Hyperparameters used for training and fine-tuning.

where the answer is likely to be found and subsequently
executing the corresponding single-modality module. This
is achieved through a question type classifier that identifies
the modality where the answer is expected, allowing for
the routing of the question and relevant context to the
predicted modality-specific module. The output generated
by this module is then considered the final answer to the
question.

ImplicitDecomp [2] is a sophisticated 2-hop implicit
decomposition baseline designed to combine information
from multiple modalities. It employs a RoBERTa-large-
based question type classifier to predict one of 16 question
types, serving as a program guiding modality selection
and logical operations. During each hop, the model is
supplied with the question, question type, hop number,
and context associated with the relevant modality. Without
explicitly decomposing questions into sub-questions, the
model automatically identifies relevant parts during each
hop. It uses cross-modal reasoning in the second hop by
incorporating answers from the first hop, resulting in a
final answer output. In contrast, for all the single-modality
question types, the model exclusively uses the first hop to
retrieve the answer.

Binder [53] is a novel neural-symbolic approach designed
to map task inputs directly to programs without requiring
training data. It offers several key features: First, Binder
binds a unified API of language model functionalities to
programming languages such as SQL and Python, enhancing
grammar coverage to handle diverse questions effectively.
Second, it adopts an LM as both the program parser and
the underlying model called by the API during execution.
Lastly, Binder requires only a few in-context exemplar
annotations, making it efficient and versatile for solving
common-sense problems. Specifically, the implementation
uses GPT-3 Codex as the LM, enabling the identification
of unanswerable parts in the task input and generating
API calls to prompt Codex for solutions while maintaining
compatibility with the original grammar structure.

Tool-interacting divide-and-conquer (TIDC) [54] is a
strategy that aims to empower the collaboration of large
language models (LLMs) with auxiliary tools for tackling
multimodal multi-hop (MMH) question answering tasks.
This method enables LLMs to break down complex MMH
questions into simpler unimodal single-hop (USH) sub-
questions, which will be answered using a tool specific to its
modality. Distinct tools are utilized for different modalities:
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Instructor-large for TextQA, TAPAS for TableQA, and BLIP-
2 for ImageQA. Additionally, a Web Search tool serves
as a supplement when other tools fail to extract relevant
answers. Through iterative application of this strategy, LLMs
can generate accurate final answers for the original MMH
question. Experimentation with different LLMs revealed that
the most optimal results were obtained when employing
ChatGPT as the LLM alongside this strategy.

Structured Knowledge and Unified Retrieval-
Generation (SKURG) [14] is a model that comprises an
Entity-centered Fusion Encoder (EF-Enc) and a Unified
Retrieval-Generation Decoder (RG-Dec). The EF-Enc is
designed for extractingmultimodal knowledge from provided
sources and seamlessly integrating it using structured
knowledge generated through named entity recognition
(NER) and relation extraction. This integration allows
for the alignment of diverse information sources into a
shared semantic space, effectively reducing modality bias
during knowledge retrieval and question answering. On the
other hand, the RG-Dec plays a crucial role in efficiently
merging intermediate retrieval outcomes into the answer
generation process. Moreover, it supports adaptive retrieval
step determination, which proves invaluable in navigating
multi-modal and multi-hop question answering tasks with
accuracy and efficiency.

Pre-trained for Reasoning Model (PReasM) [55] lever-
ages semi-structured tables as a valuable resource for
enhancing the reasoning capabilities of Language Models
(LMs). The researchers have developed a synthetic dataset
called Dsyn, by scraping tables from Wikipedia. 16 distinct
Example Generators (EGs) have been employed, each of
which is designed for a specific reasoning skill. Multi-task
pre-training was then performed using Dsyn to improve the
reasoning skills of the model. The study utilized the T5model
as the baseline and introduced the momentum sampling
strategy, where samples are taken proportionately to the
improving speed of the model on a task. The best result of
this model is achieved when using T5-Large as the baseline
model.

MMHQA-ICL [17] is an innovative framework that
employs an end-to-end method to generate answers to
questions. Initially, image and table data are converted
into text representations, where an advanced LLaVA-based
Premium Captioning Module is utilized to generate seman-
tically enriched image captions for the image data. The
framework incorporates the DeBERTa-large model as both
the question type classifier and retriever, retrieving the top-3
most relevant contexts based on the question. Subsequently,
a Prompt Generator Module with Type-specific In-Context
Learning (ICL) Strategy generates a prompt as input for the
LLM. In the reasoning stage, the text-davinci-003 API with
a temperature value of 0.4 is utilized to obtain the final
answer.

Solar [16] is a groundbreaking framework designed to
tackleMMQAby leveraging unified language representation.
This innovative approach involves transforming input tables

TABLE 2. Experimental results on MultimodalQA (dev-set). The best
results are in bold.

and images into text representations, thereby simplifying
the tasks into text question answering, which is easier to
manage. The tables are converted into sentences linearly
based on their cells, while images are processed using BLIP
to generate captions and VinVL to extract attribute features.
This transformation enables Solar to effectively address
problems within a language space through retrieval, ranking,
and generation processes. In this framework, the BERTmodel
serves as the backbone for retrieval and ranking tasks, while
the T5 model is utilized for generation purposes.

Progressive Evidence Refinement Question & Answer-
ing (PERQA) [15] is a novel framework that adopts a
two-stage architecture for multimodal retrieval question
answering. In the first stage, a stepwise progressive evidence
refinement strategy is employed, consisting of an Evidence
Initial Screening Module (EISM) and an Iterative Evidence
Retrieval Strategy (IER). This strategy focuses on selecting
crucial evidence for question answering, and it introduces a
negative sample semi-supervised contrastive learning train-
ing strategy to address the issue of unused distractive samples.
The second stage employs a multi-turn retrieval and question
answering approach, incorporating a cross-modal attention
mechanism to capture connections between evidence and
questions. The question answering model integrates ViT
for image encoding and LLaMA with LORA (Low-Rank
Adaptation) for question and text encoding, as well as
decoding the combined features.

D. EXPERIMENTAL RESULTS AND PERFORMANCE
COMPARISON
The performance of the proposed UniRaG framework is
compared with the baseline models. Following the existing
works [2], [14], [15], [16], experimental results are reported
in Table 2 based on three indicators: ‘‘Single-Modal’’ indi-
cates the results for samples that only require single-modal
reasoning; ‘‘Multi-Modal’’ refers to the results for samples
that necessitate reasoning across multiple modalities; and
‘‘All’’ encompasses the results for all the samples across the
whole dataset.
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From Table 2, it is evident that the proposed UniRaG
framework stands out as a top performer among all the
models, demonstrating its robustness and efficacy over
existing state-of-the-art approaches. Before delving deeper
into the analysis, it is worth noting that all methods achieved
relatively higher performance in the single-modal scenarios.
This may be attributed to the inherent simplicity and focused
nature of processing data from a single modality, enabling the
models to leverage more contextual cues within that singular
modality compared to the intricacies involved in multi-modal
integration. In contrast, the experimental results clearly show
that all methods achieved relatively inferior performance
in the multi-modal scenarios. This can be attributed to
the challenges associated with integrating and synthesizing
information from multiple modalities, which often lead to
increased complexity and potential information loss during
the retrieval and question answering processes.

Examining the experimental results in detail, UniRaG sur-
passes the closest competitor by a substantial margin across
both single-modal and multi-modal tasks. In single-modal
scenarios, the proposed framework shines by achieving an
impressive EM score of 71.7% and an F1 score of 75.9%,
outperforming the leading existing model (PERQA) by an
appreciable margin of 2.0% in EM and 1.8% in F1. This
significant performance lead underscores the capacity of the
proposed UniRaG framework to generate precise answers
to questions within a single modality. This is facilitated
by the incorporation of pre-trained language models in the
proposed framework, which form a solid foundation for
accurate comprehension and response generation.

On the other hand, in multi-modal scenarios, the proposed
UniRaG frameworkmaintains its dominance over the existing
methods by achieving an EM score of 62.3% and an F1
score of 66.0%. While this performance is considerably
lower compared to single-modal scenarios, UniRaG still
significantly surpassed the previous state-of-the-art model
(PERQA) by 7.6% EM and 5.7% F1. This substantial
performance improvement highlights the exceptional ability
of the proposed framework to seamlessly integrate and
process information from diverse modalities, including text,
tables, and images. Specifically, the outstanding performance
can be credited to the sophisticated techniques utilized
for modality unification, LLaVA-v1.5-7B [22] for image-
to-text transformation and table linearization for table-to-
text transformation. These techniques effectively mitigate
information loss and enhance the model’s ability to capture
nuanced relationships across different modalities, thereby
improving the overall performance in multi-modal scenarios.

In the combined setting, where both single-modal and
multi-modal samples are considered simultaneously, the
proposed UniRaG framework excels further, achieving an
EM score of 67.4% and an F1 score of 71.3%. In contrast
to the prior cutting-edge model (PERQA), UniRaG attains
an appreciable performance boost of 4.6% EM and 3.5%
F1. The consistent performance superiority of the proposed
framework across all evaluated scenarios further accentuates

its robustness and versatility in MMQA. The success of
UniRaG can be attributed to its strategic framework, which
adeptly unifies multimodal data into a coherent text represen-
tation before addressing MMQA using text-based method-
ologies. This approach bypasses the complexities inherent
in directly processing diverse modalities, opting instead for
a consolidated textual format that simplifies the subsequent
processes. The context retrieval process is facilitated by the
state-of-the-art cross-encoder pre-trained on the MS Marco
Passage Ranking task, ms-marco-MiniLM-L-12-v2 [24].
Furthermore, the large-scale instruction fine-tuned version of
the T5 model, Flan-T5-Base [27], is employed for answer
generation. By harnessing the power of these established pre-
trained language models, the proposed UniRaG framework
effectively captures the intricacies of multimodal data in
a unified text space, enabling it to generate contextually
accurate and precise answers to the questions. Overall,
this strategic integration of multimodal data into a textual
framework underscores its effectiveness and versatility in
tackling MMQA, positioning it as a leading solution in the
research field.

E. ABLATION STUDY
The preceding section has convincingly showcased the
superiority of the proposed UniRaG framework in addressing
the challenges of MMQA, thereby achieving state-of-the-art
performance on the MultimodalQA dataset. Here, extensive
ablation studies are conducted to delve deeper into evaluating
the effectiveness of the proposed framework. These experi-
ments aim to assess the impact of novel techniques introduced
in this paper, including uniform prefix conditioning, LLaVA
image captioning, contextual diversity training, and context
retrieval. The results obtained are presented in Table 3,
which comprehensively evaluates the contribution of each
technique to the overall performance on the MultimodalQA
dataset. In addition to the EM and F1 scores that are used
to measure the QA performance, Retrieval Recall (Retr-
Rec) is incorporated into this study to evaluate the retrieval
performance of the proposed UniRaG framework.

The proposed framework employs a top-k retrieval strat-
egy, which primarily focuses on the recall rate during
context retrieval. This emphasis on recall rate holds immense
significance in information retrieval tasks, where the ultimate
objective is to retrieve the maximum amount of relevant
information. Through prioritizing the retrieval of the three
most relevant documents, UniRaG showcases exceptional
retrieval recall performance across various settings, encom-
passing single-modal, multi-modal, and overall scenarios.
In the single-modal setting, UniRaG attains an outstanding
recall rate of 99.0%, indicating its ability to retrieve a signif-
icantly high proportion of relevant information. In contrast,
in multi-modal scenarios, where integrating and retrieving
information frommultiple sources poses challenges, UniRaG
maintains an exceptional recall rate of 86.1%. Although the
retrieval performance in the multi-modal setting is lower
compared to the single-modal setting, this is reasonable given
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TABLE 3. Ablation study on MultimodalQA (dev-set). The best results are in bold.

FIGURE 3. Example with and without LLaVA image captioning.

the inherent complexity of multimodal information retrieval.
Furthermore, when considering the overall performance
across all modalities, the proposed UniRaG framework
consistently demonstrates exceptional recall rates of 91.4%,
thereby showcasing its robustness and effectiveness in com-
prehensively retrieving relevant data across diverse scenarios.

The second row presents the results obtained when the
answer generation model is trained without employing the
uniform prefix conditioning strategy. By omitting this fine-
tuning approach, the Flan-T5-Basemodel is trained by simply
concatenating the question and contexts as input text for
answer generation. Although this strategy does not have
much impact in the single-model scenario, a noticeable
decrease in performance has been observed in the multi-
modal scenario (−2.3% EM, −2.0% F1), leading to subop-
timal performance in the overall MMQA task. From another
perspective, the third row displays the results achieved when
the advanced LLaVA image captioning is not utilized during
the image-to-text transformation. Instead, the widely used
image captioning model, BLIP, is employed to convert
images into textual representations. Consequently, there has
been a significant drop in overall performance across all
metrics on MultimodalQA dataset (−5.6% EM, −5.5% F1,
−3.2% Retr-Rec). This result underscores the effectiveness

of LLaVA in mitigating information loss during the image-
to-text transformation, thereby facilitating the generation
of more contextually accurate and comprehensive image
descriptions that are crucial for context retrieval and question
answering tasks.

Following that, the fourth row showcases the results
obtained when the answer generation model does not
undergo context diversity training. In this case, the model is
trained exclusively using the relevant documents, where the
distractor documents are not included in the training samples.
In this case, themodel may encounter challenges in extracting
pertinent information from extraneous sources, resulting in
unsatisfactory QA performance. This was evidenced in the
ablation results shown in Table 3, where the QA performance
of the model dramatically declined across all scenarios.
Specifically, the EM score and F1 score dropped by 11.6%
and 11.9% in single-modal scenarios and decreased by
9.8% and 10.1% in multi-modal scenarios, resulting in the
overall degradation of 10.8% EM and 11.0% F1. Lastly,
the fifth row presents the results with the removal of the
context retrieval stage, in which random documents are
selected as the contexts for answer generation. As a result,
the model struggled to generate precise answers to the
question, attaining significantly poor performance on the
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FIGURE 4. Example with and without context diversity training.

MultiModalQA dataset. Hence, this finding highlights the
critical importance of effective context retrieval in addressing
the MMQA challenges.

F. CASE STUDY
In this section, a deeper evaluation is conducted to assess
the effectiveness of the novel techniques introduced in the
proposed UniRaG framework through the presentation of
several illustrative examples. Figure 3 shows a comparison
between the results obtained with and without the imple-
mentation of LLaVA image captioning during the image-to-
text transformation process. Although the true context (‘‘Tell
Me That You Love Me, Junie Moon’’) can be retrieved
in both cases, the model fails to produce the correct final
answer when LLaVA image captioning is not utilized. The
omission of LLaVA image captioning leads to a loss of critical
information during the transition from image to text, resulting
in the model’s inability to accurately generate the correct
answer.

Figure 4 provides a comparative analysis of the out-
comes achieved with and without context diversity training
within the proposed UniRaG framework. Given the identical
contexts, the model devoid of context diversity training
struggles to distinguish between pertinent information and
distractor documents, thereby generating incorrect answers
to the questions posed. In stark contrast, the incorporation
of context diversity training empowers the UniRaG to effec-
tively identify the relevant contexts and decipher intricate

contextual relationships between them, thereby facilitating
the generation of precise and correct final answers.

V. CONCLUSION
In this paper, a comprehensive three-stage framework,
UniRaG, is specifically proposed to address MMQA,
involving unified knowledge representation, context retrieval,
and answer generation. By harnessing the capabilities of
PLMs, UniRaG has demonstrated remarkable performance in
MMQA, excelling in both retrieval and question answering.
The multimodal knowledge is seamlessly integrated into
a unified textual representation at the initial stage, where
LLaVA image captioning is utilized to generate rich and
detailed descriptions for the images and the table linearization
technique is used to convert tabular data into textual
representations. Subsequently, a cross-encoder pre-trained on
the MS Marco Passage Ranking task, ms-marco-MiniLM-
L-12-v2, is further fine-tuned on sequence classification to
predict the relevance scores for question-document pairs,
thereby selecting the top-k documents with the highest
scores as the contexts for answer generation. Finally,
the answer generation stage is supported by leveraging
the state-of-the-art PLM, Flan-T5-Base, which has shown
preferable performance across various NLP tasks. In this
stage, uniform prefix conditioning and contextual diversity
training are introduced to further improve the robustness of
the model, thereby facilitating enhanced question answering
performance. Through extensive experimentation and vali-
dation, the superior performance of the proposed UniRaG
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framework on the MultimodalQA dataset is demonstrated,
solidifying its effectiveness and reliability in tackling the
challenges of MMQA. In a nutshell, UniRaG represents a
significant advancement in multimodal comprehension and
question answering research. Moving forward, continued
exploration and refinement in MMQA hold the promise
of unlocking further advancements and insights, leading to
the development of more sophisticated and comprehensive
multimodal AI systems.
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