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ABSTRACT Dental triangular mesh is widely used in computer-aided oral medicine. Different from regular
data such as digital images, the structure of triangular mesh is more complex, and traditional operations such
as convolution cannot be directly applied. Therefore, the segmentation of patients’ personalized teeth from
mesh through deep learning is a hot topic in the current research field. Recently, a method named TSGCN
presented the idea of learning coordinate features and normal features through a two-stream architecture
based on Graph Convolutional Networks (GCN), which further improved the performance compared with
othermethods. However, its ability to extract and process global features still can be strengthened. To this end,
a method named TSGCN-SA is proposed, whose core idea is to introduce the self-attention (SA) mechanism
into TSGCN. Specifically, two SA modules are introduced, the first one is used to improve the global
feature extraction ability in the coordinate stream. The second one plays an important role in the adaptive
contribution adjustment of each stream during the feature fusion. Experiments based on the public dataset
named 3DTeethSeg show that TSGCN-SA is superior to SOTAs in terms of segmentation performance due
to the proposed SA modules, and the proposed method is competent in the task of individual tooth mesh
segmentation.

INDEX TERMS Tooth, triangular mesh, deep learning, self-attention, segmentation.

I. INTRODUCTION
Triangular mesh is one of themost commonways to represent
three-dimensional (3D) shapes in the digital world, which is
widely used in computer-aided dental medicine. For example,
a mesh representing a jaw is depicted in Fig. 1, which
can be semantically divided into the teeth area (marked
in colors) and the non-teeth area. Obtaining personalized
teeth from the dental mesh through segmentation is of
great significance for clinical medical applications such as
computer-aided orthodontics [1], dental implants [2], and
surgical planning [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Junhua Li .

FIGURE 1. Demonstration of the dental mesh.

Although the previous works of this paper [4], [5] have
demonstrated superior performance compared to methods of
the same period, the way of solving the Laplace harmonic
field with manually specified constraints has become its main
bottleneck, especially in the current season that most of the
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FIGURE 2. Typical results of tooth segmentation using TSGCN.

successful methods rely on deep learning to extract pattern
features from big data.

Unlike regular data such as digital images, the structure of
mesh is far more complex, and traditional convolution cannot
be directly applied. Therefore, dental mesh segmentation via
deep learning is one of the cutting-edge research.

Deep learning methods that deal with mesh can be divided
into three categories in terms of basic primitives. As shown in
the inset of Fig. 1, a mesh consists of many triangular faces,
which can be determined by three vertices and the edges
between them as well. In other words, vertices, edges, and
faces are the basic primitives of a mesh.

MeshCNN [6] is a representative method based on edge
primitives. Based on the rule that any edge of a 2-manifold
mesh has 4 adjacent edges, MeshCNN successfully extends
the convolutional neural network (CNN) from the image
domain to the mesh domain by defining a new convolution
operation with fixed-size convolution kernels. The definition
of pooling is also introduced in their method using mesh
simplification techniques.

PointNet++ [7] and MeshSegNet [8] are representatives
of the vertex-based (or point-based) method and face-based
method respectively. One of the differences between them
and MeshCNN is that MeshCNN uses the mesh structure to
define the adjacency relationships of basic primitives, while
they use the KNN algorithm [9], which helps the aggregation
of local features faster.

Compared to the vertex-based method, a major advantage
of the face-based method lies in having more training
raw features per sample. For example, in terms of spatial
coordinate features, the number of feature channels used by
the vertex-based method and the face-based method are 3
(i.e., the x, y, z values of 1 vertex) and 12 (i.e., the x, y,
z values of 4 points, including the 3 vertices and 1 central
point of a face) respectively. It is well-known that richer input
features usually indicate greater potential for training a high-
performance model. Therefore, deep learning methods based
on face primitives are the current research trend.

In terms of methodology, deep learning models used for
mesh processing range from CNN [6], [7], [10] to Graph
Convolutional Networks (GCN) [8], [11], [12]. Recently,
a method named TSGCN [12] presented the idea of
learning coordinate and normal features through a two-stream
architecture based on GCN. Although TSGCN outperforms
the others, experiments have shown that there are often
situations as shown in Fig. 2 where small misclassified
regions are surrounded by correctly classified regions (e.g.,
the red part among the blue part on the left of Fig. 2) according

to the connectivity marked by colors. This is a sign of models
that lack global contextual understanding.

Speaking of global contextual understanding, the Trans-
former and its self-attention mechanism are well acknowl-
edged. Since the Transformers have become the dominant
method in Natural Language Processing (NLP), researchers
are devoted to extending it to the field of computer vision.
Swin Transformer [13] is such an example, while Point
Transformer [14] is devoted to applying Transformers for
point clouds. These studies demonstrate that self-attention
strategies are capable of effectively extracting global features
and benefits for system performance.

Inspired by TSGCN and the Transformers, this paper
introduces the self-attention (SA) mechanism into TSGCN
for individual tooth mesh segmentation. Therefore the
proposed method is named TSGCN-SA by us. The main
contributions are as follows:

1) A self-attention architecture named SA-I is proposed.
The convolutional layer in the original TSGCN is
replaced by SA-I to improve the global contextual
understanding ability of the system.

2) To achieve an adaptive balancing of two-stream outputs
according to their contributions, a self-attention layer
named SA-II is introduced for better cooperation with
each branch stream.

3) An automatic dataset construction method and an
intelligent human-machine interface are proposed,
which ensure the region of interest (ROI) determination
easily, intuitively, and robustly.

II. RELATED WORK
A. INDIVIDUAL TOOTH SEGMENTATION
Given a dental mesh, individual tooth segmentation (ITS)
refers to segmenting one target tooth each time on the fly [4].
In contrast, whole tooth segmentation (WTS) takes a dental
mesh and outputs every tooth on it once and for all.

Amajor challenge forWTS is that computational resources
are highly required. As we know, the scale of a triangle mesh
can be measured by the number of faces. Taking the public
dental dataset 3DTeethSeg [15] for example, the data scale
in 3DTeethSeg ranges from 100,000 faces to 350,000 faces.
When feeding TSGCN with a mesh of 130,000 faces, the
GPUmemory requirement reaches 65 GB, which is far higher
than the amount that a mainstream graphics card can offer.

Mesh simplification is a common way to deal with the
above problem [10], [11], [12] which will lead to a second
challenge: topology or geometry abnormality [16]. There
exist algorithms that can guarantee topology-preserving
simplification, but the shape will be modified more or less.
For example, Fig. 3 depicts the simplification result (18,000
faces) of the mesh (around 180,000 faces) shown in Fig. 1.
As the colored annotation shows, the segmentation ground
truth (GT) becomes quite chaotic near the ideal boundaries.
In other words, the boundary features, which are critical for
deep learning based segmentation, may be lost during the
simplification.
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FIGURE 3. The simplification result of data is shown in Fig. 1.

The above challenges could be relieved in ITS because
only a local part (i.e., ROI) that contains the target tooth
is required compared to the whole dental mesh. Based on
this idea, TSegNet [17] first trains a deep learning network
to predict the center points of each tooth, and then uses a
cascaded network to perform the ITS within the ROI defined
by N/4 points around each center point, where N is the
number of mesh vertices. This paper shares the same local
strategy, but we use isotropic spherical cuts to obtain the
ROIs, and an intelligent human-machine interface is involved
during the inference phase.

B. MULTI-BRANCH FEATURE LEARNING
The essence of deep learning is feature learning. Raw features
for meshes are coordinate and normal vectors in general.
When building a network, these features can be concatenated
and trained undifferentiated [11].
Another strategy is to train different types of features

in separate network branches [12]. Experimental results
show that the system performance indeed benefits from the
personalized multi-branch feature learning scheme. Inspired
by this idea, the proposed method also uses a two-stream
network architecture. Specifically, we optimized both the
branch structure and the fusion behavior in TSGCN.

C. SELF-ATTENTION
Transformer and self-attention have a great reputation in NLP
and become acknowledged in the field of 3D shape analysis
recently. Generally speaking, self-attention operations can be
divided into two categories.

Let xi represents the ith element in the input feature X , the
first class can be described by Eq. (1).

yi =

∑
xj∈N (i)

∣∣∣α (xi)T β
(
xj

)∣∣∣ γ (
xj

)
(1)

where N (i) indicates the set of features to be aggregated to
form a new feature yi, α, β and γ represents three learnable
feature transformations, and |∗ | is a normalization operation.
Since the attention weight in Eq. (1) is a scalar, this one is
called scalar attention [18]. The details of scalar attention are
shown graphically in Fig. 4(a).

FIGURE 4. The Transformer layer proposed in point transformer. (a) Scalar
attention, (b) Vector attention.

The second class is known as vector attention [19],
as shown in Eq. (2), because the attention weight is a vector.

yi =

∑
xj∈N (i)

∣∣M {
R

[
α (xi) , β

(
xj

)]
+ ζ

}∣∣ ⊙ γ
(
xj

)
(2)

where R, ζ andM are functions that represent a relationship,
positional encoding, and mapping respectively, ⊙ is the
Hadamard product.

Point Transformer [14] adopts the vector attention scheme,
and uses linear projection to implement the α, β and γ .
In addition, R, M and ζ are defined as α(xi) − β(xj), multi-
layer perceptron (MLP) and θ(pi − pj) respectively, where θ

is an MLP with 2 linear layers and 1 ReLU layer, pi and pj are
the coordinates of the ith and jth points. It is worthmentioning
that Point Transformer uses γ (xj) + ζ to replace γ (xj) that
shown in Eq. (2) because the authors found this modification
can improve the accuracy. The graphical details of the SA
proposed by Point Transformer are shown in Fig. 4(b).
Other than Point Transformer which builds on pure

self-attention modules and is proposed to deal with point
clouds, we let the SA work with GCN to enable the coopera-
tion of global and local features for mesh segmentation based
on faces.

III. PROPOSED METHOD
Since the core idea of the work is to introduce the self-
attention (SA)mechanism into TSGCN, the proposedmethod
is named TSGCN-SA by us, whose architecture is illustrated
in Fig. 5.

A. PROCEDURES
As Fig. 5 shows, TSGCN-SA takes the ROI of the target tooth
as input and outputs the segmentation result. Specifically, the
normal and the coordinate vectors from the ROI are trained in
two streams separately. The coordinate stream (C-stream) is
stacked with three blocks, which consist of an SA-I layer and
a graph attention layer. The output of each block is merged
by channel concatenation. The normal stream (N-stream)
has a similar structure as the C-stream, except the basic
block consists of an MLP layer and a max pooling layer.
Let the output of the C-stream and N-stream be FC and FN
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FIGURE 5. The architecture of TSGCN-SA.

respectively, they will go through an SA-II layer before the
fusion of the two streams. The fused features will be used for
the final prediction.

Within the above procedures, some issues need to be noted.
The first one is that SA-I and SA-II are proposed for global
feature extraction and adaptive feature fusion respectively,
whose details are shown in Section III-B and Section III-C.
Secondly, the ROI of the target tooth comes from the dental
mesh. During the training phase, the ROIs are prepared ahead
as a data set. During the testing or practical application, a user
can use the proposed interface to extract them. Details of the
proposed data set construction approach and user interaction
are given in Section III-D. Last but not least, please refer
to PointNet [14] for the details of T-Net, which is used for
geometric alignment. The rest parts including the KNN graph
and the predictor head are the same as in TSGCN [12].

B. SA-I BASED GLOBAL FEATURE EXTRACTION
A key point of TSGCN-SA is to combine the self-attention
mechanism with graph convolution. As depicted in the
coordinate stream in Fig. 5, before each graph attention layer,
there is a self-attention layer named SA-I. The details of SA-I
are shown in Fig. 6(a).
The inspiration for the SA-I layer comes from the Efficient

Attention [20] and Point Transformer [14]. To reduce the
computational complexity, the scalar attention scheme is
adopted in SA-I, and the calculation order is adjusted
according to [20]. To improve the accuracy, position encoding
ζ is introduced into the attention calculation as done in [14].

C. SA-II BASED STREAM FUSION
Channel concatenation is a common practice to integrate
multiple features. But before concatenating the outputs of the
coordinate stream FC and normal stream FN , TSGCN points

FIGURE 6. Two self-attention modules proposed in TSGCN-SA. (a) SA-I,
(b) SA-II.

out that it is necessary to perform normalization to eliminate
interference caused by scale differences. Specifically, let f iC
and f iN represent the ith row of FC and FN respectively, then
the normalization can be described by Eq. (3) and (4).

f̂ iC = δC f iC =

∣∣f iN ∣∣∣∣f iN ∣∣ +
∣∣f iC ∣∣ f iC (3)

f̂ iN = δN f iN =

∣∣f iC ∣∣∣∣f iN ∣∣ +
∣∣f iC ∣∣ f iN (4)

where δC and δN serve as normalization factors.
In this paper, we argue that in addition to the normalization,

the contribution of each stream should also be considered
during the fusion. Based on this theory, an attention layer
named SA-II is introduced in TSGCN-SA to replace the
aforementioned normalization process, and its operation
details are shown in Fig. 6(b). The attention factor W is
determined through learnable operations of α and β, which
can simultaneously perform the role of normalization and
contribution adjustment.
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FIGURE 7. The annotation used in our method. (a) A result of the
proposed annotation transfer method, (b)The final annotation for
individual tooth segmentation.

D. IMPLEMENTATION DETAILS
1) DATASET
The experimental data used in this work are originally from
the MICCAI challenge dataset named 3DTeethSeg [15],
which contains a total of 1,200 meshes including both
upper and lower jaws. Each tooth on the jaw is labeled
using the universal Federation Dentaire Internationale (FDI)
annotation system.

To achieve the goal of deep learning based individual
tooth segmentation, modifications are needed. The first
modification is to cut the dental mesh into local parts which
contain individual teeth automatically. To do that, a sphere
is used. Let D, F , and P be the given dental mesh, the FDI
number of the target tooth, and a set of vertexes of D who are
labeled as F respectively. The sphere can be determined by
the center c and the radius R, where c is the mean coordinates
of P, and R is the max distance between c and any point in
P. In practice, to improve the system robustness, we use αR
instead of R to achieve the cutting, where α = 1.3, 1.5, and
1.7 respectively.

The second modification is about the annotation, which
is critical to supervised learning. Since our method uses the
face-based scheme, each face should be labeled appropriately.
However, the annotation of 3DTeethSeg data is based on
vertexes. To solve this problem, a conservative strategy is
presented to transfer the annotation from the vertex-basis to
the face-basis. Let L(p1), L(p2) and L(p3) be the label of three
vertexes p1, p2 and p3 respectively, which defines a triangular
face F in the given mesh. The label of F will be determined
by Eq. (5). Fig. 7(a) illustrates a typical result of the proposed
annotation transfer method.

L(F) =

{
L (p1) , L (p1) = L (p2) = L (p3)
0, otherwise

(5)

In addition to the transfer, a 4-class annotation system
is used, namely T1, T2, T3, and T4 corresponding to the
incisor, canine, premolar, and molar shown in Table 1. Adults
normally have up to 28 teeth. The reason for reducing the
number of classes from 28 to 4 is that teeth within each of the
4 classes are of similar shape, which makes it hard for a deep
learning model based on shape features to tell. Finally, the
mesh region that represents non-target teeth will be treated as
background, even if it belongs to a tooth (see Fig. 7(b)).

TABLE 1. The relationship between 4-class names used in this paper and
the FDI numbers.

TABLE 2. A list of the amount and distribution of data for each class.

FIGURE 8. Demonstration of the user interface to fulfill the cutting.
(a) Before the cutting, (b) After the cutting.

2) ALIGNMENT
The geometric differences in data, such as the position
variances, may disturb the model prediction. That is a reason
why a normalization process is needed before training and
inference in general. Though data in 3DTeethSeg have been
aligned to a uniform position, orientation, and scale already,
the ROI data resulting from the above-cutting process are no
longer aligned.

To deal with that, a T-Net mini-network is added (see
Fig. 5), which can learn a transformation matrix to align the
feature to a canonical space. Details of the T-Net architecture
can be found in [21].

A key for T-Net based alignment is to increase the diversity
of training data. Therefore, random translation, rotation, and
scaling operations were applied for data augmentation. The
final amount and distribution of data are shown in Table 2.

3) USER INTERFACE
During the testing, a convenient and intuitive user interface
is involved to determine the ROI for each target tooth
segmentation. As shown in Fig. 8(a), when the user’s mouse
moves near a tooth, a sphere will appear which illustrates the
cutting area that can produce the ROI as shown in Fig. 8(b).
Hiding behind the user interface is a lightweight center

point prediction network, which is pre-trained using the
approach introduced in TSegNet [17]. The sphere candidates
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TABLE 3. The statistical radius (R) of tooth based on 3DTeethSeg.

TABLE 4. A list of methods for comparison.

are centered at the predicted tooth centers, while the radiuses
are preset according to the statistical values from 3DTeethSeg
as shown in Table 3. When an abnormal tooth is encountered,
the user can adjust the sphere by clicking and dragging
(for position tuning) or scrolling (for radius tuning) the
mouse.

IV. EXPERIMENT AND RESULT
Experiments are conducted to assess the proposed method.
They were running on a desktop computer with an NVIDIA
RTX 3090 (24GB) GPU. The Python 3.7, PyTorch 1.12, and
CUDA 11.6 are used for programming.

For comparison, closely related methods including
PointNet++ (PN++) [7], Point Transformer (PT) [21],
MeshSegNet [8], and TSGCN [12] are selected. Among
them, PN++ and PT are methods based on points,
while MeshSegNet and TSGCN are based on faces. More
details of the methods for comparison can be found in
Table 4.

A. VISUALIZATION
First, we test the proposed method with multiple dental
meshes. Among them, 4 typical results are visualized in Fig. 9
in rows. Different colors in the figure represent different
categories ranging from T1 to T4. Columns from left to
right are the GT, the results of PN++, PT, MeshSegNet,
TSGCN, and ours respectively. It can be observed that
lots of prediction errors occur by PN++ and MeshSegNet,
including mistaking foregrounds as backgrounds (see Raw 2)
and vice versa (see Raw 4), or mistaking a foreground class
as a different foreground class (see Raw 3). By contrast,
PT performs slightly better own to the Transformers.
However, it is inferior to TSGCN because TSGCN is
trained with richer features and a multi-branch architecture.
Thanks to the proposed SAmodules, our method outperforms
the others even for the challenge case shown in the first
raw.

To evaluate the performance quantitatively, the overall
accuracy (OA) and the mean Intersection-over-Union (mIoU)

TABLE 5. The notation of methods in the ablation study.

TABLE 6. The results of the ablation study.

TABLE 7. The number of parameters and average time for inference of
the proposed method.

are selected as metrics. OA represents the percentage of the
number of correctly predicted faces over the total number of
faces. Let IoU (c) be the intersection-over-union of a class
c that belongs to the set of categories C, then mIoU can be
calculated as Eq. (6):

mIoU =

∑
c∈C IoU(c)

|C|
(6)

where |C| means the number of C.
The comparison results in terms of OA and mIoU are

shown in Fig. 10 and Fig. 11 respectively. Within each figure,
there are both results focused on each category and results
overall. As the overall results show, our method can achieve
the best performance among the comparisons in terms of all
metrics.

B. ABLATION STUDY
Compared to the baseline model (i.e., TSGCN), core
improvements of TSGCN-SA include the usage of SA-I
and SA-II to replace the convolution (Conv) layers and
the normalization (Nor) layers in TSGCN respectively.
To investigate the impact of SA-I and SA-II modules, ablation
studies are carried out among methods with or without
SA-I/II, whose notations are shown in Table 5.

The results of the ablation study are recorded in Table 6.
It can be noticed that the solo usage of SA-I and SA-II
results in 0.67 and 0.38 improvement in terms of OA,
0.68 and 0.59 improvement in terms of mIoU respectively.
It means that SA-I contributes more than SA-II. Anyway, the
replacements are beneficial to the system’s performance.

Next, the proposed method is evaluated in terms of
the number of parameters and average time for inference.
As shown in Table 7, they equal 6.12 megabytes (MB)
and 135 milliseconds (MS) respectively for a mesh of
ten thousand faces. Compared to TSGCN, our model
possesses more parameters, which means a larger capability
to solve problems in deep learning in general. On the other

76740 VOLUME 12, 2024



S.-J. Liu et al.: Mesh Segmentation for Individual Teeth Based on Two-Stream GCN With SA

FIGURE 9. Visualization of the comparison results. (a) GT, (b) PN++, (c) PT, (d) MeshSegNet, (e) TSGCN, (f) Ours.

FIGURE 10. Comparison results in terms of OA.

FIGURE 11. Comparison results in terms of mIoU.

hand, our method takes around 0.1 seconds to segment
one tooth, which meets the standard for real-time user
feedback.

TABLE 8. The results of the generalization experiment.

C. GENERALIZATION EXPERIMENT
To verify the scalability and generalization ability of the
proposed method, experiments using a new dataset with
over 1,400 teeth which constructed from private commercial
dental data are carried out for inference without further
training.

The results are recorded in Table 8, which shows an
inferior outcome for each method working on the new data
than itself working on 3DTeethSeg. This phenomenon is
quite common because the two datasets must have different
data distributions. However, our method still outperforms
the others in this situation. Furthermore, few rounds of
training with new data will relieve this problem and boost the
performance normally in our experience.

V. LIMITATIONS AND FUTURE WORK
Despite the strengths of the proposed method, there are still
some limitations. For example, there is an imbalance per label
as illustrated in Table 2, due to the 4-class annotation system
used in ourmethod. Aswementioned before, though there are
up to 28 teeth in the upper and lower jaws, the 4-class strategy
makes it easier for a deep learning model to distinguish the
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differences between each class, thus resulting in a better
performance. To deal with the imbalance issue, the mesh
simplification method and sampling method could be used
in future work. Another issue is the identification of a target
tooth with its FDI number. Though the model we trained is
not able to achieve that, it can easily be done because we
have a lightweight tooth centroid prediction network, which
is supervised with the FDI labels. However, training a model
that can predict 28 classes is another research direction in the
future, especially for a segmentationmethod that can segment
every tooth from the dental mesh at once automatically.

VI. CONCLUSION
A deep learning method named TSGCN-SA is proposed
in this paper to segment individual teeth from dental
mesh. Compared to the baseline model TSGCN, which is
one of the state-of-the-art, TSGCN-SA is superior in the
global understanding capability because of the proposed
self-attention modules SA-I and SA-II, which can facilitate
effective feature extraction and stream fusion. In addition,
an automatic training data generation scheme is proposed
to ensure supervised learning from big data during the
training phase, and an intuitive user interface is involved
for the intuitive and fast segmentation during the application
phase.

A large number of experimental results show that
TSGCN-SA outperforms the SOTAs in terms of overall
accuracy and mean Intersection-over-Union. With the help of
effective cooperation between global and local features, the
proposed method is competent in the task of individual tooth
mesh segmentation.
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