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ABSTRACT The problem of closed branches and leaves in orchards can cause satellite navigation systems
to experience star loss, leading to safety issues such as collisions and loss of control. To address this issue,
this study develops a multi-mode navigation control system for satellite navigation and sensor tracking,
aiming to achieve multi-mode intelligent path judgment and ensure the accuracy and safety of operations.
This method utilizes point cloud iterative nearest point algorithm LiDAR technology to gain 3D information
of the surrounding environment when satellite signals are unavailable. Through perception and analysis
of the environment, real-time path planning and obstacle avoidance decision-making are achieved. At the
same time, through micro-inertial navigation technology, accurate perception and control of the position and
attitude of navigation equipment are achieved, thereby achieving precise control of the operation process.
According to relevant experimental data, the experimental distance accuracy based on the vehicle mounted
daytime environment dataset was 84.88%, and the duration accuracy was 97.63%. Accordingly, the proposed
system is capable of accurately determining the current position and heading, as well asmaking path planning
and obstacle avoidance decisions based on real-time environmental information. This ensures the accuracy
and safety of operations. The research method exhibits higher stability and reliability in orchard operations,
providing an effective solution for the accuracy and safety of orchard operations.

INDEX TERMS Point cloud iteration nearest point algorithm, agricultural vehicles, automatic navigation
and positioning, obstacle avoidance technology, scale invariant feature transformation.

I. INTRODUCTION
The accelerated advancement of contemporary agricultural
techniques has rendered the precise positioning and secure
avoidance of obstacles by agricultural vehicles a pivotal
component in the overall process of agricultural produc-
tion [1]. Agricultural vehicles need to face various complex
and ever-changing terrains and environments during their
journey in the fields. Especially in orchard operating environ-
ments, the problem of canopy closure of branches and leaves
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can seriously affect the signal reception of satellite navigation
systems, making it easy to experience star loss. This will also
to some extent affect the precise navigation of agricultural
vehicles, and may even cause problems such as vehicle colli-
sions and loss of control [2], [3]. Therefore, how to accurately
and effectively achieve Automatic Navigation and Position-
ing (ANP) and obstacle avoidance for agricultural vehicles
has a decisive impact on agricultural production efficiency
and safety [4]. The principal limitation of existing agricul-
tural navigation technology is its inadequate adaptability to
complex environments. This can readily result in a reduction
in positioning accuracy and stability in situations such as
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signal occlusion and multi-path interference [5]. Therefore,
there is an urgent need to innovate and optimize navigation
technology, enhance its adaptability in changing environ-
ments, and ensure the accuracy and reliability of navigation.
To improve the accuracy of vehicle navigation, F Aghaei et al.
used ray tracing technology for channel modeling based on
vehicle positioning systems, and considered multiple fre-
quencies and transmitter types. Furthermore, the research
demonstrated that ray tracing simulation could consider the
propagation environment for three-dimensional modeling.
This approach allowed for the study of various system param-
eters and road conditions under both line of sight and non-line
of sight conditions, providing a reference value for vehi-
cle safety navigation [6]. However, the above-mentioned
technologies have limitations such as high computational
complexity and high hardware resource requirements, which
limit their widespread application in Agricultural Vehicle
Navigation (AVN). To address the aforementioned issues,
a Micro-inertial Navigation for Agricultural Vehicle Navi-
gation (AVN-MN) method and a Point Cloud Registration
(PCR) model combining Scale Invariant Feature Transforma-
tion Iterative Closest Point (SIFT-ICP) are proposed, namely
the SIFT-ICP-MN model. The research innovation lies in
three aspects: (1) The Scale Invariant Feature Transformation
(SIFT) algorithm is introduced to improve the traditional
Iterative Closest Point (ICP) algorithm, which has fallen into
the local optima; (2) The SIFT-ICP model is used for PCR to
obtain relative displacement and attitude change information
of vehicles; (3) The calculation of position and velocity is
introduced through a Micro-inertial Navigation (MIN) sys-
tem, and precise navigation is achieved through data fusion
technology.

The main contribution of the research is the proposal of
an innovative AVN method. This method improves the tra-
ditional ICP algorithm by introducing the SIFT algorithm,
improving the accuracy and robustness of PCR, and achiev-
ing accurate acquisition of vehicle relative displacement and
attitude change information. At the same time, using MIN
systems for position and velocity calculation, precise naviga-
tion is achieved through data fusion technology. The proposed
method aims to improve the accuracy and stability of AVN,
reduce its computational complexity and hardware resource
requirements, and provide new ideas and methods for the
development of AVN technology. This study consists of four
sections. The first section is an overview of the present
research status of the technologies used. The second section
constructs a fusion of SIFT-ICP and AVN-MN. The third
section conducts performance verification on the proposed
method. The last section provides a summary and outlook for
the entire paper. Table 1 is an abbreviation table of the article’s
terminology.

II. RELATED WORK
The point cloud ICP algorithm has achieved significant
research results in the academic community, and many schol-
ars have discussed it. To solve the problems of computing

TABLE 1. List of abbreviations and full names.

long and poor accuracy in 3D PCR, X Shi et al. proposed an
improved k-dimensional tree ICP algorithm. This algorithm
combined point cloud filtering and Adaptive Fireworks
Algorithm (AFA) for coarse registration. Firstly, it filtered
the Point-cloud Data (PCD) collected by the 3D laser scan-
ner, and then used AFA for coarse registration. Through
experimental verification of three physical models of statues,
this method significantly improved computational speed and
accuracy, and was stable and reliable [7]. F. A. Make et al.
proposed a new algorithm for aligning two point clouds
and accurately estimating the uncertainty of ICP transfor-
mation parameters. This method provided non parametric
estimation of transformations, enabled modeling of com-
plex multi-modal distributions, and enabled effective parallel
computing on GPUs. Experiments using 3D Kinect data
and sparse indoor/outdoor LiDAR data have shown that this
method could effectively generate accurate pose uncertainty
estimation [8]. I. Vizzo et al. utilized the point-to-point ICP
algorithm with adaptive thresholds, robust kernels compen-
sation methods, and point cloud sub-sampling strategies to
estimate the pose of robots. This method relied entirely on
3D point-clouds obtained from various 3D LiDAR sensors
andwas suitable for a wide range of operating conditions. The
system ran faster than the sensor frame rate and has been vali-
dated in real scenarios [9]. M. Brossard et al. proposed a new
method to handle the uncertainty of 3D ICP and addressed
error sources such as error convergence, under constraint sit-
uations, and sensor noise listed in Censi’s work. The proposed
method used an unscented transformation to reflect the cor-
relation between initial and final uncertainties. This solution
has been tested on real publicly available data from structured
to unstructured environments, and the algorithm has predicted
results consistent with actual uncertainty, with advantages
over previous methods [10]. C. Lin et al. proposed an acceler-
ation method to improve the ICP performance. This method
utilized the two-dimensional features of azimuth images to
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find corresponding point pairs, significantly improving reg-
istration speed. Simulation showed that this algorithm not
only reduced the root mean square error of the initial attitude,
but also reduced 75% of ICP iterations to a stable state.
In addition, using 2D features on azimuth images as the ini-
tial ICP pose also improved robustness to larger perspective
diversity [11].
Currently, AVN has attracted the attention of many schol-

ars. X. Yin et al. developed an autonomous navigation
controller that enables various agricultural vehicles to move
autonomously. The hardware was used for program exe-
cution, data processing, and information exchanging with
peripheral devices. The human-machine interface design
allowed operators to finish basic settings, path planning,
and navigation control. The versatility of the controller in
targeting agricultural cars to travel along straight paths and
turning at headlands were evaluated through field experi-
ments. When completing linear navigation, the controller
had good coping strategies [12]. P. Chhikara et al. proposed
an autonomous navigation algorithm for goji berry orchards
based on visual cues and fuzzy control, aiming to improve
the harvesting efficiency of goji berries and reduce manual
labor. This method utilized new weights (2.4B-0.9G-R) to
convert color images into grayscale images to better rec-
ognize the trunk of goji berries, and used the minimum
bounding rectangle to describe the outline of goji berries. This
method could meet the automatic picking requirements of
goji berry picking robots in real environments [13]. F. Rovira
Más et al. designed a navigation system to guide robots
in path planning in farmland. This method was based on
local perception and utilized 3 complementary technolo-
gies: 3D vision, LiDAR, and ultrasound. Finally, the above
three methods were integrated to form a complete intelligent
behavior model for orchard operation robots based on the
three methods. The integration of the above three technolo-
gies has laid a solid foundation for the intelligent operation
of orchard operation robots [14]. M. Reger et al. delved
into the use of LiDAR in harsh weather conditions in agri-
cultural environments and conducted a series of field tests
to evaluate in detail the performance of LiDAR in outdoor
environments and its applicability in navigation. This study
provided strong theoretical support and practical suggestions
for using LiDAR as a navigation and collision avoidance
technology in free navigation automatic feeding systems.
This work provided new possibilities for achieving automatic
navigation and obstacle avoidance of agricultural vehicles,
and provided technical support for agricultural modernization
and automation [15]. S. Gunturu et al. conceived and designed
an innovative autonomous robot platform for agricultural
robot navigation problems. This platform utilized spatial arti-
ficial intelligence technology to achieve effective collision
avoidance during the free navigation of robots in crop rows.
A spatial deep learningmodel was also trained to assist robots
in autonomous navigation while avoiding crashing crops such
as wheat. A detailed comparative analysis was conducted on

this method, revealing its effectiveness in model accuracy and
inference speed [16].
In summary, ICP has achieved certain research results

in various fields, and agricultural navigation models have
also attracted the attention of many scholars. However, few
studies have combined the two to explore the performance
of agricultural vehicle ANP. Therefore, this study proposes
the SIFT-ICP-MN fusion model aimed at overcoming the
limitations of traditional navigation technology in agricul-
tural environments and improving agricultural production
efficiency.

III. CONSTRUCTION OF ANP AND OBSTACLE AVOIDANCE
MODEL FOR AGRICULTURAL VEHICLES BASED ON ICP
This section mainly explores a PCR model combined with
SIFT-ICP and AVN-MN method. This method aims to
achieve precise, stable, and real-time navigation control of
agricultural vehicles by integrating efficient PCR technology
and MIN systems. This method uses the SIFT-ICP model for
PCR to gain the relative displacement and attitude change of
the vehicle, and calculates the position and speed through the
MIN system. Finally, precise navigation is achieved through
data fusion technology.

A. PCR MODEL BASED ON SIFT-ICP
Point cloud is an abundant point data obtained by measuring
the outer surface of an object through sensors, which can
display the spatial location and characteristics of the object.
Sparse point clouds are point clouds with small data scales
and large point intervals. A dense point cloud is a point cloud
with numerous data and high point density. In Figure 1, point
clouds can be segmented into 4 types based on the arrange-
ment of points [17]. Figure 1 (a) shows a scattered point
cloud with disordered structure and no significant relation-
ship between points. Figure 1 (b) shows a grid point cloud,
with data points arranged in an ordered queue, and each point
corresponding to row and column coordinates. Figure 1 (c)
shows the scanning line point cloud: multiple points form a
scanning line, and multiple sets of scanning lines form a point
cloud, with equal spacing between each line. Figure 1 (d)
shows a polygonal point cloud: a nested planar polygonal
point cloud is formed by connecting adjacent points with
similar distances.

The ICP is an algorithm used for aligning 3D point clouds
in two sets of spaces [18]. The basic idea of ICP is to itera-
tively find the rotation and translation matrix that minimizes
the distance between the source and the target point clouds.
The specific operation process includes selecting correspond-
ing points, calculating transformation matrices, updating the
position of the source point cloud, and iterating repeatedly
until the set termination conditions are met. The main func-
tion of ICP is PCD registration, which can be used to obtain
accurate poses of objects or fuse PCD collected from various
aspects and times [19]. Therefore, its application scenar-
ios are very extensive, such as in robot navigation, object
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FIGURE 1. Classification of PCD.

recognition, medical image processing, terrain surveying and
other fields. Figure 2 shows the registration process of ICP.

The ICP algorithm achieves precise registration of point
clouds by searching for the nearest neighbor relationship
between two point sets and calculating rotation and transla-
tion parameters, iterating continuously until the termination
conditions are met [20]. Assuming the target set is S and the
set of points to be registered is T . For each point in the T to
be registered, to find its nearest point in the target point set
S and form a corresponding point pair sequence, as shown in
equation (1).

Y = F (T ,X) (1)

In equation (1), Y represents the set of all nearest points.
F represents the mapping relationship between each point
and its nearest neighbor. X represents the nearest point cor-
responding to T . The rigid body transformation matrix based
on the relationship between the corresponding point pairs is

FIGURE 2. ICP registration process.

calculated, and this transformationmatrix is used to transform
the set of points to be registered into a new coordinate point
set, as shown in equation (2).

T ′
= T ∗R3∗3 + T1∗3 (2)

In equation (2), R3∗3 is the rotation matrix. T1∗3 means
the translation matrix. T ′ represents a new set of coordinate
points. The distance calculation formula between the target
and the new alignment point sets is equation (3).

RMS
(
S,T ′

)
=

1
q

q∑
i=1

(∣∣T ′
i − Sj

∣∣)2 < σ, (1 ≤ j ≤ p) (3)

In equation (3), p and q are the quantity of points of S and
T . T ′

i represents each point in the set of alignment points to
be matched. Sj represents the closest point of point T ′

i in the
target point set. σ represents the preset minimum distance
threshold. The traditional ICP algorithm is widely used in
PCR in various industries. Compared to other algorithms, its
registration accuracy is high and the input data requirements
are low. Accurate registration can be achieved with only 3D
coordinates [21], [22]. However, ICP also has some short-
comings. Firstly, ICP has a strong dependence on the initial
position. If the initial positions of two point clouds differ too
far, it may lead to the algorithm converging to a local optimal
solution rather than a global optimal solution. Secondly, the
convergence speed of ICP algorithm is relatively slow, espe-
cially when dealing with large-scale PCD. In addition, the
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FIGURE 3. Implementation process of SIFT.

ICP algorithm requires users to preset some parameters, such
as iteration times, error thresholds, etc. Improper parameter
selectionmay affect the effectiveness of the algorithm. There-
fore, the improvement and optimization of ICP algorithm is
still an important research topic at present.

The SIFT algorithm is a feature matching algorithm that
transforms an image into a set of local feature vectors
with multiple in-variances to find matching feature point
pairs [23], [24]. The advantages of SIFT algorithm include: it
has good local feature extraction ability for various changes.
It can achieve fast and accurate matching in large amounts of
data, and extract rich feature vectors even when objects are
sparse. It has good scalability and can be used in combina-
tion with other feature vectors. The SIFT algorithm consists
of several steps: establishing a differential scale space and
detecting feature points, describing the pixel information
of feature points and their surrounding influences, produc-
ing feature point descriptors, and comparing feature point
descriptors for feature point matching. The implementation
process of SIFT is Figure 3.

In the fields of image processing and 3D PCR, SIFT and
ICP algorithms respectively play important roles with their
unique advantages. SIFT excels in feature point detection and
relationship extraction, achieving preliminary registration of
point clouds. ICP completes the fine adjustment of the reg-
istration process with its precise optimal matching ability.
This study innovatively combines the two and proposes the

SIFT-ICP PCR model. This model first uses SIFT to extract
key feature points of the point cloud to be registered and
the target, and then calculates the FPFH features of these
points. Based on these features, the Sample Consensus Initial
Alignment (SAC-IA) algorithm is used to obtain the transfor-
mation matrix and achieve preliminary registration. Finally,
the preliminary registration results are finely adjusted using
the ICP algorithm, achieving efficient and accurate PCR. The
scale space generated by SIFT is equation (4).

L (x, y, δ) = G (x, y, δ) ⊗ I (x, y) (4)

In equation (4), δ represents the scale space factor. (x, y)
represents the pixel coordinates of the image. I (x, y) is the
original image. G (x, y, δ) represents a variable scale Gaus-
sian function. To detect extreme points in the scale space
and construct a Gaussian difference function, as shown in
equation (5).

D (x, y, δ) = [G (x, y, kδ) − G (x, y, δ)] ⊗ I (x, y)

= L (x, y, kδ) − L (x, y, δ) (5)

In equation (5), δ represents the scaling factor of two
adjacent Gaussian scale spaces. The calculation formula for
FPFH is equation (6).

F
(
Mq

)
= S

(
Mq

)
+

1
k

k∑
i=1

ωi · S
(
Mq

)
(6)
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FIGURE 4. Running flow of point cloud registration in SIFT-ICP model.

In equation (6), Mq represents the point to be calculated.
S

(
Mq

)
represents a simplified point feature histogram. ωi is

the weighted value of the i-th neighborhood point. 1
ωi

repre-
sents the distance value between the point to be calculated and
its i-th neighboring point. SAC-IA solves the transformation
relationship as shown in equation (7).

H (li) =


1
2
l2i , ∥li∥ < ml

1
2
ml (2 ∥li∥ − ml) , ∥li∥ ≥ ml

(7)

In equation (7), ml represents a preset value. li is the dis-
tance difference between the corresponding points in Group
i after transformation. Therefore, the operational process of
the SIFT-ICP model constructed in this study is Figure 4.

B. PCR MODEL AND AVN-MN COMBINING SIFT-ICP
AVN and obstacle avoidance technology are important com-
ponents of agricultural automation, which are related to the

efficiency and safety of agricultural production. However,
this field faces many challenges [25]. On the one hand,
the agricultural condition is complex and changeable, and
changes in weather, soil, and crop growth status can all
have an impact on vehicle navigation and obstacle avoid-
ance. On the other hand, agricultural vehicles often operate
without human monitoring, requiring navigation and obsta-
cle avoidance systems to have a high degree of autonomy
and stability. In addition, to improve agricultural production
efficiency, agricultural vehicles need to be able to perform
precise path planning and motion control, which puts higher
requirements on navigation and obstacle avoidance technol-
ogy. At present, researchers are working hard to solve these
problems and promote the development of AVN and obstacle
avoidance technology through technological innovation and
system optimization.

The MIN system uses micro-sensors to measure accelera-
tion and angular velocity, and calculates position and velocity
through integration. The PCR model provides precise posi-
tional information, but may encounter issues in dynamic
environments or visual occlusion. The MIN system can oper-
ate in any environment, but the accumulation of measurement
errors will reduce accuracy [26]. The combination of the two
can use another system to provide auxiliary information and
improve navigation performance when a problem occurs in
one system. The fusion of visual and inertial information
using PCR model and MIN system navigation technology
can improve navigation accuracy and robustness, making it
suitable for robots, autonomous vehicles, and drones [27].
The MIN system mainly relies on Newton’s second law to
calculate position and velocity. The accelerometer mainly
consists of three parts: mass block, spring, and damping [28],
[29]. The resultant force of an object is equal to the product of
its mass and acceleration. By measuring the combined force
of the mass blocks inside the accelerometer, the acceleration
of an object can be obtained. When there is no external force,
the mass block is in a free state, and its position serves as
the origin. When the base accelerates, the spring deforms
due to inertial forces, pushing the direction of the force back
out. According to Newton’s second law, equation (8) can be
obtained.

m (ẍ + a) = −Dẋ − cx − mg (8)

In equation (8), m, ẍ, and ẋ are the mass, acceleration and
speed of the mass block. a represents the acceleration of the
mass block’s motion. c and x are the stiffness coefficient
and deformation of the spring. D is the damping coefficient.
g represents gravitational acceleration. f is defined as the
external force acting on a unit mass, and there is equation (9).

f = Ft/m (9)

In equation (9), Ft represents the spring force.m represents
themass of amass block. By combining equations (8) and (9),
equation (10) can be obtained.

f = a+ g (10)
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FIGURE 5. Micro-inertial system measurement unit system diagram.

Equation (10) shows that due to the limitations of the
accelerometer in distinguishing between inertial acceleration
and gravitational acceleration, there may be some errors in
its resolution results. To obtain more accurate acceleration,
the gravitational acceleration g needs to be subtracted from
f to obtain a. The Inertial Measurement Unit (IMU), as the
core of the inertial navigation system, integrates sensors such
as accelerometers and gyroscopes, and has the advantages of
autonomous navigation and no environmental interference.
Its system framework is shown in Figure 5.

This study utilizes a commercial grade attitude ref-
erence system that integrates gyroscopes, accelerometers,
magnetometers, thermometers, and barometers. All sensor
measurements are temperature compensated and unified into
one coordinate system. The system can output the original
measurement values of all sensors, as well as the attitude
and covariance relative to the local horizontal coordinate sys-
tem [30], [31]. The error of inertial devices greatly affect the
inertial navigation accuracy, so it is necessary to compensate
for the error sources and sizes of inertial devices. When the
accelerometer is placed in a stationary state, regardless of
the attitude, the sum of squared true values of the measured
acceleration satisfies equation (11).

f 2x + f 2y + f 2z = g2 (11)

In equation (11), f 2x , f 2y , f 2z represents the square of the
Three-Axis Acceleration (TAA) values of x, y, z. g is the
local gravitational acceleration constant. The three-axis mea-
surement value calculation formula of the accelerometer is

equation (12). 
f x = a1fx + a2

f y = a3fy + a4

f z = a5fz + a6

(12)

In equation (12), a1, a3, a5 are the scale factor parame-
ters. a2, a4, a6 are the fixed errors of the accelerometer. In a
stationary state, the IMU is placed in different postures for
a period of time, and the equation (12) corresponding to
the average acceleration value during each stationary time
period is introduced into equation (11) to obtain a set of
equations. Then, the least squares fitting is used to determine
the a1 ∼ a6 parameters. Regarding the fixed error calibration
of gyroscopes, it is generally possible to obtain the aver-
age value of the gyroscope over a short period of time by
using a stationary instrument during initial power on [32],
[33]. The selection of a random error model depends on
the instrument’s operating time, condition, and experimental
environment. Short-term operation can consider fixed errors,
while long-term operation requires consideration of random
errors. For the random error of inertial devices, this study
mainly uses auto-correlation method. A random process and
its correlation function are called Auto-correlation Functions
(ACF), and their expression is equation (13).

R (t1, t2) = E (x (t1) x (t2)) (13)

In equation (13), t1, t2 are any sampling time. R repre-
sents the correlation coefficient. E represents mathematical
expectation. The unit of the ACF is the square of the unit
of the random process signal. The ACF of a random process
represents the correlation degree between signals at various
time points [34]. When the probability density function of
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FIGURE 6. ACF image of IMU.

FIGURE 7. Navigation model of agricultural vehicle based on SIFT-ICP-MN.

a random process does not change over time, it can be said
that the random process is stationary. The ACF of this sta-
tionary random function is only related to τ = t1 − t2, and

equation (13) can be transformed into equation (14).

R (τ ) = E (x (t) x (t + τ)) (14)
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The ACF image of the IMU used in this study is
shown in Figure 6. Figure 6(a) - 6(f) represent the time cor-
relation analysis of different signals in the IMU, where
Figure 6(a) - 6(c) represent the autocorrelation of TAA, and
Figure 6(d) - 6(f) represent the autocorrelation of Three-axis
Angular Velocity (TAV). Among them, the ACF of TAA is
used to analyze the correlation of TAA signals in time series.
The ACF of TAV is used to study the correlation of TAV
signals in time series. The six sets of ACF images shown
in the figure all exhibit similar trends, similar to a normal
distribution. This trend can effectively depict the gradually
evolving errors in inertial navigation systems, which helps to
gain a deeper understanding of the dynamic characteristics
of navigation errors [35]. By calculating the auto-correlation
values of the signal at different times, the temporal stability,
periodicity, and other characteristics of the signal can be
obtained, which is of great significance for understanding and
predicting the behavior of TAA.

After obtaining the accurate initial attitude, velocity, and
position, the carrier position and attitude can be calcu-
lated using inertial navigation algorithms using the measured
values of inertial devices with errors and Newton’s laws.
However, the accumulation of errors is inevitable, so it is
necessary to simultaneously model and estimate the changes
in the system error state. Based on Newton’s laws of motion,
equation (15) presents the inertial navigation motion, taking
into account the Earth’s rotation and the movement of the
carrier/Earth coordinate system.

Ẋ (t) = F (t)X (t) + Gu (15)

In equation (15), F (t) represents the system state matrix.
G represents the noise coefficient matrix. u represents the
system noise vector.

PCR can obtain the relative displacement and attitude
changes between adjacent frames. By integrating Extended
Kalman Filter (EKF) with IMU pose estimation for data
fusion, the advantages and disadvantages of both can be
integrated to achieve more stable and efficient navigation
and obstacle avoidance. This study uses EKF, combined with
LiDAR and IMU to achieve navigation obstacle avoidance.
Firstly, the initial attitude of the IMU is obtained through
initial fine calibration. In the filtering body, the carrier motion
and system error status are updated every time the IMU
measurement value is updated. When new LiDAR PCD is
generated, it is restored to the horizontal coordinate system
through IMU attitude, and then the point cloud displacement
and velocity are obtained through plane registration, which
are used as filtering observations to update the system error
status and agricultural vehicle status. The fusion model SIFT-
ICP-MN is shown in Figure 7. In Figure 7, the SIFT-ICP-MN
model first uses SIFT-ICP to accurately register PCD. This
model can capture and analyze the relative displacement and
attitude change information of vehicles, thereby providing
key data for navigation. Subsequently, the MIN system per-
forms real-time calculations of position and velocity based
on this information. Finally, through advanced data fusion

FIGURE 8. Iterative relationship between traditional ICP and SIFT-ICP.

technology, the two information are effectively combined to
achieve navigation accuracy and stability.

IV. PERFORMANCE VERIFICATION OF ANP AND
OBSTACLE AVOIDANCE MODEL FOR AGRICULTURAL
VEHICLES BASED ON ICP
This study mainly focuses on the performance verification
of ANP and obstacle avoidance models for agricultural vehi-
cles, especially the navigation model based on ICP. Firstly,
performance analysis of the SIFT-ICP-based PCR model is
conducted by collecting and processing PCD obtained from
LiDAR scanning. Then, through a series of experiments, the
performance of the SIFT-ICP-MNmodel is thoroughly tested
and analyzed.

A. PERFORMANCE ANALYSIS OF PCR MODEL
BASED ON SIFT-ICP
To verify the algorithm’s reliability and stability, as well
as the practicality of the PCR program, a vehicle mounted
laser point cloud dataset from a certain orchard scene is
selected as experimental data in this study, ensuring the
practicality and reliability of the experiment. The experi-
ment uses a self-developed PCR program, combined with
SSW vehicle system supporting software and open-source
software, to display PCD and evaluate registration results.
The experimental equipment is a laptop with the Win10
operating system. The cloud server is mainly responsible
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FIGURE 9. PCR results of SIFT-ICP algorithm.

for PCR work. In the experiment, there are approximately
500,000 point clouds to be registered in each group, and a
thread pool is used to perform asynchronous parallel process-
ing of multiple files. The algorithm parameters are set after
comprehensive consideration of registration accuracy and
efficiency. Table 2 is the settings of the main recommended
parameters.

This study uses an iterative relationship graph to evaluate
the convergence speed of the ICP on the same PCD, pro-
viding a reference for analyzing the registration schemes of
traditional ICP and SIFT-ICP algorithms. This study divides
a certain section of the orchard into four sections of test
data. The iterative relationship between traditional ICP and
SIFT-ICP is shown in Figure 8. Compared to SIFT-ICP,

traditional ICP requires more iterations. In the first 30 iter-
ations, both deviations are inversely proportional to the
number of iterations, but SIFT-ICP shows a significant and
rapid reduction in error in the first 10 iterations, demon-
strating its high efficiency and error convergence speed.
In terms of accuracy, traditional ICP is hard to cater for
the accuracy and efficiency needs of in vehicle laser PCR,
and there is a risk of significant errors that cannot converge.
The traditional ICP registration time is about 400s∼500s,
and SIFT-ICP is about 60s, with the latter increasing effi-
ciency by 8.6 times. Under the same parameter conditions,
the SIFT-ICP algorithm can significantly shorten the running
time and improve efficiency by more than 10 times, demon-
strating its advantages in registration efficiency.
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TABLE 2. Experimental parameter settings.

To accurately evaluate the registration accuracy of the
SIFT-ICP, this study compares the results of manually
selected points and measures corresponding positions, and
calculates the parameter residuals between the two from
the x, y, and z directions. This comparison method can use
the results of actual operations as a standard to provide a
more intuitive and accurate evaluation of the accuracy of the
algorithm. Figure 9 shows the PCR results of the SIFT-ICP
algorithm. The error situation between vehicle mounted laser
PCD is quite complex and has significant variability. For
example, the maximum deviation in the elevation direction
can reach more than 4m. Despite facing such complex PCD
and significant biases, the SIFT-ICP still demonstrates high
registration accuracy in experiments. Except for a few loca-
tions with slightly larger point deviations, the overall error
value remains stable within the range of −0.03m to 0.03m.
This result fully demonstrates the stability and reliability of
the SIFT-ICP in processing complex PCD matching, demon-
strating its excellent performance in practical applications.

This study takes orchard PCD as an example to conduct
planar registration experiments. Two sets of point clouds
separated by 40 frames are selected as experimental objects.
First, the pose between the two is initialized, and then the
corresponding plane relationship for registration is extracted
to obtain the rotation matrix and translation parameters.
Figure 10 shows a comparison of PCR results between two
algorithms. Figures 10 (a) and 10 (b) correspond to the
results of the SIFT-ICP algorithm, showing good registration
accuracy, tight alignment between point clouds, and accurate
matching of planar relationships. Figures 10 (c) and 10 (d)
show the results of the traditional ICP algorithm, which
presents a situation of low registration accuracy, with sig-
nificant misalignment, especially in the areas highlighted by
circular annotations in Figure 10 (d), which may indicate sig-
nificant registration errors. This indicates that the algorithm
is susceptible to the influence of local optimal solutions
when dealing with sparse point clouds, leading to inaccurate
registration. In contrast, SIFT-ICP is based on planar features,
and as long as there are sufficient planar features in the
scene, even if the point cloud is sparse, accurate rotation and

FIGURE 10. Comparison of cloud registration results.

translation parameters can be obtained, which is superior to
the ICP algorithm.

B. PERFORMANCE ANALYSIS OF THE FUSION
MODEL SIFT-ICP-MN
After obtaining the plane registration results of all point
clouds, the G2O graph optimization library is used to per-
form nonlinear optimization on all plane registration results,
obtaining a set of approximate real trajectory attitude infor-
mation. By utilizing this set of trajectory postures, the mutual
position and attitude relationships of all point clouds are
restored, and a dense point cloud model of the entire orchard
is obtained. The experimental results of the combined navi-
gation strategy are analyzed from two aspects: the accuracy
of attitude estimation and displacement estimation.

Before analyzing the trajectory accuracy of SIFT-ICP-
MN integrated navigation, it is essential to understand the
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FIGURE 11. Trajectory drift of single inertial navigation.

trajectory drift situation of individual inertial navigation.
In Figure 11, using inertial navigation alone will result in
a large amount of drift in the short term, and in this case,
it cannot meet the needs of orchard navigation. The emer-
gence of this drift causes the accuracy of inertial navigation
systems to rapidly decline over time when external infor-
mation cannot be obtained. Therefore, it is necessary to
use SIFT-ICP plane registration to constrain the error drift.
Through this approach, the cumulative error of the system
can be effectively corrected, thereby improving the accuracy
of the overall navigation system.

Figure 12 compares the SIFT-ICP-MN calculated pose
with the popular GPS LiDAR and reference pose. The results
show that the pitch angle and roll angle errors of SIFT-ICP-
MN are smaller compared to the attitude angle errors obtained
by GPS-LiDAR plane registration. The heading angle error
is similar to GPS LiDAR, but the cumulative error of GPS
LiDAR increases over time. This is because the gyroscope
accuracy of SIFT-ICP-MN is high, its attitude accuracy is not
easily affected by plane extraction noise, and the gyroscope
output always remains uninterrupted, while plane registra-
tion may cause mismatches and interruptions. Therefore, the
method of using GPS-LiDAR attitude correction system atti-
tude error is not advisable in EKF design.

Figure 13 shows the trajectory and error comparison of
two methods in the horizontal direction. In Figure 13 (a),

FIGURE 12. Comparison results of SIF-ICP-MN, GPS-LiDAR plane
registration and attitude Angle of reference trajectory.

the trajectory performance of SIFT-ICP-MN in the horizon-
tal direction is better, and although its error increases over
time, it is faster than the rapid drift of inertial navigation
alone. SIFT-ICP-MN effectively suppresses error drift, with
a horizontal error of 0.3m at the filtering trajectory end-
point. In Figure 13 (b), even if there is significant drift in
the SIFT-ICP-MN point cloud plane registration, the filtered
error remains within a small range. This indicates that the
integrated navigation system has a certain degree of inde-
pendence in the plane registration error of laser point clouds,
and even if there are problems with plane registration, it can
maintain trajectory accuracy for a period of time.

This study conducts a series of experiments based on
a dataset in a daytime vehicle environment to verify the
effectiveness and accuracy of SIFT-ICP-MN, and the results
are showed in Figure 14. In the experiment, SIFT-ICP-MN
achieves a distance accuracy of 84.88%, indicating that it can
predict or calculate the actual distance with nearly 85% accu-
racy. Meanwhile, SIFT-ICP-MN achieves 97.63% accuracy
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FIGURE 13. Comparison of horizontal trajectories and errors of the two
methods.

FIGURE 14. Distance truth and duration truth of SIFT-ICP-MN.

in terms of duration. This indicates that SIFT-ICP-MN can
predict or calculate the actual time length with an accuracy

FIGURE 15. Changes of moving tracks of three models at different
reference speeds.

of nearly 98%. These two data validate the effectiveness and
SIFT-ICP-MN accuracy.

To highlight the superiority of SIFT-ICP-MN model, the
study chooses to compare and verify it with the exist-
ing obstacle avoidance technology for agricultural vehicles,
namely, the sampling consistency initial registration method
(SAC-A) and the combined navigation method of IMU-
LiDAR. Figure 15 shows the moving orbit of the three
models at different reference velocities. In Figure 15 (a),
the trajectories of the three models almost overlap with
the reference trajectory, demonstrating good tracking ability.
In Figure 15 (b), all models also closely follow the refer-
ence trajectory, but the trajectory of the SIFT-ICP-MNmodel
matches the reference trajectory more closely, indicating that
it exhibits more accurate performance in trajectory tracking
and yaw angle adjustment. Compared with the other two
methods (SAC-IA and IMU LiDAR combined navigation),
its advantages are particularly obvious. At different reference
speeds, the three models can track the reference trajectory
well, and the error is within the predetermined range. SIFT-
ICP-MN tracks the orbit and yaw angle well compared to
SAC-IA and IMU-LiDAR.

V. CONCLUSION
At present, the level of agricultural mechanization and intel-
ligence is constantly improving. The precise positioning and
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safety obstacle avoidance technology of agricultural vehicles
has become a key link in agricultural production. This study
proposed a multi-modal integrated navigation strategy that
integrated SIFT-ICP and MIN, and conducted simulation
experiments to analyze it. The PCR model experiment based
on SIFT-ICP demonstrated that SIFT-ICP exhibited fewer
iterations, a faster error convergence speed, and a reduced
risk of error non-convergence in comparison to traditional
ICP. The registration time of SIFT-ICP was about 60 sec-
onds, which was 8.6 times more efficient than traditional ICP
(400s∼500s). The error value of the SIFT-ICP algorithm was
generally stable within the range of −0.03m to 0.03m in the
overall situation. Even if the point cloud was sparse, SIFT-
ICP could obtain accurate rotation and translation parameters,
which is superior to the ICP algorithm. The comparison
between SIFT-ICP-MN attitude estimation and GPS-LiDAR
attitude showed that the pitch and roll angle errors of SIFT-
ICP-MN were smaller compared to the attitude angle errors
obtained by GPS-LiDAR plane registration. The heading
angle error was similar to GPS-LiDAR, but the cumulative
error of GPS-LiDAR increased over time. SIFT-ICP-MN
could effectively suppress error drift, with a horizontal error
of 0.3m at the filtering trajectory endpoint. The experimental
distance accuracy based on the vehicle mounted daytime
environment dataset was 84.88%, and the duration accu-
racy was 97.63%. SIFT-ICP-MN can effectively navigate
and avoid obstacles, which is really meaningful for modern
agricultural production. The limitation of this study is that
inertial navigation is susceptible to the influence of gravita-
tional acceleration, which poses challenges in navigation in
complex environments. Further research is needed on how to
combine other constraints to control the vertical error drift
of IMU.
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