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ABSTRACT Image denoising is a critical task in image processing aimed at removing noise artifacts.
Typically, supervised deep learning often necessitates a large number of pairs of noisy and noise-free
images for training. Noise2Noise techniques have demonstrated efficiency in noise removal without relying
on a noise-free ground truth. This is achieved through a learning process that approaches input to target
points, balancing results across all training inputs. While Noise2Noise can be adapted for single image
denoising, it still faces challenges in single image and blind noise scenarios. To address this issue, our
research introduces the concept of self-augmented noisy images for self-supervised Noise2Noise single
image denoising. The proposed method leverages the behavior of the training process, which strives to
balance the loss values appropriately for each training set. By utilizing the same noisy image for both input
and validation to learn self-identification, it produces another set of noisy images that mimic the input noisy
images. From the experimental results, measured using Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index Measure (SSIM) metrics, it is evident that the proposed self-augmented strategy enables
Noise2Noise to remove noise in single image scenarios. Additionally, it achieves performance comparable
to other unsupervised denoising methods without requiring additional augmentation manipulations.

INDEX TERMS Image denoising, single image denoising, blind noise, self-supervised, self-augmentation.

I. INTRODUCTION
Image denoising is a crucial task in image processing.
Noisy images [1], [2], arise from disruptive signals added
to the image data. These signals can originate from sources
such as cameras with inherent noise or tools that introduce
interference signals into the image. The presence of noise
diminishes the clarity of image details, impacting both color
and object structure, ultimately leading to a loss of sharpness.
Therefore, image denoising [3], [4] is a process that focuses
on reducing or eliminating these interfering signals to restore
the image to its intended quality, allowing the denoised image
to be usable.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yi Zhang .

Image denoising can be divided into two types: filtering-
based and deep learning-based. Filtering based image
denoising [5] often involves using image filtering techniques
designed to reduce noise by adjusting the pixel values of
the image according to specific formulas or methods. This
helps enhance clarity and improve the quality of the image for
display or further processing. There are numerous techniques
available to enhance images affected by visible noise,
addressing aspects such as sharpness and color correlation
across various elements of image data. Deep learning [6], [7]
is a learnable filter that can effectively outperform filtering
methods based on traditional approaches. This is because
deep learning utilizes neural networks to automatically learn
complex features from data. Deep learning models can adapt
well and effectively learn to classify both image features and
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noise feature patterns. Additionally, deep learning can capture
intricate relationships within the data, allowing it to effec-
tively differentiate between noise signals and image signals.
The learning process in deep learning facilitates automatic
feature extraction, making it more robust to different noise
scenarios without the need for manually designed filters.
As a result, deep learning-based approaches often outperform
traditional spatial filtering methods, especially in scenarios
with diverse and complex noise patterns.

The conventional approach in deep learning typically
involves utilizing numerous pairs of noisy and noise-free
images for training, known as the Noise2Clean (N2C)
strategy [6], [8]. An alternative, Noise2Noise (N2N) [9],
demonstrates that deep learning can directly identify the
clean image signal by training the network to transform
one noisy image domain into another noisy image domain.
This eliminates the need for the network to explicitly learn
clean image signals and significantly reduces the required
amount of training image data. However, it is crucial that
the training images are replicable from the same viewpoints
to ensure a sufficient representation of image features for
effective learning by the denoising network. Nevertheless,
both Noise2Clean and Noise2Noise still encounter data
insufficiency issues when learning from blind noise scenarios
and single image scenarios. Therefore, the main issue with
the Noise2Noise strategy still resembles the supervised
Noise2Clean strategy because, by the concept of training,
images used for training must have different distributions
of noise to ensure that the images retain enough image
signal features for the denoising network to recognize. This
implies that the Noise2Noise strategy still requires training
image data that can be acquired or replicated. However, the
challenge with blind noise and single image denoising is the
absence of images for validation, making it impractical to
apply Noise2Noise straightforwardly.

Deep learning typically involves utilizing a loss function
to train the network, aiming to optimize the weighting for
all training pairs. However, this method often introduces
uncertainties in the training loss, particularly in domains
affected by noise interference. Leveraging this uncertainty
within the training loss, as proposed in studies on uncertainty
loss functions [10], [11], provides an opportunity to generate
additional noisy images for augmentation. By pairing these
augmented noisy images with available noisy images, denois-
ing networks can be effectively trained using the Noise2Noise
strategy. This approach capitalizes on the behavior of learning
loss to enhance the denoising process.

This research aims to address the challenge of blind
image denoising by introducing a self-augmented noisy
image network to Noise2Noise, which still faces difficulties
in a blind noise scenario in real world application, such
as in tasks involving medical images [12] like CT, MRI
and X-rays, as well as images from remote sensing and
geographic information systems (GIS) [13]. The proposed
self-augmented noisy image network is designed to generate
a new set of noisy images from the available noisy image

set, following the same principles as the Noise2Noise
algorithm. The augmented noisy images share a similar
noise distribution with the available noisy images, but
the network cannot precisely replicate the input as the
output. This characteristic allows the generated noisy image
output to be utilized as validation data in training the
Noise2Noise network, effectively removing the noise signals.
The experimental results demonstrate that the output of the
self-augmentation network can effectively serve as validation
training for the Noise2Noise strategy.

Overall, this research has twomain objectives, which are to
present the contributions obtained from the proposed method
as follows:

• This research improves the Noise2Noise strategy,
enabling it to eliminate noise in single image or blind
noise scenarios. This is achieved by generating noisy
images that resemble the existing noisy images.

• This research utilizes and explores the potential of self-
identification and the uncertainty of the learning process
in deep learning to be utilized as an augmentation
process with noisy image data for the task of image
denoising.

The structure of the manuscript comprises the following
sections: In Section II, an overview of related work is
provided, discussing the background of image denoising
algorithms and the various noise challenges encountered in
image processing. Section III describes the theoretical aspects
of noise occurrence in images, image denoising algorithms,
and the functioning of image denoising algorithms, including
conventional filtering-based, Noise2Clean, and Noise2Noise
methodologies. Section IV introduces the proposed self-
augmented noisy image for Noise2Noise image denoising,
explaining the concept andworkflow of the algorithm. In Sec-
tion V, the setup for each algorithm used in the experiments
will be described, along with the performance metrics and
the dataset employed for testing. Sections VI and VII present
the experimental results and discuss the comparison of the
noise reduction performance between the proposed method
and other image denoising algorithms. Finally, Section VIII
summarizes the conclusions and contributions.

II. RELATE WORK
A. IMAGE DEGRADATION PROBLEM IN IMAGE
PROCESSING
Image degradation [1], [2], [3], [4] can be classified into two
types depending on the impact on the image: convolution
degradation and additive signal degradation. The convolution
degradation model involves a degradation kernel that is
convolved with the image, causing distortion or reducing the
sharpness of the image. This type of degradation arises from
various causes, including digital image processing algorithms
such as image blurring or downsampling, and environmental
conditions such as rain or fog. On the other hand, degradation
by additive signal often results from interference signals
causing abnormal pixel behavior in certain parts of the
image, commonly referred to as additive noise. This type of
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noise [1] can be categorized into various types depending on
the environmental conditions. For example, Gaussian noise
arises from environmental conditions during image capture
or circuit noise within the camera device. Impulse noise
typically occurs during data transmission and can result in
certain points in the image being affected, displaying either
the minimum or maximum value within the range of data
values. Poisson noise is closely related to Gaussian noise and
often originates from low-light conditions or the detection
of photons. Sparkle noise arises from capturing images
with light reflecting off uneven surfaces, causing changes in
characteristics or wavelength before impacting the camera.
This results in irregular noise appearing in the image.

Generally, analysis and determination of the relationships
and parameters of these degradation models enable the
design of appropriate filter kernels or masks to effectively
remove interference signals using conventional filtering
methods. However, in many situations, the identification of
the degradation model that occurs may not be clear, as noise
signals can arise frommultiple and simultaneous interference
models, making it difficult to analyze the components of the
noise. This situation is known as the blind noise problem.
Additionally, for single-image problems, insufficient image
data may pose another challenge to analysis.

B. IMAGE RESTORATION ALGORITHM
Image restoration algorithms are designed to restore images
to have sharpness and eliminate components that degrade
the quality of the image. As mentioned, image degradation
can be categorized into two types, leading to image restora-
tion algorithms being divided into two problem types as
well. These include algorithms used to remove convolution
kernel components and algorithms used to remove additive
signal components. The algorithm for deconvolution kernel
components aims to enhance and restore the details of
the image to have sharp edges and object corners, such
as image deblurring and image super-resolution [14], [15].
Furthermore, the loss of image feature sharpness can also
arise from the environment, such as in works [16], [17], [18],
[19], which address the problem of sharpness loss in images
in a hazy environment. Additionally, issues in real-world
images also lack the data necessary for effective learning.
Therefore, in some research, solutions to real-world single
image problems are also proposed, as seen in [15], [18],
and [19].
This research focuses on image denoising. Initially, con-

ventional kernel image denoising involves designing a filter
kernel according to the type and intensity of noise present
in the image. This can be categorized into two domains:
spatial domain filtering [5], [20], which directly considers
the spatial relationships to design a filter kernel that aligns
with the type of noise, and transform domain filtering [21],
[22], [23], which attempts to separate image and noise
components to minimize the impact of noise filtering on
the image signal. However, conventional filtering often

requires parameter settings like thresholds or the number
of components to separate, such as in Principal Component
Analysis (PCA) [21] or Wavelet transform [22], [23], making
it less user-friendly and prone to errors in parameter tuning.
While techniques like estimating noise levels with methods
such as the Wiener filter [24] or optimizing points for Total
Variation (TV) regularization [25], relying on a single kernel
filter for estimation and denoising may not always yield
sufficient effectiveness.

Currently, deep learning plays a significant role in image
processing, particularly in image restoration tasks. This
is because of its complex architecture, which excels in
extracting diverse features and allows the filter to adapt itself.
Consequently, deep learning filters demonstrate higher accu-
racy and efficiency compared to conventional filters, without
the need for parameter tuning to reduce estimation errors.
By learning from datasets specific to the problem domain,
various deep learning architectures have been developed.
Examples include ResNet [26], which incorporates residual
units to prevent overfitting in deep layers, and U-Net [27],
which prevents feature loss in an autoencoder-like structure.
Both ResNet and U-net are widely applied in image restora-
tion tasks due to their effectiveness learned from datasets.
Additionally, the Vision Transformer (ViT) [28] is a structure
that emphasizes exploring relationships within sub-windows
in its own structure to understand the interconnections of
objects in the image. ResNet, U-net, and ViT have all seen
widespread development and application in image restoration
tasks, employing various techniques to enhance the efficiency
of self-attention in the learning process. However, ResNet and
U-net often utilize limited datasets, whereas ViT requires a
larger dataset to enable the structure to recognize appropriate
features effectively.

Noise2Noise (N2N) [9] stands out as an unsupervised
learning technique that revolutionizes image denoising,
eliminating the need for noise-free ground truth data during
training. N2N learn to remove noise from 2 datasets
comprising noisy images: one for input and the other for vali-
dation. Unlike traditional Noise2Clean (N2C) approaches [6],
[8] that aim to converge to a single correct answer
through loss function and optimization behavior, N2N
introduces a distribution of random noise between input
and output. This induces a learning behavior that aver-
ages results between the input and output, impacting the
trained weights. Consequently, applying these weights to
denoise images yields satisfactory results. However, the
N2N technique necessitates two sets of noisy images for
training, posing challenges in situations that obtaining both
a noise-free version and another noisy version may be
impractical.

In the realm of unsupervised and self-supervised learning
for image denoising, there are two subcategories depending
on the nature of image data manipulation. The Recorrupted-
to-Recorrupted (R2R) [29] and self-validation Noise2Noise
(SV-N2N)methods [30] attempt to generate a new set of noisy
images from available noisy images. R2R, as an algorithm of
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this type, generates two image sets by adding and subtracting
random noise into the available image set. This process is
utilized for training the denoising network. On the other hand,
SV-N2N employs a method of adding small-sized noise to
manipulate available noisy images, creating a new set of noisy
images for training. The goal is to eliminate noise signals
in a manner similar to N2N. The second method involves
manipulating the network structure through training. This
is done by using a set of available noisy images for both
input and validation targets. During training, features that
occur within the network structure are perturbed instead. For
instance, Noise2Void (N2V) [31] and Noise2Self (N2S) [32]
utilize blind-spot kernels to obscure the perception of pixels
in a certain portion of the image. This prompts the training
network to estimate the missing pixel values, resulting in
a reduction of noise levels. Similarly, Self2Self (S2S) [33]
closes the perceptual awareness of network pixels during
training, employing the dropout technique as a blind spot
that can be adjusted. However, both blind-spot and dropout
techniques may lead to the loss of image features during
perception.

This research introduces a self-augmented noisy image
network for self-supervised training the blind noise and single
image N2N image denoising framework. The self-augmented
network aims to create a noisy image dataset that closely
resembles available noisy images for use as self-validation
training in the N2N image denoising strategy. This research
aims to address the challenges of blind noise and single image
denoising using the N2N strategy as a foundation, without
the need for many clean or noisy images for training the
denoising network. In addition, this research also considers
the analysis of the self-augmented network, which is trained
using only mean square error loss. It further explores the
introduction of using the variance difference between input
and output images to enhance the appropriateness of the loss
function for self-augmentation learning.

III. THEORY
A. IMAGE DENOISING WITH SPATIAL FILTERING
APPROACH
Noise in images is often considered an additional component
according to the degradation model [1] by (1).

x ′
i = hi ∗ xi + ni. (1)

where x ′
i is the noisy image that arises from the clean image

signal xi, which is disturbed by the noise ni, and by hi, which
is the degradation kernel.

Filtering methods typically rely on the characteristics of
a filter that depend on the type of noise present. There are
various techniques that can be employed for noise removal,
such as addressing the spatial domain’s additional noise
component throughwavelet transform [22], [23] or PCA [21].
Frequency domain analysis, like FFT-based approaches [34],
is also utilized. In addition, there are learning-based algo-
rithms like Total Variation (TV) denoising [25], which adjusts
the parameter values of filter kernels to suit the specific type

FIGURE 1. Comparison of the basic structures of ResNet, U-Net, and ViT
for image denoising.

of noise that needs to be removed. However, conventional
filters primarily focus on finding optimal parameters that
match the noise signal, requiring prior knowledge of the type
and level of noise for selecting the most suitable parameters.

Block-mathcing 3D (BM3D) filtering [20] is a denoising
algorithm based on the concept of grouping sub-images with
similar structures before applying noise removal, where the
Wiener filter [24] is employed. This approach leverages
the inherent nature of images, which often contain sub-
components with structures resembling flat regions, edges,
and corners, allowing effective grouping and analysis of
noise characteristics. By analyzing these sub-images, filter
parameters suitable for the specific noise type can be
designed. For instance, in the case of Gaussian noise with a
mean value of zero, grouping these sub-images and averaging
them can be employed to derive an effective noise removal.

Nevertheless, conventional filters involve adjusting param-
eter values to design filter kernels for noise removal. The
obtained results often rely on recognizing the type and
level of noise interference. The noise in images may arise
from various types and levels of interference, presenting a
challenge in blind noise scenarios where filtering kernels may
struggle to efficiently address the issue.

B. IMAGE DENOISING WITH DEEP LEARNING APPROACH
This research utilizes three deep learning models for self-
augmentation to assess their performance: ResNet [26], U-
Net [27], and ViT [28] shown in Fig 1. These models
are chosen because each structure has characteristics that
uniquely impact image restoration tasks. ResNet is a CNN-
like structure that preserves feature counts in each layer but
adds skip-connected layers to bring features from previous
layers to prevent data loss, making it suitable for tasks such
as feature restoration in images. U-Net is an autoencoder-like
structure that attempts to extract features from images using
max pooling and convolution for upsampling to maintain the
output size. It also incorporates skip-connected layers to reuse
features from previous layers, similar to ResNet. Although
U-Net is initially designed for image segmentation tasks, its
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FIGURE 2. The competitive learning structure of GANs for image
denoising.

feature reduction structure also makes it suitable for image
denoising tasks. Vision Transformer is a structure designed to
manage relationships between image patches independently,
adding a mechanic beyond learning with input and validation
datasets alone. ViT networks can link relationships between
image patches using Key (K) and Query (Q) matching
with Value (V) during learning, which is suitable for tasks
requiring sequential relationships in images, such as image
segmentation and classification. For image restoration, ViT
can learn the relationships of noise occurring throughout the
image patches.

Generative adversarial networks (GANs) in Fig 2 are
a type of deep learning architecture that can be used
in tasks such as image restoration [14], [35] and image
augmentation [36], [37]. The structure of GANs consists
of two competitive networks: the generator network and
the discriminator network. In image restoration tasks, the
generator network attempts to generate a restored image and
sends it to the discriminator network for validation against
a clean image validation set. During training, the generator
strives to create restored images to make the discriminator
distinguish between the generated images and the validation
set. However, the drawback of GANs is that they easily suffer
from overfitting during training due to the competitive nature
of their architecture, potentially leading to the generation of
artifacts [14].

C. IMAGE DENOISING WITH CONVENTIONAL
NOISE2CLEAN LEARNING APPROACH
Deep learning serves as a powerful technique for deep
feature extraction, enabling the learning of filter parameter
adjustments within its structure through a weight-adjusting
mechanism during supervised learning using dataset. The
process of learning noise removal through deep learning is
referred to as supervised Noise2Clean (N2C). The learning
mechanism of deep learning attempts to understand the
transition from a noisy input domain to a noise-free target
domain, which is defined by a validation set. In the field
of image denoising, this can be likened to the endeavor of
aligning the noise distribution of noisy pixels to match the
target clean pixels, as illustrated in Fig 3.
While deep learning is a highly effective technique

compared to filtering-based approaches, it still heavily relies
on a substantial amount of data for learning. The issue of

FIGURE 3. Conventional training in Noise2Clean (N2C) involves learning
to remove noise by utilizing clean validation training.

FIGURE 4. Using the Noise2Noise (N2N) training framework involves
utilizing noisy images as input and another noisy domain for validation
training.

blind noise becomes problematic when the image dataset
used for learning is insufficient, impacting the efficiency of
noise removal.

D. IMAGE DENOISING WITH NOISE2NOISE LEARNING
APPROACH
Noise2Noise (N2N) is an image denoising learning approach
that utilizes pairs of independently generated noisy images
to remove noise from images. This method leverages the
converging efforts of the loss function during training [9],
[38]. In this case, training with independently generated
random noise data prompts the network to adjust the gradient
of the loss function [39] to fit each set of these random noise
data. However, because the validation of noisy image training
involves another set of random noise, the network cannot
converge to the validation target for every validation set. As a
result, the network exhibits behavior analogous to averaging
all gradients, causing the randomly distributed noise to appear
as an average by equation (2). Considering noise as a zero-
mean Gaussian distribution, allowing the network’s output to
reveal clean image features hidden within the noisy mask.

x̃ ∼ E{x ′
i} =

∑N
i=1 x

′
i

N
. (2)

where x̃ is the denoising result of the expected observation
E{x ′

i}, which can be estimated from the average value of the
noisy image set x ′

i , in the case where the noise is random
Gaussian distribution.

The N2N averages results through the L1 or L2 loss func-
tion, making it challenging for deep learning optimization
to precisely converge toward the noise distribution of the
entire validation set. Consequently, it achieves a balance by
adjusting the loss values appropriately for all validation noisy
images.

Based on the N2N technique, various methods have been
developed to address issues with noisy images that present
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blind noise problems. These approaches involve manipulat-
ing image datasets for both single image datasets, allowing
the network to learn without the need for image pairs. This
can be categorized into two groups: self-supervised by data
manipulation and by convolutional network manipulation.

For the self-supervised by data manipulation approach,
the R2R framework [29] introduces a method involving the
addition and subtraction of random noise in training images
to create image pairs for learning. This allows the network to
average the noise values by

x ′

(i,1) = xi + n(i,1). (3)

x ′

(i,2) = xi + n(i,2). (4)

On the other hand, the SV-N2N framework [30] adds
additive noise to an available noisy image to create a noisy
image pair for an existing single noisy image by

x ′

(i,2) = x ′

(i,1) + n(i,2). (5)

In terms of network structural manipulation [31], [32],
[33], it involves attempting to modify the learning network
through various methods. In the S2S [33], this is achieved by
learning from a single image using dropout in hidden layer of
network structure while training with the same noisy image
as input and validation. The N2V [31] employs blind spot
kernels, and the N2S [32] utilizes random sampling of pixels
in the image for calculating loss.

However, data manipulation-based methods still need to
estimate values for image manipulation. This is essential
for creating a validation set. The use of excessively high
noise levels may result in suboptimal noise removal out-
comes. Additionally, network structure manipulation-based
approaches, including the use of dropout and random blind
spots, as well as randomly selected samples, may lead to data
loss in each training round, introducing uncertainty in the
training loss.

IV. THE PROPOSED: SELF-AUGMENTED NETWORK FOR
NOISE2NOISE IMAGE DENOISING
The concept of noisy image augmentation in this research
uses the same idea and principle as the N2N strategy [9].
In practice, the loss function in the deep learning system,
where the diversity of features in the data is high, makes it
impossible for the loss value to completely converge to all
training set. Therefore, the learning process not only aims
to minimize this loss value but also involves appropriately
balancing it for all the data used in learning. Due to this nature
of learning in deep learning, even if the same dataset is fed as
both input and validation for self-identification learning, the
deep learning process cannot perfectly mimic and generate
output images identical to the input. However, this behavior
of deep learning can be leveraged to simulate new datasets for
noisy image augmentation to eliminate noise using the N2N
technique.

Therefore, this research experiment involved using a single
noisy image set, where the deep learning network attempted

FIGURE 5. Self-augmented network and using the generated noisy image
output as noisy image validation for Noise2Noise denoising network.

to self-simulate following the principles of learning through
the loss function. However, as per the fundamentals of
learning, it is challenging to make every data point in
the learning process precisely converge to the validation
training set. Therefore, the learning process of self-simulation
resulted in an output that closely resembled the input,
as guided by the loss function.

The overall methodology of this research, as shown in
Fig 5, involves two sub-networks:

• Self-augmented noisy image network: This network
is tasked with self-augmentation and the generation of
noisy images. It takes the original noisy image x ′

(i,1) set
as input and is trained using the same original noisy
image x ′

(i,1) set for validation, producing a set of noisy
images x ′

(i,2) as the output.
• Noise2Noise denoising network: In the second step,
the generated images (x ′

(i,2)) from the self-augmented
network are paired with the original noisy images
(x ′

(i,1)) to create a training pair dataset (x
′

(i,1), x
′

(i,2)). This
dataset is then used to train the Noise2Noise Removing
Network, which focuses on effectively removing noise
and enhancing overall image quality.

The self-supervised algorithms [29], [30], [31], [32], [33]
demonstrate that networks can capture the distribution pattern
of noise from a given training dataset. In this research,
experiments were conducted to have the network self-
simulate, recognizing that the learning process of the network
may not be perfect due to the manifold of features in the
dataset. This imperfection arises from the network attempting
to mimic only the image features and noise distribution it
encounters during learning.While conventional deep learning
can already be learned to transform noise from one domain
to another through mean squared error (MSE) loss functions,
this study reveals that relying solely on MSE may lead to
overfitting in the self-augmented network.

To address this, the research proposes incorporating the
difference in variance between the input and output images
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TABLE 1. The comparison of learning characteristics between the proposed algorithm and other image denoising algorithms.

as an additional parameter in the loss function during the
training of the self-augmented network. This is achieved by
utilizing the variance in a normalized parameter format.

Lnorm(x ′

(i,1), x
′

(i,2)) =
LMSE(x ′

(i,1), x
′

(i,2))

var(x ′

(i,1), x
′

(i,2))
. (6)

where Lnorm(x ′

(i,1), x
′

(i,2)) represents the normalized loss and
LMSE(x ′

(i,1), x
′

(i,2)) represents the MSE. var(x ′

(i,1), x
′

(i,2)) is
the normalization factor due to the large size of the MSE
and variance values; it has an impact on the parameter
optimization calculations in the early stages of training.
Normally, using LMSE alone allows the network to learn
to generate noisy images. However, learning solely through
MSE still affects the use of the generated images in this
step for denoising with the N2N technique. This issue
will be demonstrated and discussed in the experiment
section.

Table 1 compares the characteristics and learning
approaches of the algorithms reviewed earlier in image
denoising. Our proposed method emphasizes the utilization
of single noisy images and operates effectively in blind
noise scenarios. By focusing on single image denoising
and blind noise reduction, our method enables N2N to
learn from generated noisy images instead. This strategy
eliminates the need for a large dataset or complex learning
models, focusing on the effectiveness of single noisy images
in blind noise scenarios. By optimizing parameters and
leveraging generated noisy images, our approach streamlines
the denoising process while maintaining high performance
and computational efficiency in practical applications.

V. EXPERIMENT SETUP AND IMPLEMENTATION DETAIL
In this experiment, the capabilities of various algorithmswere
tested using the BSD300 [40] and Set14 [41] datasets for
standard validation. Gaussian noise with standard deviations
of 25 and 50 was added to the images, and the SIDD [42]
and NIND [43] real-world noisy images were used as

the blind noisy image dataset. All datasets were used in
their original aspect ratios but were cropped to a size of
128× 128 pixels. The peak signal-to-noise ratio (PSNR) and
Structural Similarity Index (SSIM) were used to compare the
performance of each image denoising algorithm.

For this experiment, the aim is to compare the proposed
method of self-augmented Noise2Noise, utilizing ResNet,
U-Net, ViT, and GANs as learning structures. The ResNet
used in this experiment is a 16-layer model, while the U-
Net model consists of an 8-layer encoder and an 8-layer
decoder. ViT is configured to divide the image into 8 × 8
patches for patch embedding. GANs were employed for
noisy image augmentation, with the U-Net structure serving
as the generator and a discriminator utilizing a CNN with
8 convolutional layers to evaluate the generated results from
the generator. The 9th layer of VGG was utilized for feature
extraction. During training, a noisy image set is fed as
validation input through the VGG feature extractor before
being passed to the discriminator, and it serves as the noisy
image input for the generator to enable it to produce a new
set of noisy images. In all convolutional layers of the usage
network, the convolution was configured with a 3 × 3 kernel
size and strides of 1, utilizing the ReLU activation function.
During training, all models utilized a default learning rate of
0.001 with the Adam optimizer from the Keras platform and
theMSE loss function. GANs utilizedMSE and binary cross-
entropy as the content loss and adversarial loss, respectively.
Training was set for 100 epochs, with each epoch consisting
of 100 steps.

In this experiment, an additional technique has been
introduced by utilizing the generated noisy image output from
the self-augmented network. Instead of using the available
noisy input as the input to the Noise2Noise network and the
generated noisy image as the validation set, as explained in
the theory section, this research has swapped the input and
validation sets. This creates [x ′

(i,1), x
′

(i,2)] as the input and
[x ′

(i,2), x
′

(i,1)] as the validation set. This serves as an additional
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FIGURE 6. The experimental results comparing the usage of only MSE and MSE with normalized variance loss
function over training epochs.

augmentation strategy during the training of the Noise2Noise
network.

In comparing performance with other algorithms, this
experiment employs BM3D for conventional filter denoising
and DnCNN for the supervised learning algorithm, which
utilizes noisy and clean image training pairs. The primary
focus is to compare performance with unsupervised learning
image denoising algorithms, such as N2N, which generates
noisy image pairs for training. S2S is implemented with a
dropout rate of 0.2 in the learning structure during training.
N2S sets random sampling to calculate the loss value at
20% of the training image size. SV-N2N introduces additive
noise with a Gaussian noise parameter of σ = 5 to generate
noisy image pairs in this experiment. For all unsupervised
algorithms, a U-net structure is implemented, and training
parameters are set similarly to the proposed self-augmented
method.

VI. EXPERIMENT AND RESULT
In a system with high noise level interference, there may
be a significant loss of important image features, leading to
the possibility of overfitting in the proposed self-supervised
learning method. Therefore, this research compares the
learning outcomes of deep learning using only MSE loss
with the combination of MSE and variance-based loss.
This is because MSE alone may lead the network to
perceive only average pixel-wise values during training,
potentially overlooking the distribution of noise in the input.
Consequently, this may result in a high pixel error when
applying noise-augmented noise removal, as presented in the
proposed method.

In Fig 6, (A) shows the result of using generated
images from MSE learning for noise removal with the N2N
framework. (B) shows the outcome of variance normalization
with MSE learning applied to the noise removal process
using the N2N framework. (C) shows the results of training
over epochs, indicating that the loss measured by PSNR

during training with and without variance normalization
yields similar results, even though (B) addresses pixel errors
more effectively.

The experimental comparison reveals that pixel errors
are more prominent in flat regions, where the network
often struggles to predict image features accurately. Despite
achieving better PSNR in the validation set with just MSE
loss during training, when applying the generated noisy
images to the N2N denoising process, some residual noise
remains. This suggests that relying solely on MSE loss
may lead to more overfitting in the learning of the self-
generated noisy image network compared to using MSE
with variance normalization as a loss function. Normally,
the learning of noise augmentation by the deep learning
network can capture the noise distribution in the image
through MSE loss. However, this experiment reveals that
in training with 3-channel images, using MSE loss alone
results in the generated noisy images, when used in the N2N
network for denoising, retaining components of the noise.
This is because the network learns only to approximate the
average noise value of 3-channel images to be close to the
input x ′

i .
Additionally, Fig 7 shows the comparison of generated

noisy images using various deep learning architectures. It can
be observed that ViT can simulate noisy images closely
resembling the initial noisy image, while ResNet and GANs
exhibit abnormal pixel errors. This demonstrates that deep
learning architectures are another factor influencing the
generation of noisy images.

Table 2 and Fig 8 present the experimental results of noise
elimination using generated Gaussian noise with σ = 25
and 50. The experiments illustrate that self-augmentation,
employed to generate a noisy image dataset for Noise2Noise
training, effectively reduces noise. Despite persisting pixel
errors, these issues contribute to an overall enhancement
in image denoising performance for the proposed method,
as demonstrated in Table 2. Remarkably, the approach
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FIGURE 7. Example of noisy image augmentation results from each network model for
Gaussian noise with a standard deviation of 50.

TABLE 2. Compare the PSNR (dB) and SSIM results between the proposed self-augmented noisy image for image denoising and other image denoising
algorithms for the BSD300 dataset.

FIGURE 8. An example of image denoising of each algorithm for Gaussian noise with standard deviation (σ ) of 25 in the BSD300 dataset.

achieves notable efficacy without the necessity of learning
from a noise-free dataset.

Table 3 and Fig 9 provide a comparative analysis between
self-augmentation and other algorithms for real-world image
datasets. It is observed that the proposed method exhibits
effective noise reduction, albeit less optimal than some
alternative algorithms. As depicted in Fig 9, residual noise
is still present in the images, suggesting potential limitations
in generating noisy image datasets, particularly in scenarios

with low noise levels when compared to the experiments in
Table 2. This experiment highlights the problem of removing
noise in images with low-level noise interference using the
proposed method.

VII. DISCUSSION
From the experiment comparing the use of MSE with and
without variance normalization in the U-net model, it is
evident that normalization helps to align the distribution of
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TABLE 3. Compare the PSNR (dB) and SSIM results between the proposed self-augmented noisy image for image denoising and other image denoising
algorithms for real-world NIND and SIDD datasets.

FIGURE 9. An example of image denoising of each algorithm for the NIND real-world noisy image.

generated noise pixels in the output image for each channel
in the RGB color image system. This is because during deep
learning training, the appropriate value of each pixel may
not be considered, and the training process aims only to
reduce the overall loss value across the dataset. Consequently,
the generated noisy image output may assign excessive
importance to certain channels, leading to the inability of
Noise2Noise model to eliminate generated noise pixels in
those channels when used for training. This inconsistency
sometimes results in uncertain outcomes. Through this
experiment, it is observed that variance normalization can
help reduce the problem of noise pixel errors, but errors still
occur occasionally, especially when the noise level is high,
as shown in Fig 10.

For the comparison of the results of self-augmented
learning using various deep learning structures, it is found
that the skip-connected structure of ResNet tends to generate
outputs with more pixel errors compared to other models.
This might be due to feeding data from skip-connected layers
leading to overfitting during learning noise augmentation.
Conversely, the U-net model, being an autoencoder structure
with the feature collapsing property in hidden layers, reduces
noise features, resulting in fewer errors in the generated
noisy image. However, since previous features are fed back
through skip-connected layers, which undergo element-wise
addition, it may lead to pixel errors during learning. As for
the ViT model, which divides image patches and finds
relationships between patches, it generates noisy images

FIGURE 10. The error in denoising Gaussian noise with σ=50 using
self-augmented ResNet arises from abnormalities in the generated noisy
image.

closest to the initial noisy image input. This is because
self-identity learning enables ViT to utilize self-attention
mechanisms to measure the relationship of noise pixels
between patches, thus simulating output images with good
alignment of noise pixels in each channel. In the case of
GANs, where the generator competes with the discriminator,
the discriminator often utilizes a feature extraction network to
reduce input data size. This renders the generator unnecessary
to simulate generated images similar to the initial noisy image
to defeat the discriminator. Thismight cause the loss function,
which is tied to the discriminator’s outcomes, to halt the
learning process of the generator, affecting the generated
noisy image output.
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In this experiment, the performance of the self-augmented
strategy was compared to that of other image denoising
algorithms. The findings reveal that the self-augmented
method effectively generates noisy images for training the
Noise2Noise framework, particularly in denoising Gaussian
noise with a standard deviation of σ = 25 for U-net
and ViT models. However, the ResNet and GANs models
exhibited poorer noise removal results compared to other
algorithms. When tested with Gaussian noise of σ = 50,
the U-net model showed significantly degraded performance,
suggesting potential overfitting issues possibly arising from
the utilization of skip-connected layers. Additionally, when
comparing the experimental results with other unsuper-
vised image denoising methods, self-augmented using ViT
models yielded slightly inferior results compared to other
algorithms.

Considering the experimental results using real-world
noisy images from the NIND and SIDD datasets, it was
observed that the overall performance of the self-augmented
strategy yielded inferior results compared to other unsuper-
vised image denoising methods in terms of both PSNR and
SSIM metrics in the NIND dataset. However, for the SIDD
dataset, the results were relatively similar. This is likely
because the self-augmented strategy in this experiment is
based on the concept of zero-mean Gaussian noise, whereas
real-world noisy images may not solely consist of Gaussian
noise. As a result, the Noise2Noise denoising with generated
noisy images may not effectively remove noise with different
distributions, leading to residual noise in the denoised output.

VIII. CONCLUSION
This research focuses on developing the Noise2Noise algo-
rithm to remove noise in single-image and blind noise sce-
narios by generating noisy images from limited noisy image
datasets. In generating noisy images, the research introduces
imperfections in the deep learning training process, which
aims to optimize the training loss only for each training data,
resulting in the output of the training process not perfectly
mimicking the input. By using noisy images for training and
validation, which constitutes self-identification learning, the
deep learning model learns to generate new noisy images,
which can then be used in subsequent Noise2Noise denoising
processes. This research extends the use of self-augmentation
image augmentation to single-image and blind denoising
tasks. Experimental results show that self-augmentation in
this research can remove noise in images similar to other
unsupervised image denoising algorithms at low noise levels.
However, there is significant degradation in noise removal
performance at higher noise levels due to the proposed
self-augmented noisy image network lacking understand-
ing of the image features solely from perceiving noisy
images. Furthermore, experimental results on real-world
noisy image datasets show that the self-augmented strategy
cannot effectively remove noise. This research demonstrates
that image feature perception significantly impacts image
restoration performance. Additionally, accurately estimating

noise values and components in real-world noisy images is
crucial for denoising algorithms to preserve important image
features and minimize pixel errors, as demonstrated in the
presented self-augmented approach.
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