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ABSTRACT In binary optimization problems, where the goal is to find the input x that minimizes a given
objective function, Grover adaptive search (GAS) is a well-known quantum algorithm that provides quadratic
speedup when compared with the brute-force approaches of classical computers. GAS calls a renowned
quantum search algorithm, Grover search (GS), as a subroutine to search for inputs with function values less
than the threshold value. If such an input is found, the threshold value is updated with the function value and
the search targets are narrowed. To search efficiently for a solution, an appropriate number of queries must
be selected to amplify the desired state of the GS in each step. This paper discusses this issue and proposes
a new method for selecting the number of queries and provides proof that our method achieves quadratic
speedup as well as the original GAS. Furthermore, the simulation results for 40-bit problems confirm that
our method allows an optimal solution with 22% fewer queries than the standard method, thus offering the
possibility of significantly reduced computation times for combinatorial optimization problems.

INDEX TERMS Computational complexity, Grover search, Grover adaptive search, optimization, quantum
algorithm, quantum computing, search problem.

I. INTRODUCTION
The combinatorial optimization problem involves determin-
ing an input that minimizes a certain objective function.
This problem has extensive applications in various fields
such as supply chains [1], [2], [3], [4], [5], [6], [7],
energy management [8], [9], [10], and finance [11], [12].
Combinatorial optimization problems can always yield opti-
mal solutions through brute-force searches on conventional
classical computers. However, in the case of large-scale
problems, the computational cost is extremely high owing
to the exponential nature of the computation. Hence, several
approaches have been proposed to solve these problems
using quantum computers, which support solutions that were
previously unfeasible on classical platforms.

Quantum annealing [13] is a heuristic technique that
leverages quantum effects such as the superposition of
states. Quadratic unconstrained binary optimization (QUBO)
can be directly input into quantum annealing, whereas
handling higher-order unconstrained binary optimization
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(HUBO) requires additional bits for conversion to QUBO.
This increases the number of bits and adversely affects the
solution search. Among the hardware available for quantum
computing, quantum annealing hardware can support a high
qubit count. Therefore, several attempts have been made to
apply it to real-world problems [14], [15], [16], [17], [18],
[19]. Additionally, variational quantum eigensolver methods,
such as the quantum approximate optimization algorithm
(QAOA) [20], are available. These involve heuristics as well
as quantum annealing but have the advantage of being able to
handle HUBO without conversion. They can be implemented
on noisy intermediate-scale quantum (NISQ) devices, which
are general-purpose quantum computers with limited bits
and no error-correction capability. However, the superiority
of the abovementioned algorithms over classical algorithms
remains debatable.

In this context, Grover adaptive search (GAS) [21] has
theoretically been proven to achieve quadratic speedup when
compared with classical methods. In other words, the time
complexity of classical approaches is O(N ), whereas that of
GAS is O(

√
N ), where N is the size of the search space.

In GAS, the objective function value of the best solution
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at each search step is taken as a threshold and Grover
search (GS), which targets solutions with objective function
values below this threshold, is repeatedly executed to explore
better solutions. Similar to the QAOA, GAS can handle
HUBO directly. Moreover, GAS has an advantage over the
aforementioned methods, as it can provide optimal solutions.
These characteristics have fostered research on applyingGAS
[22], [23] and reducing computational costs [24]. However,
GAS is unavailable in NISQ devices because its execution
requires a deep circuit. Therefore, a fault-tolerant quantum
computer may hold promise for combinatorial optimization.

Another challenge in GAS is that despite the impossibility
of knowing the ideal number of queries in each loop, the
number of times the query is to be implemented must be
chosen to obtain the desired state with a high probability
(for details, see Section II-B). This is also known as the
soufflé problem [25] in the context of GS, where too many
(overcooked) or too few (undercooked) queries do not yield
good results.

Three types of approaches are possible for addressing
this problem: trial-and-error method [26], quantum counting
[27], and fixed-point quantum search [25], [28]. In the
trial-and-error method, the number of queries is selected
iteratively in accordance with some strategy. A method
proposed in the original paper on GAS is classified as the
trial-and-error method. This method has been the standard
approach for GAS, because its strategy is simple and it
preserves the quadratic speedup of GS. In addition to this
method, alternative approaches for the selection of number
of queries have been proposed by Giuffrida et al. [29] and
Baritompa et al. [30], which are also classified as trial-and-
error methods. Although the query complexity of GS has
been analytically compared using several methods [31], the
optimal method remains unclear in the context of GAS. This
is a crucial issue for applying GAS, because optimizing the
control method for the number of queries would probably
reduce the constant overhead of the query complexity.

In this paper, we discuss the conditions for more efficient
computation by considering the simulation results when
using the control method in the original paper on GAS [21]
and propose a new method for controlling the number of
queries. The time complexity of the proposed method is
O(

√
N ), which is the same as that of the original GAS, and its

proof is shown in Appendix A. Furthermore, we introduce a
faster and low-cost simulation method for GAS to verify the
efficacy of the proposed method. Considering the simulation
results of a 40-bit problem, the proposed method achieves a
22% reduction in the constant overhead of the query com-
plexity when compared with the standard method. Moreover,
we compare the performance of the proposed method with
those of several existing methods for three combinatorial
optimization problems and reveal the superiority of the
proposed method over the others. We further propose a GAS
framework that incorporates termination conditions based on
the simulation results. Our framework finds optimal solutions
to combinatorial optimization problems, such as QUBO or

HUBO in a shorter time, which can contribute to faster
solutions for many real-world optimization problems.

The remainder of this paper is organized as follows.
Section II presents the theoretical background for GS and
GAS. Section III discusses the number of queries and
proposes a new control method. In Section IV, we explain
the method for GAS simulation and validate the effectiveness
of the proposed method based on the simulation results.
In Section V, we discuss the optimal termination conditions
based upon the simulation results and suggest avenues for
future research. Finally, we present the concluding remarks
in Section VI.

II. THEORETICAL FOUNDATION
A. GROVER SEARCH: GS
GS is an essential element of GAS by which the amplitude
of the target state is amplified before the measurement using
these operators:

1) H⊗n: Hadamard gate on n qubits
2) Ô = I − 2 |A⟩ ⟨A|: Oracle
3) D̂ = 2 |s⟩ ⟨s| − I : Diffusion operator
The oracle operator Ô inverts the sign of only the desired

state and must be individually prepared depending on the
problem. We explain the details of the GS when the size of
the search space is N = 2n (n: number of bits) and number
of search targets is t . Let the set of search target indices be
I. First, we create an overlap of all N states by using the
following Hadamard gate:

|s⟩ = H⊗n
|0 . . . 0⟩ =

1
√
N

N−1∑
i=0

|i⟩ (1)

=

√
t
N

|A⟩ +

√
N − t
N

|B⟩ (2)

= sin θ |A⟩ + cos θ |B⟩ , (3)

where |A⟩ is the desired state, that is, the superposition of
all search targets, and |B⟩ is the undesired state, i.e., the
superposition of the others.

|A⟩ =
1

√
t

∑
i∈I

|i⟩ , (4)

|B⟩ =
1

√
N − t

∑
i/∈I

|i⟩ . (5)

Applying the operator Ô to |s⟩, we obtain the state in which
|A⟩ is multiplied by -1:

ÔH⊗n
|0 . . . 0⟩ = − sin θ |A⟩ + cos θ |B⟩ . (6)

Then, using the operator D̂, we invert the sign of the state
perpendicular to |s⟩, as follows:

D̂ÔH⊗n
|0 . . . 0⟩ = sin 3θ |A⟩ + cos 3θ |B⟩ . (7)

By repeatedly applying the operators Ô and D̂, the desired
state |A⟩ is amplified and observed. The number of iterations
is the same as the number of queries; i.e., the number of times
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that the oracle operations are queried. When the number of
queries is r , the final state |ψ⟩ is given by

|ψ⟩ = sin ((2r + 1)θ) |A⟩ + cos ((2r + 1)θ) |B⟩ , (8)

θ = arcsin

√
t
N
. (9)

The probability of observing the desired state |A⟩ from |ψ⟩

is sin2((2r + 1)θ ). Therefore, the ideal number of queries for
observing the desired state with a probability of 1 is given by

ropt =
1
2

( π
2θ

− 1
)

(10)

=
1
2

 π

2 arcsin
√

t
N

− 1

 . (11)

The number of targets, t , is unknown. For GAS, the number
of inputs with objective function values below the threshold
corresponds to t . Because it is impossible to determine t
accurately without an exhaustive search for the distribution of
solutions, it is difficult to select the ideal number of queries.
In such cases, where t is unknown, the method proposed
in [26] shows that the expected number of queries required
to obtain the desired state is at most 9/4

√
N/t . This method

involves repeating the aforementioned GS and randomly
selecting the number of queries from integer values that are
less than an exponentially increasing upper limit according to
the number of repetitions. This method was applied at each
threshold update in the GAS, as detailed in the next section.

B. GROVER ADAPTIVE SEARCH: GAS
In GAS, a candidate bit string for the argument that provides
the minimum value for a certain objective function f :

{0, 1}n → R (i.e., the optimal solution) is generated by
sampling |ψ⟩, the final state of GS.

argmin
x∈{0,1}n

f (x), (12)

where x is a binary variable vector of length n that can be
represented by n bits. The quantum state to be sampled is
constructed by amplifying the probability amplitude of the
desired state from the initial state, which is a superposition
of all possible solutions, as in GS. In general, the number of
queries for an oracle is used as an evaluation metric for search
algorithms. In a brute-force search, to evaluate the function
value, an oracle must be applied once for each bit string of
length n to determine the optimal solution, resulting in a query
complexity of O(N ) (N = 2n). However, according to [21],
the number of queries required in GAS to obtain an optimal
solution with a probability of more than 1/2 is at most 45

4

√
N

[21]. This indicates that GAS can achieve a quadratic speedup
in query complexity when compared with the classical brute-
force search.

The steps used in GAS [21] are shown in Algorithm 1.
Lines 3-11 in Algorithm 1 is referred to as the ‘‘search
loop.’’ r is the number of queries randomly chosen between
0 and the upper limit m. λ is the increase rate of the upper

Algorithm 1 Grover Adaptive Search [21]
Require: f : {0, 1}n → R,λ > 1
1: Uniformly sample x1 ∈ {0, 1}n

2: Set y1 = f (x1),m = 1, i = 1,R = 0
3: repeat
4: Randomly choose r from {0, 1, . . . , [m− 1]} and R =

R+ r
5: Execute GS using r queries with oracle of Ôyi , and

obtain the sampling result x and its function value
y = f (x)

6: if y < yi then
7: xi+1 = x, yi+1 = y and m = 1
8: else
9: xi+1 = xi, yi+1 = yi and m = λm

10: end if
11: i = i+ 1
12: until R > 22.5

√
N

13: return xi

limit m, which is multiplied by λ for each search loop. The
parameter λ influences the performance of GAS, which will
be considered through simulation results in Section IV-C.
R is the cumulative number of queries, representing the
computational cost up to each search loop. Ôyi is an oracle
that applies −1 to the state |x⟩ satisfying f (x) < yi, which
can be constructed efficiently by embedding the function
value into the ancilla qubits and comparing it with the
threshold [32]. Algorithm 1 repeatedly executes the GS,
which samples the quantum state |ψ⟩ to search for solutions
with objective function values below the threshold. If the
search is successful, where the sampling result x satisfies
f (x) < yi, it narrows the solution space by updating
the threshold with the objective function value. Typically,
the number of solutions with objective function values
below the threshold is unknown; therefore, the ideal number
of queries ropt represented by Equation (11) is also unknown.
In addition to the standard method adopted in Algorithm 1,

several methodologies for selecting the number of queries
have been proposed. A notable contribution of this study is
the development of a new method for selecting the number of
queries. The details are presented in Section III-A.

III. PROPOSED METHOD
A. NEW METHOD TO CONTROL THE NUMBER OF
QUERIES: WITHOUT UPPER LIMIT RESET
First, we explain the standard method for controlling the
number of queries, which is adopted in Algorithm 1 as well
as in the libraries of Qiskit [33] and in the literature on
GAS [32], [34], [35]. This method randomly selects the
number of queries r from the integer values below the upper
limit m. Starting from 1, m is multiplied by λ for each search
loop; each time a solution with an objective function value
below the threshold is observed and the threshold is updated,
m is reset to 1 (line 7 in Algorithm 1). This is because,
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as mentioned in Section II-A, we apply the GS method
in [26] for each threshold. Figure 1 shows an example of the
transition of the number of queries (blue solid line), the upper
limit (green dashed line), and the ideal number of queries
ropt (red dotted line) in the GAS simulation. Having thereby
randomly selected the number of queries, the probability
amplitudes of the solutions with objective function values
below the threshold can be sufficiently amplified in certain
search loops.

FIGURE 1. Transition of three values in each search loop of the GAS
simulation using the standard method: selected number of queries (blue
solid line), upper limit (green dashed line), and ideal number of queries
(red dotted line). The gap between the ideal and selected numbers
widens with each reset of the upper limit.

FIGURE 2. Transition of three values in each search loop of the GAS
simulation using the proposed method: selected number of queries (blue
solid line), upper limit (green dashed line), and ideal number of queries
(red dotted line). The selected number closely tracks the ideal number
better than the standard method.

Whenever the threshold is updated, the ideal number of
queries increases. This is because the number of solutions
with objective function values below the threshold decreases
as the threshold decreases, which corresponds to a decrease in
t in Equation (11). Therefore, resetting the upper limit widens
the difference between m and ropt , and it is speculated that

the amplification process in some search loops is wasted.
Accordingly, in this study, we propose a new method that
eliminates resetting of the upper limit as in the above method.

Figure 2 presents an example of the transition of the
number of queries using the proposed method. We focus
on the red dotted line representing the ideal number of
queries and the green dashed line representing the upper limit
value of the number of queries. In Figure 1, the difference
between these lines may widen because of the reset; however,
in Figure 2, the difference remains small. Thus, the proposed
method improves the tracking performance to ropt and
efficiently calls the oracle, which is expected to reduce the
total number of queries (i.e., the query complexity) in the
algorithm. The proof of the quadratic speedup capability of
our method is provided in Appendix A.

Alternative methods have been proposed, such as linearly
increasing the upper limit while keeping the reset of the
upper bound intact [29] and selecting the number of queries
according to a pre-optimized pattern [30]. These methods are
compared in Section IV.

B. TERMINATION CONDITION
The termination condition for GAS occurs when the cumula-
tive number of queries exceeds 22.5

√
N . The value 22.5

√
N

is set based on the upper limit of the expected number of
queries required to find the optimal solution [21]. Therefore,
the probability of finding an optimal solution before the
termination condition is satisfied is sufficiently high. In this
study, we propose a termination condition by considering the
simulation results of the proposed method in Section V. This
avoids redundant processes, as mentioned previously, and is
expected to realize an efficient GAS that can terminate a
search in a shorter time.

IV. NUMERICAL EXPERIMENTS AND ANALYSIS
In this section, we analyze the control methods described
in Section III-A from the perspectives of convergence to
optimal solutions and the number of queries. In Section IV-A,
we introduce a method for faster and more memory-
efficient GAS simulations. In Section IV-B, we introduce
the combinatorial optimization problems used to assess the
performance. In Section IV-C, we evaluate the performance
of the proposed method in comparison with those of
conventional methods. In Section IV-D, we compare the
proposed and conventional methods as well as previous
research methods through several combinatorial optimization
problems and clarify the superiority of the proposed method.
Finally, in Section IV-E, we demonstrate that the proposed
method is effective for various problem scales.

A. GAS SIMULATION
Quantum circuits cannot be simulated efficiently using
classical computations [36], [37]. However, it is also known
that certain quantum circuits that are shallow and have low
entanglement can be simulated by tensor network methods,
which can significantly reduce the simulation costs in certain
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cases [38], [39]. However, this approach is not effective
for quantum circuits in GAS, as they exponentially increase
in depth with the number of bits, and the oracle increases
entanglement.

Here, we devised a new simulation method for GAS,
as shown in Algorithm 2, to clarify the scalability of the GAS
performance with respect to the number of bits and to obtain
sufficient data for quantitatively evaluating the performance
through rapid simulations.

Algorithm 2 GAS Simulation
Require: Generator of the number of queries: A
1: Randomly choose initial rank ρ0 from {1, . . . ,N }

2: Set m = 1, i = 0,R = 0
3: repeat
4: ri = A(b)
5: R = R+ ri
6: θ = arcsin

√
ρi−1
N

7: Sample bi from Bernoulli distribution with parameter
sin2 ((2r + 1)θ)

8: Append bi into L
9: if bi = 1 then
10: Randomly choose ρi+1 from {1, . . . , ρi − 1}
11: else
12: ρi+1 = ρi
13: end if
14: i = i+ 1
15: until R > 22.5

√
N or ρi = 1

16: return ρ, r

In this simulation method, a ‘‘rank’’ is introduced to
represent the order relating to the magnitude of the objective
function values. We assigned ranks from 1 to N = 2n to each
bit string of the candidate solutions, considering 1 as the rank
of the optimal solution. If the same function value is obtained
from two or more inputs, sequential numbers are assigned for
convenience (e.g., for f (x1, x2) = x1 + x2, 2 (3) is assigned
x = (1, 0) (x = (0, 1)). When simulating various control
methods for the number of queries, the generator A should be
designed for each method.

The initial rank ρ0 is randomly selected from integers
ranging from 1 to N , and the lowest rank among the
candidate solutions sampled up to the i-th search loop is
denoted as ρi. In this notation, in the (i + 1)-th search
loop, candidate solutions with ranks lower than ρi are the
targets of the GS. From Equation (8), the probability of
observing any of the solutions and updating the threshold
is sin2 ((2r + 1)θ ).

This behavior of GAS is simulated in Algorithm 2 through
the use of a binary random variable bi. This variable
takes the value of 1 with a probability of sin2 ((2r + 1)θ ),
corresponding to a successful search, and the value of 0 with
a probability of cos2 ((2r + 1)θ ), corresponding to a failed
search. Upon a successful search (bi = 1), ρi+1 is updated
by selecting an integer randomly within the range 1 to ρi.

FIGURE 3. Rank transition for f (x) = x0 + x1 with ρ0 = 4 and
T = (2r + 1)θ .

Conversely, if the search fails (bi = 0), ρi+1 is set to retain
the value of ρi.
The probability that ρi = 1 is referred to as the

success probability in the i-th search loop. In Section IV-C,
we compare the methods by examining the relationship
between the cumulative number of queries and the success
probability.

Algorithm 2 corresponds to the case of finding the
optimal solution using GAS for a problem such as f (x) =∑N−1

k=0 2kxk , where the input bit string and function values
have one-to-one correspondence. We recognize this as a
problem with a uniform rank distribution. When some inputs
yield the same function value, the selection method for rank
ρi+1 must bemodified in the subsequent search loop in line 10
of Algorithm 2 as follows. Groups are formed with inputs
having the same function values, and the lowest rank within
that group is set as the rank of the group. Subsequently,
when the rank of the input within a group is selected, ρi+1
becomes the rank of that group. Thus, the next search loop
targets the inputs with a lower function value than that of the
group. Note that the uniform rank distribution is the worst
case to solve because we can regard the rank transition to
a rank group as skipping some ranks in the group. Thus,
performance evaluation using a problem with a uniform
rank distribution guarantees that given the same problem
size, any other problem can be solved with fewer queries
than that required for the problem with a uniform rank
distribution.

Consider the example of the function f (x) = x0 + x1
with an initial rank of ρ0 = 4. Figure 3 illustrates
the rank transition and its probability in the first search
loop. The circles represent the inputs and the numbers
inside the circles indicate their ranks. Because (x0, x1) =

(0, 1), (1, 0) belongs to a group with a function value of 1,
ρ1 = 2 regardless of the selected rank. To understand this
group structure, information is needed about the objective
function values of all inputs. Therefore, Algorithm 2 can
only be used for problems that allow for a brute-force
search. However, unlike the simulation using state vector
calculations, which requires matrix operations of size N ×N ,
Algorithm 2 involves only simple probabilistic processes,
allowing a faster and more memory-efficient GAS behavior
simulation.
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B. EXAMPLES OF COMBINATORIAL PROBLEMS
When solving combinatorial problemswith the GAS, they are
mapped to QUBO or HUBO, which represents the objective
functions to minimize. In this subsection, three combinatorial
problems and their QUBO form are introduced to evaluate the
performance of GAS in the subsequent subsections.

1) TRAVELING SALESMAN PROBLEM (TSP)
The traveling salesman problem focuses on finding the most
efficient route for a salesman visiting a set of cities exactly
once before returning to the starting point. The goal is to
minimize the total distance traveled.

f (x) =

∑
i,j

dijx ti x
t+1
j + A

∑
i

(∑
t

x ti − 1

)2

+ A
∑
t

(∑
i

x ti − 1

)2

, (13)

where dij is the distance between cities i and j, and x ti is a
binary variable that takes the value 1 when city i is visited
at time t . The first term represents the travel distance, the
second represents the constraint of visiting each city only
once, and the third represents the constraint of not visiting
multiple cities simultaneously. Figure 4 shows a plot of the
rank distribution for

dij =


0 1 2 1
1 0 1 2
2 1 0 1
1 2 1 0

 , A = 2. (14)

The horizontal axis represents the index when the input
groups with the same function values are sorted in the order
of the function values (1 represents the optimal solution),
and the vertical axis represents the number of inputs in each
group.

FIGURE 4. TSP rank distribution.

2) MAXCUT PROBLEM
The maxcut problem relates to the division of nodes of an
undirected graph into two clusters such that the number of
edges (or the total weight of the edges) spanning between

the clusters is maximized. The objective function can be
expressed as follows.

f (z) = −

∑
i<j

1
2
wij(1 − zizj),

where zi ∈ {−1, 1}, and wij is the weight of the
edge connecting the nodes (i, j). In the simulations in the
subsequent sections, wij is a randomly chosen integer.

3) NUMBER PARTITION PROBLEM (NPP)
The number partition problem involves dividing integers into
two sets such that the sum of the numbers in each set is equal.
The objective function can be represented as follows, where
ni is the i-th number.

f (z) =

(∑
i

nizi

)2

,

where zi ∈ {−1, 1}, and ni is the i-th integer number. In the
simulations in the subsequent sections, ni is a randomly
chosen integer.

C. EVALUATION OF THE PROPOSED METHOD
First, to determine the optimal value of λ for the proposed
methodwithout resets, we conducted simulations with 10,000
shots while changing λ in increments of 0.05 from 1.05 to
1.5 for uniform-rank-distribution problems with a bit size of
n = 40. The benchmark results are presented in Figure 5.
The horizontal axis represents the normalized value of
the cumulative number of queries with

√
N (=

√

240 =

220), and the vertical axis represents the probability of
obtaining the rank 1 optimal solution when the cumulative
number of queries on the horizontal axis is used as the
termination condition. The color of the graph represents the
value of λ. In Figure 5, the data points in the upper left
indicate that the optimal solution was obtained with fewer
queries. By comparing λ based on the cumulative number of
queries when the success probability reached 99%, the best
performance was found to be achieved for λ = 1.10.

FIGURE 5. Amplification factor λ of the upper bound and solution
performance.
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TABLE 1. Normalized number of queries to obtain the optimal solution at
99% among λ. The numbers are normalized by column (problem). The
best values for each method are highlighted in green.

In addition to the problem of a 40-bit uniform rank
distribution, the parameter λ was evaluated for a 20-bit NPP
and maxcut problem. Furthermore, the standard method of
Algorithm 1 was evaluated in the same way as followed for
the proposed method. These evaluation results are shown in
Table 1. In the case of λ = 1.10, which showed the best
performance with the proposed method, the values in the
table have been normalized for each column (problem) in
order such that the number of cumulative queries required to
achieve an optimal solution with a 99% probability becomes
1.00. According to [30], the standard method shows the
best performance at λ = 1.34. However, according to the
evaluation metric in Table 1, λ = 1.30 exhibits better
performance. Additionally, the proposed method consistently
achieves the best results at λ = 1.10, regardless of the
problem.

Based on the above results, we compared the performances
of Algorithm 1 using λ = 1.30 and the proposed method
using λ = 1.10. The results are presented in Figure 6.
In the figure, the orange solid line on the upper left side
represents the numerical data of the proposed method.
The number of queries required to obtain the optimal
solution with 99% probability in the proposed method was
approximately 22% less than that in the standard method.
This provides evidence that the computational effort can be
reduced by 22%while maintaining the quality required of the
solution, which demonstrates the superiority of the proposed
method.

In the following evaluations, the number of shots was fixed
at 10,000 for each condition, and λ, the increment coefficient
of the upper limit, was fixed at the optimal values.

D. PERFORMANCE COMPARISON WITH PREVIOUS
STUDIES
Themethod that linearly increases the upper bound is denoted
as ‘‘Linear’’ [29], which replaces m = λm in line 9 of
Algorithm 1 with m = m + λ. The method that calculates
the probability distribution of rank ρ for the uniform rank
distribution and pre-generates the optimal sequence of the
number of queries for GAS is denoted as ‘‘Sequence’’ [30].

FIGURE 6. Comparison of solution performance.

FIGURE 7. Comparison with the proposed method using 4-point TSP.

In methods other than the Sequence, the time complexity
to obtain the number of queries in each search loop is O(1),
because of the update of the upper limit and generation of
random numbers. However, in Sequence, to determine the
best number of queries in the k-th search loop, the change in
the probability distribution of the solution is comprehensively
evaluated for different numbers of queries. The number of
queries in GAS is proportional to

√
N ; thus, the number

of evaluations is of the same order 2(
√
N ). Owing to the

decay of the change in the probability distribution and error
propagation in the k-th repeated integration of the probability
distribution, the time complexity necessary for a reasonable
integration evaluation amounts to at least a polynomial
P(k). Hence, an issue arises wherein the time complexity
required for generating the sequence of query numbers is
�(

√
NP(k)), resulting in a larger time complexity than that

of GAS. Considering this issue, numerical simulations for
performance comparison were conducted on a small-scale
TSP.

Figure 7 presents the results of comparing the control
methods using TSP introduced in Section IV-B. The normal-
ization factor of the horizontal axis is

√
N/8 because the

number of optimal solutions is eight. The results for the best
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TABLE 2. Normalized number of queries to obtain the optimal solution
with 99%. The numbers are normalized by column (problem) in order
such that the number for the proposed method is 1.

λ are shown in Figure 7. The proposed method consistently
achieved a higher success probability than the standard and
linear methods. In the case of the Sequence, the solution
outperformed the proposed method in some areas. However,
due to the calculation cost for the best number of queries, it is
difficult to apply the Sequence to larger-scale problems.

Furthermore, Table 2 presents the cumulative number of
queries required to secure the optimal solution with a 99%
probability for three problems, using normalization where
the proposed method’s value is set to one. Regarding the
Sequence, there are cases where the success rate did not reach
the 99% in the range of the query sequence generated by us;
therefore, it is not included in the table. The proposed method
consistently achieves the 99% success rate with the least
number of queries for all problems. These results highlight
the performance of the proposed method and demonstrate its
capability to reduce the solution search time by at least 10%,
even in the case of small-scale problems.

E. SCALABILITY OF PERFORMANCE WITH RESPECT TO
THE NUMBER OF BITS
Next, we explain the results of investigating the performance
change of the proposed method when the problem bit size n is
varied. Figure 8 compares the performance on problems with
a uniform rank distribution. The data were measured while
increasing n, the number of bits, from 10 to 60 in increments
of 5, with λ fixed at 1.10. The horizontal axis represents the
cumulative number of queries R normalized by

√
N =

√
2n.

Thus, the scale of the horizontal axis differs for each n. From
20 bits upward, it was confirmed that there was almost no
change in the success probability with respect to

√
N , which

indicates that the performance of the proposed method is
invariant. Therefore, we conclude that the proposed method
can be applied to large-scale problems.

V. DISCUSSION
A. TERMINATION CONDITION
In Algorithm 1, a termination condition occurs when the
number of oracle calls R exceeds 22.5

√
N . From the

described results, this termination condition leads to a
redundant algorithm that continues to call the oracle for
amplification, even though the success rate is nearly 1 when
executing GAS.

Considering this and the method proposed in Section III-A,
an improved version of Algorithm 1 is presented as Algo-
rithm 3. The termination condition 4.55

√
N represents the

cumulative number of queries that would produce an optimal

solution with 99% probability when solving a problem with a
uniform rank distribution of 40 bits. Furthermore, considering
the relationship between the cumulative number of queries
and the average rank of the obtained solution, as shown
in Figure 9, if

√
N is set as the termination condition,

on average, the seventh-best solution can be obtained.
Therefore, the termination condition can be set smaller if a
solution close to the optimal solution is acceptable.

FIGURE 8. Performance vs. number of quantum bits.

FIGURE 9. Rank progression of the 40-bit problem with uniform rank
distribution.

B. FUTURE CHALLENGES
In Sections III and IV, we discussed the issue of the standard
method for selecting the number of queries in GAS and
confirmed through numerical simulations that the proposed
method can find the optimal solution with fewer queries.
However, this research has potential for further refinement
and expansion.

Firstly, methods other than the trial-and-error method
require further consideration. As mentioned in Section I,
three approaches, namely trial-and-error, quantum count-
ing, and fixed-point quantum search, were identified for
addressing the ‘‘soufflé problem’’ in GAS. The simulations
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Algorithm 3 GAS suggested in this research
Require: f : {0, 1}n → R
1: Uniformly sample x1 ∈ {0, 1}n

2: Set y1 = f (x1),m = 1, i = 1,R = 0,λ = 1.10
3: repeat
4: Randomly choose r from {0, 1, . . . , [m− 1]} and R =

R+ r
5: Execute GS using r iterations with oracle of Ôyi , and

obtain sampling results x and y = f (x)
6: if y < yi then
7: xi+1 = x, yi+1 = y
8: else
9: xi+1 = xi, yi+1 = yi
10: end if
11: m = λm
12: i = i+ 1
13: until R > 4.55

√
N

14: return xi

in this study were based on the trial-and-error method,
and we improved the method of selecting the number of
queries. In addition, we compared quantum counting with
our proposed method in Appendix B and confirmed that GAS
using our method is superior. Future research should evaluate
the computational cost of GAS using fixed-point quantum
search [40].
Next, the proposed method could be improved and

investigated. In Appendix A, we analytically showed that
GAS using the proposed method achieves the same quadratic
speedup as the original GAS. However, the scope of this study
was limited to the numerical demonstration of the ability
of the proposed method to reduce the constant overhead
of query complexity when compared with the conventional
method. To determine the superiority of the proposed
method, an analytical demonstration can be considered in
future research. Additionally, research has been reported on
GS for databases with a prior distribution [41]. Similarly,
by adopting a Bayesian approach with the prior information
of combinatorial optimization problems and update of y,
it might be possible to further reduce the constant overhead
of GAS. This aspect also requires further investigation.

VI. CONCLUSION
In this study on GAS, we examined the number of queries
required to solve the QUBO and HUBO problems and
proposed a new method to control the number of queries in
each loop by removing the upper limit reset. We compared
the results of GAS simulations and confirmed the superiority
of the proposed method. Moreover, by conducting simula-
tions with different numbers of bits, we verified that the
proposed method is effective, even for large-scale problems.
Furthermore, based on the simulation results, we proposed a
modified GAS framework in Algorithm 3. This framework
is applicable when solving QUBO and HUBO problems

with GAS and is expected to provide optimal solutions more
quickly.

APPENDIX A
PROOF OF QUADRATIC SPEEDUP OF PROPOSED METHOD
Lemma 1: For any natural number n and real numbers

α, β,

n−1∑
k=0

cos (α + 2kβ) =
sin nβ cos (α + (n− 1)β)

sinβ
. (15)

Proof: Let C =
∑n−1

k=0 cos (α + 2kβ).

2C sinβ =

n−1∑
k=0

2 cos (α + 2kβ) sinβ

=

n−1∑
k=0

sin (α + (2k + 1)β) − sin (α + (2k − 1)β)

= sin (α + (2n− 1)β) − sin (α − β)

= 2 cos (α + (n− 1)β) sin (nβ).

Therefore,

C =
sin nβ cos (α + (n− 1)β)

sinβ
.

Lemma 2: Consider a search space with size N and
number of targets t . Let θ = arcsin

√
t/N . When performing

GS once, we uniformly select the number of queries from 0 to
m− 1.

Pθm =
1
2

−
sin 4mθ
4m sin 2θ

,

where Pθm is the probability of observing one of the search
targets.

Proof: In Lemma 1, when α = β = 2θ , it follows that

n−1∑
k=0

cos (2k + 1)2θ =
sin 2nθ cos 2nθ

sin 2θ

=
sin 4nθ
2 sin 2θ

. (16)

The probability of observing a search target at the number of
queries j is sin2(2j+ 1)θ , and the probability of selecting j as
the number of queries is 1/m. Thus,

Pθm =

m−1∑
j=0

1
m

× sin2 ((2j+ 1)θ)

=
1
2m

m−1∑
j=0

[1 − cos ((2j+ 1)2θ)]

=
1
2

−
sin 4mθ
4m sin 2θ

.

Note that the transformation from the second to the third line
uses Equation (16).
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Theorem 3: Let m0 = 1/ sin 2θ . The search loops for
m > m0 are referred to as the critical stage. During the critical
stage,

1
4
< Pθm <

3
4
. (17)

Proof: The result follows immediately from Lemma 2.

GAS is a quantum algorithm designed to determine the
input x ∈ {0, 1}n that yields the minimum value of the
objective function f : {0, 1}n → R (i.e., the optimal solution).
Until the termination conditions are satisfied, as shown in
Algorithms 1 and 3, the GS is repeated for r iterations. r is
selected as an integer between 0 andm.m starts from 1 and is
multiplied by λ in each loop. In Algorithm 1, m is initialized
to 1 when the threshold y is updated. In the following
discussion on query complexity, we consider an algorithm
that continues indefinitely. Furthermore, we assume that the
problem has a uniform rank distribution (details are provided
in Section IV-A), which is the worst case in terms of query
complexity.
Definition 4: We denote the number of search loops (i.e.,

lines 3-11 in Algorithm 1) as s. Without considering the
reset of m, in the s-th search loop, m(s) = λs−1 holds.
Furthermore, a ‘‘rank’’ is assigned to the inputs of the
objective function, representing the order of the function
value. With this assignment in place, the rank of the optimal
solution is 1. We refer to the rank of the input x that provides
the smallest objective function value obtained up to a certain
search loop as the provisional rank. If the search continues
sufficiently, the provisional rank becomes 1. The history of
provisional ranks followed up to rank 1 is termed the rank
path P, and the probability that the rank path is P is denoted
by q(P).
For instance, the search space of N = 4 and rank path of

{4,2} imply that after obtaining a solution of rank 4 in the
initial candidate sampling (i.e., line 1 in Algorithm 1), the
search loop is repeated to obtain the inputs in the descending
order of the rank (2,1). Because the state amplified by GS
is a uniformly weighted superposition of the search targets,
the next provisional rank is uniformly selected from the
integer values that are less than the current provisional rank.
Therefore,

q({4, 2}) =
1
4

·
1
3

·
1
1

=
1
12
.

Definition 5: Let the expected number of queries required
to update a provisional rank r ∈ P for a rank path P be
denoted by OP1 (r) and OP2 (r). Indices 1 and 2 refer to the
conventional and proposed methods, respectively. E1,2, the
expected number of queries necessary to obtain the optimal
solution in the GAS, is given by

E1,2 =

N∑
r=2

∑
P∋r

q(P)OP1,2(r). (18)

The sum
∑
P∋r

denotes the summation over all the rank paths

containing rank r .
Lemma 6: [Section IV in [26]] For the provisional rank r ,

let θr = arcsin
√
r − 1/N and mr0 = 1/ sin 2θr . Then, for

1 < λ < 4/3,

OP1 (r) <
mr0λ

2
1

λ − 1
+
mr0λ

2
4

4 − 3λ
. (19)

Proof: Let ⌊·⌋ denote the floor function, which is a
mathematical function that takes a real number x and provides
the greatest integer less than or equal to x. When the
conventional method is used, the expected number of queries
required to reach the critical stage is

⌊logλ m
r
0⌋∑

s=1

⌊m(s)⌋∑
j=0

j
⌊m(s)⌋ + 1

=
1
2

⌊logλ m
r
0⌋∑

s=1

⌊m(s)⌋

<
1
2

⌊logλ m
r
0⌋∑

s=1

λs−1

<
1
2

mr0λ − 1

λ − 1

<
1
2

mr0λ

λ − 1
. (20)

The expected number of queries required to succeed in the
search and update the rank after reaching the critical stage is

∞∑
s=⌊logλ m

r
0⌋+1

⌊m(s)⌋∑
j=0

{
j

⌊m(s)⌋ + 1
sin2 ((2j+ 1)θr )

s−1∏
s′=1

(1 − Pθr
⌊m(s′)⌋+1)

}

<

∞∑
s=1

⌊m(s)⌋∑
j=0

j
⌊m(s)⌋ + 1

s−1∏
s′=1

(1 − Pθr
⌊λs′⌋

)

<
1
2

∞∑
u=1

λ⌊logλ m
r
0⌋+u

u−1∏
u′=1

3
4

(∵ Theorem 3)

=
mr0λ

2

∞∑
u=1

(
3λ
4

)u−1

=
2mr0λ

4 − 3λ
. (21)

By adding Equations (20) and (21), we obtain Equation (19).

Theorem 7 (Quadratic Speedup by the Conventional
Method): For 1 < λ < 4/3,

E1 <
5λ
8

(
1

λ − 1
+

4
4 − 3λ

)
√
N (22)

=
45
4

√
N (when λ =

6
5
). (23)

Proof: From Lemma 6, we have

E1 <
λ

2

(
1

λ − 1
+

4
4 − 3λ

) N∑
r=2

mr0

(∑
P∋r

q(P)

)
.
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According to Lemma 1 in [21], the probability of a rank
path containing r is 1/r .∑

P∋r

q(P) =
1
r

(24)

Hence,

E1 <
λ

2

(
1

λ − 1
+

4
4 − 3λ

) N∑
r=2

1
sin 2θr

1
r

<
λ
√
N

4

(
1

λ − 1
+

4
4 − 3λ

) N∑
r=2

1
√
r − 1

1
r

<
λ
√
N

4

(
1

λ − 1
+

4
4 − 3λ

)(
1
2

+

∫ N−1

1
r−

3
2 dr

)
<

5λ
√
N

8

(
1

λ − 1
+

4
4 − 3λ

)
=

45
4

√
N (when λ =

6
5
).

In contrast, in the proposed method, which does not reset
the upper limit, the upper limit changes depending on the
number of loops required for the provisional rank to reach
r . Therefore, the number of queries required to update a
provisional rank r depends on the rank path P. Consequently,
Equation (24) cannot be used. We define a new symbol to
consider this effect.
Definition 8: Let sb denote the number of loops when the

provisional rank is r and let rb denote the rank before r in
path P (i.e., P = {. . . , rb, r, . . .}). In this case,

OP2 (r) =

∞∑
sb=1

aPr (sb)
∞∑

s=sb+1

⌊m(s)⌋∑
j=0

{
j

⌊m(s)⌋ + 1

sin2((2j+ 1)θr )
s−1∏

s′=sb+1

(1 − Pθr
⌊λs⌋)

 .
(25)

Here, aPr (sb) is the probability distribution function of sb
when rank r is reached in the rank path P.
Definition 9: Let c(r) denote the starting point of the

critical stage for the rank r .

c(r) = 2 − ⌊logλ sin 2θr⌋ (θr = arcsin
√
(r − 1)/N )

(26)

Lemma 10: When sb > c(r), the following holds:

∞∑
sb=1

aPr (sb)
∞∑

s=sb+1

⌊m(s)⌋∑
j=0

{
j

⌊m(s)⌋ + 1

sin2((2j+ 1)θr )
s−1∏

s′=sb+1

(1 − Pθr
⌊λs⌋)

 <
2λsb

4 − 3λ
. (27)

Proof:

(Left Hand Side)

<

∞∑
s=sb+1

⌊m(s)⌋∑
j=1

j
⌊m(s)⌋ + 1

s−1∏
s′=sb+1

(1 − Pθr
⌊λs⌋)

=
1
2

∞∑
s=sb+1

⌊m(s)⌋
s−1∏

s′=sb+1

(1 − Pθr
⌊λs⌋)

<
1
2

∞∑
s=sb+1

λs−1
(
3
4

)s−sb−1

(∵ Theorem 3, sb > c(r))

=
λsb

2

∞∑
u=1

(
3λ
4

)u−1

=
2λsb

4 − 3λ

Lemma 11: When sb > c(rb), the following holds:

aPr (sb) <
(
3
4

)sb−c(rb)+1

. (28)

Proof: Consider the search loop between c(rb) and sb.
Because the provisional ranks in the rank path before rb
assume values greater than rb, the search from loop count
c(rb) to sb is always in the critical stage. From this fact
and Lemma 3, the probability of a successful search that
updates the provisional rank, as well as the probability of
an unsuccessful search where the provisional rank remains
unchanged, is each less than 3/4.

However, such searches are conducted sb− c(rb)+1 times
until the provisional rank reaches r . Therefore, in the rank
path P, the probability that the provisional rank becomes r
exactly at the sb-th search is less than the value obtained by
multiplying 3/4 sb− c(rb)+1 times, which demonstrates the
validity of this lemma.
Theorem 12 (Quadratic Acceleration Property of the Pro-

posed Method):
For 1 < λ < 4/3, the following holds:

OP2 (r) <
λ2(9λ − 8)

2(λ − 1)(4 − 3λ)2
mr0, (29)

E2 <
5λ2(9λ − 8)

8(λ − 1)(4 − 3λ)2
√
N . (30)

Proof:

OP2 (r) =

c(r)−1∑
sb=1

aPr (sb)
∞∑

s=sb+1

⌊m(s)⌋∑
j=0

{
j

⌊m(s)⌋ + 1

sin2((2j+ 1)θr )
s−1∏

s′=sb+1

(1 − Pθr
⌊λs⌋)


+

∞∑
sb=c(r)

aPr (sb)
∞∑

s=sb+1

⌊m(s)⌋∑
j=0

{
j

⌊m(s)⌋ + 1

sin2((2j+ 1)θr )
s−1∏

s′=sb+1

(1 − Pθr
⌊λs⌋)

 . (31)
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The first term represents the expected value in cases where
the search loop count is less than c(r) when the provisional
rank reaches r . This is bounded above by OP1 (r), because this
term can be seen as OP1 (r) with a reduced contribution from
the first term in Equation (19). Thus,

(First Term) < OP1 (r)

<
mr0λ

2
1

λ − 1
+
mr0λ

2
4

4 − 3λ
. (32)

By utilizing Lemmas 10 and 11, the upper bound of the
second term can be evaluated as

(Second Term) <
∞∑

sb=c(r)

(
3
4

)sb−c(rb)+1

·
2λsb

4 − 3λ

=
2

4 − 3λ

(
3
4

)−c(rb)+1 ∞∑
sb=c(r)

(
3λ
4

)sb
=

2
4 − 3λ

(
3
4

)−c(rb)+1 ∞∑
u=1

(
3λ
4

)c(r)+u−1

=
2λc(r)

4 − 3λ

(
3
4

)c(r)−c(rb)+1 ∞∑
u=1

(
3λ
4

)u−1

=
6λc(r)

(4 − 3λ)2

(
3
4

)c(r)−c(rb)
<

6mr0λ
2

(4 − 3λ)2
.

By adding the first and second terms and organizing the
results, Equation (29) holds.
Moreover, by denoting the coefficient of mr0 in Equa-

tion (29) by A,

E2 =

N∑
r=2

∑
P∋r

q(P)OP2 (r)

< A
N∑
r=2

(∑
P∋r

q(P)

)
mr0

<
A
√
N

2

N∑
r=2

1
r

·
1

√
r − 1

<
5A

√
N

4

=
5λ2(9λ − 8)

8(λ − 1)(4 − 3λ)2
√
N . (33)

Thus, Equation (30) also holds.

APPENDIX B
GAS WITH QUANTUM COUNTING

Here, we compare our method’s performance with that
of the GAS with quantum counting. Quantum counting is
a quantum algorithm that estimates the ratio θ =

√
t
N to

determine ropt [27] and utilizes a controlled oracle. Although
a controlled operation requires more gates than the original
operation, we assume that their computational costs are the

Algorithm 4 GAS simulation with quantum counting
1: Randomly choose initial rank ρ0 from {1, . . . ,N }

2: Set i = 0,R = 0
3: repeat

4: θ = arcsin
√
ρi−1
N

5: ri =

⌊
1
2 (

π
2θ +

1
2 )
⌋
and na =

⌈
log2(π/θ)

⌉
6: R = R+ ri + 2na − 1
7: Sample bi from a Bernoulli distribution with the

parameter sin2 ((2ri + 1)θ)
8: Append bi into L
9: if bi = 1 then

10: Randomly choose ρi+1 from {1, . . . , ρi − 1}
11: else
12: ρi+1 = ρi
13: end if
14: i = i+ 1
15: until R > 22.5

√
N or ρi = 1

16: return ρ,R

same, and the controlled oracle is counted as one oracle for
comparison. In addition, we hypothesize that θ is obtained
with certainty in a single sampling and that the number of
ancilla bits na is determined based on the value of ropt . These
assumptions favor GAS with quantum counting. The details
of this simplified simulation of a problem with a uniform
rank distribution are presented in Algorithm 4, and the results
of comparing its performance with the proposed method are
shown in Figure 10.

FIGURE 10. Proposed method vs. GAS with quantum counting.

Although the behavior of quantum counting is idealized
to its advantage, the proposed method is located in the
upper left corner, which indicates that the proposed method
obtains an optimal solution in a shorter time. The cumulative
number of queries required to achieve a 99% success rate
was 38% less for the proposed method. Despite accurately
selecting the ideal value ropt as r through quantum counting,
the performance of GAS with quantum counting is inferior.
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The number of queries required for the estimation of θ and
for Grover Search (GS) are of the same order, leading to
the necessity for an increased cumulative number of queries
when compared with that in the trial-and-error method where
r is selected randomly. Without the idealization of quantum
counting, a more computationally expensive control oracle is
used for the estimation of θ . Therefore, the difference in the
computational cost should be greater than that inferred from
Figure 10.
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