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ABSTRACT The Volt/Var optimization (VVO) enables advanced control strategy development for voltage
regulation. With the recent advancement of data-driven approaches and communication infrastructure,
realtime decision-making through VVO can effectively address distributed energy resources (DERs) uncer-
tainties without relying on models and topologies of distribution networks. In this paper, a comprehensive
review on data-driven VVO in distribution networks is presented, focusing on statistics and machine
learning (supervised/unsupervised, ensemble, and reinforcement learning (RL)). State-of-the-art monitor-
ing devices essential in data-driven VVO frameworks are firstly discussed. How data-driven structures
serve as primary or supplementary tools in VVO frameworks is then detailed. Since RL is increasingly
used, RL-based algorithms (value-based, policy-based, actor-critic-based, and graph-based algorithms) are
reviewed. Decision-making processes for RL-based VVO frameworks, such as the Markov decision process
(MDP), Markov game, constrained Markov decision process, constrained Marko game, and adversarial
Markov decision process, are also surveyed. Future research directions in this area are recommended in
the paper.

INDEX TERMS Data-driven decision-making, distribution networks, supervised, unsupervised, ensemble
learning, reinforcement learning, renewable energy resources, Volt/Var optimization.

I. INTRODUCTION
Distributed energy resources (DERs) include renewable
energy sources (RESs) (solar, wind, and hydropower, etc.),
small-scale fossil fuel-based generation technologies, energy
storage systems (ESSs), demand response (DR) programs,
and electric vehicles (EVs). Their increasing penetration in
modern distribution networks (MDNs) creates new control
and operational challenges [1]. According to theworld energy
transition roadmap from the international renewable energy
agency (IRENA), the proportion of RESs is projected to
increase from 14% in 2019 to 40% by 2030 [2]. Distribution
networks with high penetration of RESs may experience volt-
age instability issues due to power fluctuations of RESs [3].

The associate editor coordinating the review of this manuscript and
approving it for publication was Rajesh Kumar.

Voltage variations may significantly affect the system’s
power quality and reliability, voltage-dependent loads perfor-
mance, and cause excessive operations of voltage regulation
devices. Volt/Var optimization (VVO) is a vital tool to opti-
mize voltage-regulating device operations, reduce voltage
deviations, and power losses.

Control architectures for VVO can be broadly classified
into model-based [4], [5], [6], [7], [8], [9] and data-driven
approaches. Effective model-based approaches rely heavily
on accurate knowledge of the grid topologies and parame-
ters [10], which are hard to obtain for real-time operations,
as the system topology can be highly variable and complex
due to bidirectional power flow among multiple DERs. Thus,
the model-based approaches are computationally demanding
to obtain accurate predetermined mathematical solutions for
the current state of an MDN.
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To address these challenges, data-driven approaches are
developed to handle complexities and uncertainties of
MDNs [11]. The data-driven model is independent of the
model of distribution networks and overcomes issues asso-
ciated with model-based approaches [12], [13]. Although
data-driven approaches have been applied in various domains
of power systems [14], [15], [16], the data-driven VVO
research in MDNs is largely lacking.

Regarding VVO in modern power distribution systems,
Ref. [4] focuses on centralized and decentralized control
strategies, and examines both traditional devices, such as
on-load tap changers and capacitors, as well as newer dis-
tributed generation technologies. Ref. [17] introduces deep
reinforcement learning to VVO, which can adapt to dynam-
ics of power systems without the detailed network models.
Ref. [18] discusses the integration of large-scale wind farms,
and highlights challenges and adaptive strategies necessary
for voltage stability and power quality. Ref. [19] surveys clas-
sical and heuristic optimization methods in VVO, and offers a
critical comparison of their effectiveness across various con-
figurations. Ref. [20] reviews general VVO techniques, and
uses machine learning to enhance real-time decisionmaking.
This paper aims to address limitations in existing reviews in
the literature, where traditional model-based strategies are
main focus, and how machine learning is integrated with
VVO frameworks to enhance grid resilience and efficiency
has not been fully explored.

To fill in this research gap, a comprehensive review on
data-driven VVO in distribution networks is conducted in this
paper. The main contributions of this review include:

• Provide deeper insights into VVO implementations with
cutting-edge monitoring and measurement systems, and
compare VVO with Volt/Var control (VVC) in MDNs.

• Review data-driven approaches as primary or supple-
mentary tools for VVO, including statistics and machine
learning.

• Summarize key aspects of various reinforcement learn-
ing (RL)-based VVO algorithms (value-based, policy-
based, actor-critic-based, and graph-based algorithms).

• Review decision-making processes for RL-based VVO
frameworks (the Markov decision process (MDP),
Markov game (MG), constrained Markov decision pro-
cess (CMDP), constrained Markov game (CMG), and
adversarial Markov decision process (AMDP)).

The paper is organized as follows: In Section II, meth-
ods and material to conduct this review is introduced; in
Section III, VVO is introduced with advanced monitoring
and control systems; in Section IV, different model-free
decision-making VVO frameworks are introduced, includ-
ing statistics, and machine learning methods; in Section V,
RLbased decision-making frameworks for VVO are intro-
duced; RL algorithms are summarized in Section VI; in
Section VII, RL-based VVO frameworks in MDNs are
reviewed; Section VIII recommends future research direc-
tions in this area; Section IX concludes the paper. To ensure
a thorough understanding, discussions on RL-based decision

frameworks, algorithms, and their applications are arranged
into Sections V, VI and VII, respectively. Each section is ded-
icated to exploring its specific aspect, foundational theories,
detailed algorithmic approaches, and practical applications,
thereby providing a clear, step-by-step progression from the-
oretical concepts to real-world implementations.

II. METHODS AND MATERIALS
This review systematically analyzes the current body of
knowledge on data-driven VVO strategies in MDNs. We aim
to ensure a comprehensive coverage and rigorous analysis of
the literature to identify research gaps, current technologies,
and future research directions in this evolving field.

A. RESEARCH QUESTIONS
The research questions guiding this review are:

1) What are the current data-driven approaches utilized in
VVO for MDNs?

2) How can these data-driven approaches improve the sys-
tem performance compared to traditional modelbased
strategies?

3) What are challenges and limitations of existing
datadriven VVO strategies?

4) What are the future research directions?

B. SEARCH STRATEGY
A systematic literature search was conducted across sev-
eral databases, including IEEE Xplore, ScienceDirect, and
Scopus. Keywords used in the search included ‘‘datadriven
VVO,’’ ‘‘Volt/Var optimization,’’ ‘‘modern distribution
networks,’’ ‘‘machine learning in power systems,’’ and
‘‘reinforcement learning in VVO’’. These keywords were
combined using Boolean operators to ensure a broad retrieval
of relevant studies.

C. SCREENING AND SELECTION CRITERIA
Papers published in peer-reviewed journals and confer-
ence proceedings, and studies that specifically discussed
datadriven approaches used in VVO are included.

D. DATA EXTRACTION AND SYNTHESIS
Selected papers were subjected to a data extraction pro-
cess, where key information was categorized based on the
datadriven approach employed, specific applications within
VVO, benefits and limitations observed, and the geographical
focus of the study. A thematic analysis was then conducted
to synthesize findings across the selected studies, identifying
common themes, trends, and discrepancies in the data-driven
VVO literature.

III. VOLT/VAR OPTIMIZATION IN MDNS
In this section, VVC and VVO concepts, advanced con-
trol technologies, new monitoring and measurement systems,
and improved communication and control infrastructures for
VVO in MDNs are introduced.
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A. CONCEPTS OF VVC AND VVO
Although VVC and VVO are used interchangeably in the
literature, they are two different techniques for voltage and
reactive power management to maintain stability, improve
power quality, and reduce power losses in a distribution grid.
As a traditional local control approach, VVC relies on prede-
termined settings and rules for voltage control devices, while
maintaining the voltage limits of [0.95, 1.05] p.u. according
to ANSI C84.1 [21] and CAN 3-C235-83 standards [22], and
controlling the reactive power flow.

VVC can be implemented through the legacy voltage regu-
lation devices, such as on-load tap changers (OLTCs), voltage
regulators (VR), and capacitor banks (CBs):

• OLTCs via the tap ratio setting control the voltage.
The OLTC adjusts the secondary transformer voltage
betweenVOLTC

l andVOLTC
u , and lower and upper voltage

bounds of the OLTC, respectively. These bounds are
adjusted Vset ± 0.05 VDB, where VDB is the dead band
designed to reduce oscillations.

• VR can modify the feeder voltage within a±10% range.
• CBs regulate Var and voltage by injecting reactive power
as follows:

Qc = V 2
c Q

n
c (1)

where QC is reactive power injected by a capacitor bank,
VC and Qnc are the voltage across the capacitor and its rated
reactive power, respectively. For a line in MDNs defined by
the resistance Rl and the reactance Xl , the resulting voltage
can be described by

1V ≈
[RlPl + Xl (Ql − Qc]

V
(2)

Using VVC, the voltage and reactive power regulators
are controlled independently by local control systems based
on local measurements without needing a communication
infrastructure. However, VVC does not provide optimization.

To provide optimization for voltage-regulating devices,
model-based optimization strategies have been developed.
The common mathematical model for VVO is expressed by

min F =

∑n

i=1
|Vi − 1| + CePloss (3)

s.t PGi − PLi − Vi
∑n

j=1
Vj

(
Gijcosσij + Bijsinσij

)
= 0 (4)

QGi+QCi−QLi−Vi
∑n

j=1
Vj

(
Gijsinσij−Bijcosσij

)
= 0

(5)

Q
ci

≤ Qci ≤ Q̄ci (6)

where F is the objective function, n is the total number
of nodes, Vi is the voltage at node i. Ce and Ploss are the
electricity price and power losses, respectively. PGi and QGi
are active and reactive power of generator i, respectively. PLi
and QLi are active and reactive power of the load demand
at node i, respectively. QCi is reactive power compensated
by regulating devices at node i. Gij and Bij are conductance
and susceptance of line ij, respectively. σij is the phase angle

difference between head and tail nodes. Q
Ei

and Q̄Ei are
lower and upper regulation limits for reactive power compen-
sated from voltage regulating devices connected to node i,
respectively.

It should be noted that the objective functions utilized
in VVO are not limited to minimizing voltage deviations
and power losses. Additional objectives include reduction in
distribution planning expansion costs, the consumer energy
usage, and operating andmaintenance expenses. These objec-
tives have been extensively employed in prior research to
assess the efficacy and cost-efficiency of VVO strategies
[19], [23].

VVO is more flexible and adaptable than VVC due to
sophisticated communication infrastructures and data ana-
lytics, and thus, can continuously adapt to changing grid
conditions, effectively incorporate DERs, and optimize oper-
ations of voltage and reactive power regulation devices.

B. CONTROL DEVICES
Conventionally, VVO uses utility-owned or slow-response
control devices (SRCDs) to manage reactive power and
voltage levels at the end of a feeder and compensate for
load variations in distribution networks. Traditional voltage
regulation devices, such as OLTCs, VRs, and CBs, are elec-
tromechanical control devices installed on the primary feeder,
and can make informed decisions using local voltage and cur-
rent measurements at various loading levels [24]. To maintain
reliability and stability of power grids, utilityowned devices
are strategically installed on feeders that experience a high
loading level and at the point of connection with the upstream
grid. For example, OLTCs and VRs are typically located at
a substation and along a distribution line, respectively. An
OLTC enables tap changes while the transformer remains
on load, while a VR changes the tap position during a brief
interruption. Capacitor banks installed on feeders or sub-
stations are usually dispatched to regulate reactive power
at day-ahead operations to ensure that the voltage remains
within an acceptable range. However, these control devices
have limited life cycles, slow control speed, and frequent
switching due to high penetrations of DERs, and are not
suitable for real-time operations.

Recently, fast-response control devices (FRCDs), such as
static var compensators (SVCs), static synchronous compen-
sators (STATCOMs), and smart inverters (SIs), have been
progressively used for VVO in real-time operations as recom-
mended in IEEE standard 1547.8 [25]. FRCDs can operate
within milliseconds and mitigate rapid voltage fluctuations
caused by DERs, so they are more flexible and adaptable than
traditional SRCDs [26]. FRCDs can also be easily integrated
into an existing system and reprogrammed as needed under
changing operating conditions. They can be placed at substa-
tions or distribution feeders to maintain the voltage profile
and stabilize the grid. To efficiently manage DERs output
and enhance power quality, SIs can be strategically placed
at the interconnection point between DERs and a distribution
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network with reactive power support while reducing power
losses and voltage fluctuations [24]. Table 1 provides a com-
parison of SRCDs and FRCDs.

TABLE 1. Comparison of slow and fast response control devices in VVO.

DR programs, conventional distributed generation (DG)
units, ESSs, and smart transformers (STs) are valuable
resources in MDNs. A DR program can balance the supply
and demand, allow flexible real-time adjustments to load
consumptions based on the system state (for example, solar
and wind power fluctuations), reduce the peak load, limit the
need for additional infrastructure investments, and reduce the
strain on existing grid components, and thus, it can improve
voltage regulation and load balancing by actively managing
the demand side of a grid. Conventional DGs, such as diesel
generators, micro-turbines, and combined heat and power
(CHP) systems, provide localized power generation to bal-
ance local load and maintain a stable voltage level. With
multiple points of power generation across the network, DGs
can reduce power losses and improve the grid’s resilience.
The flexibility of DGs in terms of size and technology allows
them to be deployed strategically for VVO. ESs can store
excess power during a low-demand period and discharge
it during a high-demand period. STs, including solid-state
transformers (SSTs) and hybrid distribution transformers
(HDTs), are power electronics-based devices, capable of
two-way communication and real-time diagnostics to adapt
to grid conditions swiftly. Power electronic converters in STs
provide reactive power compensation on the mediumvoltage
side, a key asset in handling intermittent RESs. Digital control
of STs is crucial for implementing VVO. All control devices
can be strategically placed, a schematic of control devices for
VVO in a MDN is shown in Fig. 1.

C. ADVANCED MONITORING AND MEASUREMENT
SYSTEMS
Cutting-edge monitoring and measurement systems ensure
improved observability of a distribution network, which VVO
strategies rely upon (Fig. 2). At low- and mediumvolt-
age levels, commonly used monitoring systems include the
supervisory control and data acquisition (SCADA), micro
phasor measurement units (µ PMUs), power quality mon-
itors (PQM), smart meters (SMs), and intelligent sensors.
They offer precise measurements, rapid communication, and
remote data storage. Using these devices, real-time data
(the voltage, current, frequency, power factor, active and

FIGURE 1. Schematic of control devices and technologies for VVO in
MDNs.

reactive power) across distribution networks can be measured
to support VVO strategies and facilitate DERs integration in
MDNs through advanced data analytics, and wired/wireless
communication infrastructures (power lines, fiber optics, the
wireless radio frequency, cellular networks, and the satellite
communication) [27], [28].

D. ADVANCED CONTROL STRATEGIES
Traditional VVC strategies comprise standalone, on-site volt-
age regulators, and rule-based control approaches, where
the controller operates based on rules and historical or
online measurement data. Although low-cost and commu-
nicationless, traditional VVC strategies lack optimality and
coordination among voltage-regulating devices [24]. For
example, VVC operates independently without considering
impacts of neighboring devices, which may lead to conflict
control actions and decreased system efficiency [29].

FIGURE 2. Advanced monitoring and measurement systems in a MDN.

In Fig. 3, model-based control strategies for VVO are cate-
gorized into centralized, distributed, and decentralized based
on communication structures [6]. Centralized control relies
on a central controller to make decisions for the entire system
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based on optimal power flow, and a fast and reliable commu-
nication system to receive measurements from devices, such
as smart meters or remote terminal units.

However, due to the massive information exchange and
computational burden, centralized control is less effective
in local conditions for real-time voltage control; the sys-
tem is vulnerable to single-point failures [26], and has
customer information privacy concerns. Distributed control
makes decisions by individual control devices based on opti-
mization of local measurement data [30], [31], which still
requires the information exchange with neighboring units.
However, each device is responsible for managing the volt-
age and reactive power, and cannot be remotely dispatched.
To reduce communication reliance and offer faster control
actions, decentralized control has emerged as a promising
technique between centralized and distributed control [32],
where the system is divided into small zones, each zone has
its own controller [33], and each controller is responsible for
managing the voltage and reactive powerwithin its zone using
local data [34]. Decentralized control requires less computa-
tion and information exchange than centralized control, and
is more reliable than distributed control in large distribution
grids [9].

FIGURE 3. Schematic of control strategies for VVO in a MDN based on
communication structures: (a) rule-based control without
communication, (b) centralized control (CC: Central coordinator),
(c) distributed control (DC: Distributed coordinator), (d) decentralized
control (ZC: Zone coordinator) [9].

E. MODEL-BASED AND DATA-DRIVEN VVO
In practical implementation, model-based VVO has increas-
ingly been adopted by utilities. These strategies utilize
dynamic modeling of MDNs using Geographic information
systems (GIS) for monitoring the connectivity of a distribu-
tion network. This allows utilities to achieve detailed network
and customer load modeling and manage the vast complexity
of the distribution grid more effectively. The well-known
method within this framework is conservation voltage reduc-
tion (CVR), which aims for a reduction of 2-4% in demand
by optimizing voltage levels across the network [23]. To solve
the VVO through the model-based approaches, mathematical
optimization algorithms are applied by utilities, which are

subject to millions of nonlinear equality and inequality con-
straints. This complexity arises from the need to accurately
model the distribution system, considering a large number of
variables and states that reflect the real-world behavior of the
grid. The constraints and variables include but are not limited
to, voltage levels, power flows, and operational limits of grid
components, such as transformers and CBs.

Broadly, model-based VVO approaches can be classi-
fied into two primary categories: classical and heuristic,
as depicted in Fig. 4. The classical category covers various
methods, including first-order gradient-based, second-order
gradient-based, quadratic programming, linear programming,
interior-point methods, and mixed-integer programming.
First-order gradient-based approaches are iterative optimiza-
tion techniques that optimize a differentiable nonlinear
function through a sequence of decision vectors, utilizing
the first-order derivatives of objective functions. Conversely,
second-order gradientbased approaches enhance the opti-
mization precision by incorporating second-order derivatives,
providing a refined approximation of objective functions.
Quadratic programming specializes in optimizing quadratic
objective functions subject to linear constraints. In VVO stud-
ies employing quadratic programming, sequential quadratic
programming techniques are often used, iteratively creat-
ing a quadratic approximation of the objective functions
alongside a linear approximation of the constraints. Lin-
ear programming-based VVO models are employed when
objective functions and constraints are linear, considering
only continuous decision variables within the VVO frame-
work. The inclusion of discrete variables, representative of
SRCDs, necessitates a shift towards mixedinteger program-
ming formulations. These formulations integrate integrality
constraints with both continuous and discrete decision vari-
ables, accommodating the comprehensive nature of VVO
tasks. On the other hand, Heuristic models are search-based
optimization techniques that primarily rely on the strategic
orientation of decision variables through specific algorithms
to expedite convergence towards optimal solutions. These
models are characterized by their ability to navigate complex
solution spaces efficiently, often reaching satisfactory solu-
tions more swiftly than conventional methods. However, it is
important to note that heuristic optimization models do not
guarantee the identification of global optimum. The inherent
nature of heuristic approaches means they seek to balance
computational efficiency with solution quality, making them
particularly suitable for large-scale or complex optimization
problems where exact methods are computationally infeasi-
ble [19], [24], [35].

Given the detailed and comprehensive nature of these
models, VVO emerges as a challenging task, particularly
considering the large number of states involved in the prac-
tical implementation of VVO strategies. These states are
essential for capturing the dynamic behavior of the grid,
including changes in load demand, generation patterns, and
the operational status of grid components. The complexity
of managing these states, combined with the computational
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FIGURE 4. The model-based VVO categories.

intensity of solving the optimization problem, underscores
the challenges utilities face in implementing effective VVO
solutions. Moreover, the model-based VVO relies on an
accurate physical model of distribution networks, and its
decisions are influenced by many parameters, such as line
reactance, line resistance, and transformer tap settings. How-
ever, accurately modeling a MDN with a large number of
nodes, lines, and buses is an extremely complex task. On the
other hand, data-driven VVO is more practical for MDNs
due to ample data available and has significantly faster com-
putational speed than model-based VVO without requiring
iterative algorithms. Also, the main advantage of recently
developed data-driven models is their capability to perform
without the requirement of advanced measurement devices.
These modern data-driven approaches, such as generative
networks, can even perform effectively with small-scale
datasets. However, the model-based approaches require pre-
cise network parameters and measurements obtained from
advanced measurement infrastructures. For adaptability, the
model-based VVO’s updates are less frequent, and typically
synchronized with significant grid modifications and recali-
bration procedures; while datadriven VVO can dynamically
respond to real-time data to realize voltage and reactive power
management in the power grid. With the recent advancement
of monitoring systems and artificial intelligence techniques,
data-driven strategies, particularly RL have gained signif-
icant attention. By solving VVO through RL algorithms,
a MDN is considered as a black box without requiring the
network’s topologies and parameters, and the agent makes
decisions based on state observations [11]. A comparison of
model-based and datadriven VVO is shown in Table 2.

TABLE 2. Comparison of model-based and data-driven VVO.

Data-driven VVO can effectively address the challenges
posed by DERs through statistical, machine learning,

reinforcement learning, and hybrid models. Statistical and
machine learning models, such as time-series forecasting
and probabilistic models, predict renewable power gen-
eration. Techniques, such as Monte Carlo simulations,
generate a range of possible scenarios. Unsupervised learn-
ing techniques can categorize these scenarios into clusters.
RLbased models dynamically adapt to variations in renew-
able power generation, continuously updating their policy
networks based on real-time data to make optimization deci-
sions in environments with high penetration of renewable
energy sources. Hybrid models combine multiple data-driven
approaches to enhance the robustness of VVO. Table 3 shows
the summary of techniques for modeling uncertainties of
renewable energy sources in VVO.

IV. DATA-DRIVEN DECISION FRAMEWORK FOR VVO
Data-driven VVO uses data-driven approaches, statistics or
machine learning, to determine optimal control actions for
voltage and reactive power regulations (Fig. 5 and Table 4).
The machine learning-based VVO can be supervised,
unsupervised, ensemble, and reinforcement learning-based.
RL-based VVO has been extensively studied, so it is our main
focus in this review.

FIGURE 5. The data-driven VVO categories.

A. STATISTICAL MODEL-BASED VVO
Unlike rule-based or pure analytical models, statistical
model-based VVO utilizes historical data and various statis-
tical techniques to model, predict, and optimize the behavior
of power grids. Statistical techniques applied in VVO include
predictive models and uncertainty quantification.

Statistical models, such as linear and nonlinear regression
and time-series models, can be used to predict voltages, loads,
and reactive power at various points in a MDN. These pre-
dictions can serve as ‘‘states’’ in an optimization problem,
which can then be manipulated by control variables, such as
transformer taps or reactive power injections, to optimize an
objective, such as minimizing power losses or maintaining
voltage levels within a desired bound. For instance, the bus
voltage can be modeled as a linear function of load and
reactive power as follows:

Vi = α0 + α1Pi + α2Qi + ϵ (7)

where Vi is the voltage at bus i,Pi and Qi are active and
reactive power at bus i, and ϵ is the error of the linear
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TABLE 3. The summary of techniques for modeling uncertainties of renewable energy sources in VVO.

regression model. The model coefficients are represented
by α0, α1, and α2. In [36], linear regression is employed to
estimate the load, which is then input into the VVO program.
Nonlinear regression can also be used in the VVO program,
the relationship between variables is inherently non-linear,
for example, we have

Vi = α0 + α1P2i + α2eQi + ϵ (8)

In [37], nonlinear regression is used to collect state vari-
ables for a distributed VVO in a MDN with multiple virtual
power plants. It is based on a well-known distribution
optimization algorithm, the alternating direction multiplier
method (ADMM). A centralized VVO using nonlinear
regression is applied to an inverter-based DG in [38], and
variables estimated via nonlinear regression are incorporated
into the VVO framework, resulting in a closed-loop VVO.

Data-driven approaches can quantify uncertainties in a
MDN through statistics approaches, and statistical models
have been widely used as a complementary module for deter-
ministic and stochastic VVO frameworks. Statistical models
could model the uncertainty based on probability density
functions. For instance, Refs. [39] and [40] use empirical
density functions and kernel density functions to model the
uncertainty in the form of probability density functions,
respectively, using historical data. Statistical models can also
be used to model the uncertainty indirectly. For example,
in [41], the uncertainty associated with random variables is
modeled in a predefined probability density function, such as
the Gaussian function. Then, the Bayesian method is used to
update the probability functions for the next time intervals.
Time-series models as a statistical model, such as autoregres-
sive integrated moving average (ARIMA) [42], can forecast
future deviations.Monte Carlo simulation can also be adapted
to be data-driven for random sampling by simulating a wide
range of scenarios in MDNs. By feeding these simulated
scenarios into a VVO algorithm, uncertainties, such as fluctu-
ating demand or variable renewable energy outputs [43], [44],
are accounted for.

Statistical model-based data-driven VVO approaches can
be implemented easily and are suitable for small-scale

MDNs, but they can be sensitive to the data quality, such as
noises and anomalies, and may struggle for real-time adapta-
tion and complex topology variations. They generally do not
learn or improve over time, which limits their effectiveness in
dynamically changing environments.

B. SUPERVISED LEARNING-BASED VVO
The supervised learning-based VVO frameworks use his-
torical data, the data collected from a distribution network,
and control settings for optimal voltage and reactive power
dispatch to train the model. Once calibrated, the model can
predict near-optimal settings for voltage and reactive power
regulations in MDNs (Fig. 6). For instance, considering the
input vector, X it =

[
V i
t ,P

i,P V
t , tapit ,Q

i,c ap
t

]
, where V i

t is

the voltage at bus i, Pi,P V
t is active power generated by

photovoltaics (PVs), tapit is the tap changer status, and Q
i,cap
t

is reactive power generated by the capacitor at bus i. The
training target is represented by Y it =

[
Qi,P V
t

]
. The output

of the supervised approach is Ỹ it =

[
Q̃i,P V
t

]
, where Q̃i,P V

t is
an approximation to the optimal reactive power dispatch.

FIGURE 6. The supervised learning-based VVO.

Previous studies on supervised learning-based VVO
have used the artificial neural network (ANN), sup-
port vector machine (SVM), decision tree, and k-nearest
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neighbor (kNN). The switching status of a capacitor bank
is determined by ANN in [45]. In [46], ANN controls the
voltage magnitude at the point of common coupling (PCC)
of PV-connected inverters. Although ANN provides rapid
computations, complex relationships between voltage and
reactive power in the grid may not be fully captured. SVMs,
known for their efficient data use, have been used in [47]
for the VVO in distribution networks to coordinate capacitor
banks and OLTC settings optimally. In [48], SVM estimates
bus voltages and the total power loss. However, SVMmay be
slow for large datasets, making real-time tasks challenging;
SVMalso depends on parameter settings, such as kernel func-
tions and regulation parameters. In [49], VVO is formulated
as a mixed integer programming (MIP) problem using deci-
sion trees. The kNN-based VVO in [50] employs supervised
learning to estimate optimal voltage and reactive power for
MDNs. By averaging historical voltage and reactive power,
optimal settings for a MDN can be forecasted.

These traditional machine learning-based VVOs are com-
putationally efficient, but they may struggle with complex
patterns in MDNs. On the other hand, deep learning-based
VVO is good at understanding complex patterns by learning
directly from raw data, some can even manage time-based
data sequences. Deep belief networks (DBNs), convolutional
neural networks (CNNs), and recurrent neural networks
(RNN) have been used for VVO.

DBNs stack multiple layers of stochastic latent variables
and are robust for modeling complex and nonlinear systems.
In [51], DBN-based VVO is used to estimate the voltage
sensitivity. CNNs are particularly effective in capturing spa-
tial dependencies by using convolutional layers for handling
spatial relationships in network configurations. Fig 7 shows
a typical CNN-based VVO. CNN has three key parts: con-
volutional layers, pooling layers, and a fullyconnected layer.
In [52], CNN is developed as a local control to regulate the
voltage of PV units. CNN is explored as a complementary
device in a VVO framework in [53]. Using a temporal CNN,
Ref. [54] uses a conventional VVO with capacitor banks and
smart inverters. CNN is integrated with control settings of
wind turbines (WTs) and PVs in [55] for a VVO in MDNs.
The control strategy in [55] is further developed in [56] using
the attention mechanism.

RNNs can capture temporal dependencies and are ideal for
applications where past states influence the current states.
A typical RNN-based VVO is shown in Fig. 8. LSTM net-
works are a specialized form of RNNs that can remember
patterns over long sequences, and can accommodate the tem-
poral dynamics of MDNs. The LSTM and inverter-based
VVO framework is presented in [57].
Existing supervised learning-based VVO utilizes labeled

historical datasets to calibrate control actions for voltage
and reactive power regulations, and can dynamically adapt
to fluctuating load demands and integrate DERs seamlessly.
However, its precision can be compromised by noises in
metering and telemetry data, which may potentially cause
the grid instability; its performance may degrade due to

significant system topology changes, such as feeder recon-
figurations or integration of new substations; it may have
overfitting issues, particularly when the model is tuned to a
specific grid configuration without considering broader grid
dynamics.

FIGURE 7. A typical CNN-based VVO.

FIGURE 8. A typical RNN-based VVO.

C. UNSUPERVISED LEARNING-BASED VVO
Unlike supervised learning, which uses labeled historical
data, the known input-output pairs, to train models (acquiring
such labels in power systems can be costly), unsupervised
learning does not rely on labeled data. Techniques, such
as clustering, can be used to group similar data points or
dimensionality reduction to simplify the data’s complexity.
For instance, kmeans [58], [59] and principal component
analysis (PCA) [60] are used to cluster similar generated sce-
narios using uncertainty quantification approaches. The deep
generative adversarial network is used in [61] to solve the
uncertainty quantification problem. Unsupervised learning is
adept at discovering hidden structures in data, and can be
used for the scenario reduction within scenario-based prob-
abilistic VVO frameworks. In the context of VVO, clustering
algorithms, such as k-means or hierarchical clustering, can be
utilized to segment voltage and VAR data into distinct groups
based on their characteristics, and this segmentation aids in
identifying common patterns. Unsupervised learning can pro-
cess vast data from substations and grid sensors efficiently,
but without labeled data, voltage and reactive power predic-
tions can be unclear, and the grid stability may not always be
ensured. Unsupervised learning can also be sensitive to data
noises, may struggle with sudden grid topology changes, and
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some algorithms can be computationally demanding. These
issues complicate unsupervised learning’s real-time applica-
tions in VVO, especially for large networks. Unsupervised
learning has not been directly applied in VVO.

D. ENSEMBLE LEARNING-BASED VVO
Ensemble learning-based VVO employs multiple models,
such as bagging/bootstrap aggregating, boosting, stacking,
and voting approaches, with bagging/bootstrap aggregating,
such as Random Forest (RF), being the most extensively
studied. RF significantly reduces the variance of predictions
compared to single models by constructing multiple decision
trees and averaging their outputs. This aggregation of diverse
model predictions enhances reliability by diluting individual
model’s biases and errors, leading to more consistent and
stable outputs. Furthermore, the ensemble learning improves
the prediction accuracy by merging different perspectives
from multiple models, which collectively capture a broader
spectrum of scenarios and reduce the overall prediction error.
In [55], RF-based VVO is compared with the CNN-based
VVO framework. Significant topology variations can pose
challenges for ensemble learning-based VVO, even with the
combined multiple models, recalibration may be required to
effectively adapt to grid dynamics and configuration changes.

Statistics, supervised and ensemble learning-based VVO
rely a lot on past data, and may not adjust quickly to sudden
changes, either in the configuration or behavior, of power
systems. However, RL is more flexible and can learn and
make decisions based on real-time feedback, making it suit-
able for VVO.

TABLE 4. Summary of data-driven VVO framework.

V. RL-BASED DECISION FRAMEWORK FOR VVO
In this section, RL-based decision-making frameworks for
VVO, including MDP, MG, CMDP, CMG, and ADMDP, are
introduced. In RL-based VVO, voltage and reactive power
control is modeled as a MDP that aims to achieve a global
Volt/Var control strategy while satisfying the Markov prop-
erty, which is defined as the probability of being in a certain

state at t + 1 depending only on the previous state and
action at t , but not before t. Common elements of a MDP
include the state St , action At , reward Rt , return Gt , agent,
and environment, which are defined as follows:
State St : A state describes a system’s condition at each

moment in time. St =
{
PLi,QLi, P̄Gi, Q̄Gi,Vi, σ,PPV ,QPV

}
is the most frequently utilized conventional state in previous
studies. The state space consists of a large number of states,
and the number might increase depending on the objective
function of VVO. In most cases, this state space is identi-
fied by real-time measurements or through the power flow
analysis.
Action At: An action is a move performed by control

devices to reach control objectives. Commonly used actions
in the literature include: At =

{
aCBt , aOLTCt , aVRt , aSVCt ,

aSTATCOMt , aSIt
}
, aCBt = {0, 1} (the on-off commitment of

CBs), aOLTCt =
{
1, · · · ,NOLTC

}
( NOLTC is the number of

tap positions) and aVRt =
{
1, · · · ,NVR

} (
NVR is the number

of VR discrete voltage steps). Reactive power injected by
SVC and STATCOM is determined by

aSVC/STATCOM
t =

QSVC/STATCOM
t

Q̄SVC/STATCOM
t

(9)

The reactive power injected by SI is based on:

aSIt =
QSIt√(

SSIt
)2

+
(
PSIt

)2 (10)

−1 ≤ aStt ≤ 1 (11)

Reward Rt : A reward is an immediate result at each
moment in time that the agent receives after taking an action
while interacting with the environment. The reward shows
the effectiveness of the agent’s decision-making. In RLbased
VVO frameworks, the reward depends on the loss function.
For instance, for the voltage minimization, we have

r1V
t = −

∑N bus

i=1
||Vi| − 1| + ς (12)

where ς and N bus are the penalty term and the bus number in
a MDN, respectively. The reward function for active power
losses is defined by

rplosst = −ploss + ς (13)

The reward function for the voltage violation, active power
generation, and reactive power consumption are expressed as
follows:

rvviolationt = −ς
∑N bus

i=1
[1 − min (1 − vthr − |1 − Vi| , 0)]2

(14)

rPGit = ς

∑N bus

i=1 PGi∑bus
i=1 P̄Gi

(15)

rQLit = ς

∑N bus

i=1 QLi∑bus
i=1 Q̄Li

(16)
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ReturnGt:A return is the cumulative reward that the agent
obtains at a certain moment in time.
Agent: An agent is a learner and decision-maker who is

responsible for interacting with the environment, observing
the state, and taking actions to find an optimal control policy
that maximizes the expected discounted reward. Inmost VVO
problems, the DSO is the agent.
Environment: The environment includes all aspects of the

task that an agent cannot control completely. The environ-
ment in the VVO problem of MDNs is the mapping function:

f Env (PLi,QLi,PGi,QGi,Vi, σi) → ⟨Vi,Qi⟩ (17)

Given any state s and action a, the probability of each
possible pair of the next state s′, and reward r are denoted
by the Markov property in (18) [62].

p
(
s′, r | s, a

)
= Pr

{
Rt+1 = r, St+1 = s′ | St ,At

}
(18)

In a VVO problem, the optimal control strategy aims to
mitigate voltage issues, reduce operational costs, and min-
imize power losses [12]. Fig. 9 shows how the agent and
environment interact with each other at each moment in time
based on the MDP. First, the agent observes the state St from
the environment and selects an action At . At the next time
interval, the agent receives a reward Rt+1 and observes a
new state St+1 as the consequence of its action. Then, the
agent takes another action and reaches the next state while
getting a new reward. This cycle repeats until the end of the
episode [63].

FIGURE 9. The interaction between the agent and environment in the
MDP.

In a MDP, the quality of taking actions at each state
and time interval is important. A policy is a function that
measures this quality and decides what actions to take in
a particular state. The input of a policy is the state, and
its output is actions. Based on its output actions, policies
can be categorized into deterministic and stochastic poli-
cies. The deterministic policy πt maps the state space to the
action space, while the stochastic control policy maps the
state to the probability of chosen actions in the environment,
πt (a | s). An optimal policy finds valuable actions in each
state that culminate in higher rewards. Therefore, in an RL

problem, finding the optimal policy by estimating state- and
action-value functions is necessary.

In a MDP, the state-value function Vπ (s) is defined as
the expected discounted return starting from that state while
interacting with the environment following the policy π until
the end of the episode in (19). The action-value function
qπ (s, a) is the expected discounted return starting from that
state and taking an action to interact with the environment
following the policy π until the end of the episode in (20).
Eπ (.) is the expected cumulative reward following the policy
π, t is a time interval, and γ ϵ[0, 1] is the discount factor to
balance immediate and future rewards ( γ = 1 encourages the
agent to consider the long-term consequences of its actions,
while γ = 0 makes the agent short-sighted).

vπ (s) = Eπ [Gt | St = s]

= Eπ

[∑∞

k=0
γ kRt+k+1 | St = s

]
(19)

qπ (s, a) = Eπ [Gt | St = s,At = a]

= Eπ

[∑∞

k=0
γ kRt+k+1 | St = s,At = a

]
(20)

The Bellman equations, (19) and (20), are fundamental
equations in RL that express the relationship between the
value of a state (or the state-action pair) and the values of its
successor’s state (or the successor state-action pairs). Eq. (21)
represents the Bellman equation for the state-value function,
which indicates that the value of a state under policy π is the
expected immediate reward plus the discounted value of the
next state, considering all possible actions and the next state.

vπ (s) = Eπ

[∑∞

k=0
γ kRt+k+1 | St = s

]
= Eπ

[
Rt+1 + γ

∑∞

k=0
γ kRt+k+2 | St = s

]
=

∑
a
π (a | s)

∑
s′

∑
r
p

(
s′, r | s, a

)
[r

+ γ Eπ

[∑∞

k=0
γ kRt+k+2 | St+1 = s′

]]
=

∑
a
π (a | s)

∑
s′

∑
r
p

(
s′, r | s, a

) [
r + γ vπ

(
s′
)]

(21)

Similarly, Eq. (22) is the Bellman equation for the actionva-
lue function, implying that the value of taking a certain action
in a certain state under policy π is the expected immediate
reward plus the discounted value of the next stateaction pair,
considering all possible next states and actions.

qπ (s)

= Eπ

[∑∞

k=0
γ kRt+k+1 | St = s,At = a

]
= Eπ

[
Rt+1 + γ

∑∞

k=0
γ kRt+k+2 | St = s,At = a

]
=

∑
s′

∑
r
p

(
s′, r | s, a

)
[r

+ γ Eπ

[∑∞

k=0
γ kRt+k+2 | St+1 = s′,At+1 = a′

]]
=

∑
s′

∑
r
p

(
s′, r | s, a

) [
r+γ

∑
a′

π
(
a′

| s′
)
qπ

(
s′, a′

)]
(22)
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To solve a MDP problem and find the optimal policy π∗

optimal actions are chosen in each state, vπ (s) and qπ (s, a)
are maximized in (23) and (24) for all states and actions.

vπ∗(s) = max vπ (s) (23)

qπ∗(s, a) = max qπ (s, a) (24)

A. MARKOV GAME
Fig. 10 shows MG is a multi-agent extension of MDP, where
numerous agents collaborate in a common environment to
accomplish a goal [64]. Multi-agent RL can be categorized
into cooperative, competitive, and a mixture of cooperative
and competitive. In the cooperative MG, all agents seek a
common goal; in the competitive MG, agents compete with
each other toward a goal; in the mixture of cooperative and
competitive MG, individuals in the same group coordinate
with each other against other groups [65].

FIGURE 10. The interaction between agents and the environment in a MG.

B. CONSTRAINED MARKOV DECISION PROCESS
In a standard MDP, agents learn their optimal policy by trial
and error, but it might jeopardize the safety and reliability of
the distribution network since some actions may lead to sys-
tem divergence and cause the equipment damage. Solving the
VVO through CMDP while modeling physical operational
constraints, such as power flow limits, voltage deviations,
and switching action limits for control devices, improves the
safety of a power system. CMDP ensures that every explo-
ration during the learning process is safe by handling two
different functions for reward and constraints [66].

C. CONSTRAINED MARKOV GAME
CMG represents an evolving and safer version of MG where
multiple agents collaborate under behavioral constraints. In a
CMG framework, the safety of executing actions by each
agent within a specific state is carefully considered, ensuring
that everymove is strategically robust and does not jeopardize
the integrity of the system or other agents. These behavioral
constraints make the decision-making framework more real-
istic, safe, and applicable [67].

D. ADVERSARIAL MARKOV DECISION PROCESS
AMDP is an expansion of MDP with two learners, known as
the protagonist and the adversary (opponent), with opposite
goals of adjusting modeling errors. It is suitable for reducing
the gap between offline training and online execution while
improving the safety and efficiency of control tasks [68].
Table 5 summarizes the RL-based VVO frameworks.

VI. RL-BASED ALGORITHMS FOR VVO
RL-based VVO frameworks are used for sequential decision-
making by interacting with the environment to maximize
cumulative rewards. Actions leading to rewards are more
likely to be repeated, while those causing discomfort or
penalties are avoided [62]. Deep reinforcement learning
(DRL) combines RL with deep neural networks (DNNs)
to address complex tasks with high-dimensional continuous
state spaces. DNN performs as a function approximator to
tackle the ‘‘curse of dimensionality’’ in such spaces [69].
This is especially relevant in power systems, where state
observations are typically continuous values. Fig. 11 shows
the main RL and DRL algorithms utilized in VVO, including
value-based, policy-based, actor-critic-based, and graph-
based algorithms.

FIGURE 11. The policy-based categories of RL and DRL algorithms in VVO.

FIGURE 12. The DQN algorithm structure.

A. VALUE-BASED ALGORITHMS
Value-based RL algorithms aim to find an optimal policy by
estimating the value function for states or state-action pairs
through consistent value updates from observed rewards and
agent-environment interactions. The most well-known value-
based algorithm, Q-learning, estimates the value of each
state-action pair, known as Q-values; when combined with
deep learning, it becomes the Deep Q-Network (DQN) [70].
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TABLE 5. The summary of RL-based VVO frameworks.

The structure of a DQN is shown in Fig. 12. Q-learning and
the DQN face scalability challenges and are impractical for
large-scale systems with a large number of control actions
and control devices.

B. POLICY-BASED METHODS
Unlike value-based algorithms, policy-based RL methods
are designed to directly learn the policy (a function that
maps states to actions) and parameterize the policy, so they
can handle a large continuous action space. The common
approach is to use a neural network (NN) (often named a
policy network) to approximate the policy. The input and
output of the NN are the state and the probability distribution
of taking actions, respectively. This distribution represents
the likelihood of taking each action for the given current
state. The NN maximizes the expected return and reward for
stochastic policy learning, but training policy-based methods
is challenging due to the high variance in gradient estimates,
which can cause instability during optimization. Common
policy-based methods include Reinforce (use Monte Carlo
sampling to estimate policy gradients), the proximal policy
optimization (PPO) (use a trust region approach for policy
updates) [71], and the constrained policy optimization (CPO)
algorithm (introduce constraints to ensure safety and stability
for policy optimization) [66], [72].

C. ACTOR-CRITIC-BASED ALGORITHMS
Actor-critic (A2C)-based RL algorithms combine features
of the value- and policy-based methods. The ‘‘actor’’ deter-
mines actions based on the current policy, while the ‘‘critic’’
assesses the quality of these actions by estimating the
expected future rewards. By learning from the critic’s feed-
back, the actor can update its policy, thereby, achieving more
efficient learning than policy-based methods.

The soft actor-critic (SAC), a maximum entropy frame-
work that encourages exploration, is widely used for VVO
(Fig. 13) [73]. Robust policies are achieved by maximizing
the policy’s entropy, and effectively balancing exploration
and exploitation. A SAC algorithm comprises the replay
memory, an actor (a policy network), the critics (two Q
networks), and loss functions. The replay memory enables
the diverse training data by random selection of previous
experiences

(
s, a, r, s′

)
. The actor, denoted as π (at | st),

is a NN that generates probabilistic policy for the given
states. The critics are two separate Q networks, denoted as

Qθ1 (st , π (st)) and Qθ2 (st , π (st)); they are used by the SAC
algorithm to compute Q-values, mitigate the overestimation
bias in the value estimation, and determine the most probable
action for each state according to the current policy. SAC
uses two loss functions for training the actor and critics.
For the critics, the loss function, L

(
θ1,2

)
, aims to minimize

the discrepancy between the predicted and target Q-values
(computed using the policy and Q networks) as follows:

L (θ1)

= Eπ

[ (
Qθ1 (st , π (st)) − (r + γ

min
at+1

(
Qθ ′

1
(st+1, π (st+1)) ,Qθ ′

2
(st+1, π (st+1))

))2
]
(25)

L (θ2)

= Eπ

[(
Qθ2 (st , π (st)) − (r + γ

min
at+1

(
Qθ ′

1
(st+1, π (st+1)) ,Qθ ′

2
(st+1, π (st+1))

))2
]
(26)

For the actor, the loss function, L(π ), is the negative of the
expected Q-values under the current policy, minus an entropy
term, log

(
πϕ (at | st)

)
, which encourages exploration in (27).

L(π ) = Eπ

[
−

(
Qθ1 (st , π (st)) − α ∗ log

(
πϕ (at | st)

))]
(27)

where α is a temperature parameter that controls the tradeoff
between exploitation and exploration. The network parame-
ters are updated via a process, known as ‘‘gradient descent’’,
to minimize the respective losses [74].

The deep deterministic policy gradient (DDPG), another
popular actor-critic method for VVO, can effectively han-
dle high-dimensional continuous action spaces [75], but is
brittle due to sensitivity to hyperparameters [65], i.e., its
performance varies significantly depending on the chosen
hyperparameters. To overcome this issue, the twin delayed
deep deterministic policy gradient (TD3) algorithm is a viable
alternative [76]. By using a pair of critics and delaying the
policy update, TD3 can address some of DDPG’s instability
issues.

Overall, actor-critic methods benefit from a combination
of value estimation and policy optimization for stable and
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efficient learning in RL problems, but may still face issues,
such as a high variance and a slow convergence rate.

FIGURE 13. The SAC algorithm structure.

D. GRAPH-BASED METHODS
Graph-based RL methods use a graphical representation of
the state or action space for complex problems with an
inherent network or graphical structure. The environment is
represented as a graph, where nodes represent states and
edges signify possible actions and transitions. Through a
structured way to manage a complex space, the learning
efficiency can be significantly improved. A popular graph-
based method is the graph neural network (GNN) designed to
learn from graph-structured data and capture the relationship
among different nodes. GNNs can handle highdimensional
data efficiently, capture inter-dependencies among control
devices for VVO, and improve the action selection accu-
racy. Graph convolutional networks (GCNs) are also suitable
for VVO, where the state-action space can be naturally
depicted as a graph [77]; they can learn to predict future
states of a power grid, adjust control policies, detect anoma-
lies, and monitor the health of grid components. However,
GNNs and GCNs require more computational resources,
especially for large graphs, and require expert knowl-
edge to design an appropriate graph representation of the
environment.

RL-based VVO algorithms are summarized in Table 6.

VII. RL-BASED VVO
A. MDP FOR VVO
RL-based VVO frameworks ensure replicable benchmarking
and validity of comparative results. In [78], an open-source
RL environment, known as PowerGym, for VVO in MDNs
is proposed, which provides three types of IEEE standard
test systems with CBs, VRs, and ESSs. To validate the pro-
posed environment, a VVO problem is defined by MDP and
solved by two RL algorithms, PPO and SAC (SAC converges
faster).

MDP-based RL algorithms have been used to improve
VVO in distribution networks. The Q-learning algorithm
is used in [79] to solve VVO, the set point of SRCDs
(CBs and OLTCs) is determined, and the system operational

constraints are satisfied. Tap positions of OLTCs for VVO
are determined by MDP and batch RL algorithm in [80],
and a linearized power flow model is used to estimate the
voltage at each node with different tap settings. MDP-based
VVO is proposed to schedule reactive power of SIs con-
nected to PVs and ESSs through DDPG, TD3, and SAC
algorithms [81], [83]. Operational costs are incorporated into
the objective function in [83]. In [84], an entropy-regularized
RL-based real-time VVO is used in a wind farm to min-
imize voltage deviations and power losses by optimizing
operations of SIs and SVCs, showing better stability, opti-
mality, and convergence speed than DDPG and TD3. SAC is
implemented to optimize reactive power supplied by SIs (con-
nected to PVs and WTs) and SVCs in a distribution network
with high voltage variations caused by renewable energy
sources [85]; SAC is also used to optimize the schedule of
SVCs and PV’s SIs [86]. Ref. [87] proposes a mean-field
RL (MFRL) algorithm to address scalability issues of stan-
dard value-based RL algorithms by adopting the mean-field
theory to iteratively discover the agent response to neighbor-
ing agents and approximate agent interactions by averaging
effects of neighboring agents. In [88], a graph-based proxi-
mal policy optimization (GraphPPO) algorithm is developed
for VVO, and compared to conventional policy-based meth-
ods with dense networks (Dense-PPO); Graph-PPO is more
robust than Dense-PPO. Coordinating SRCDs and FRCDs
at different timescales through MDP is essential to improve
VVO. A two-timescale voltage control method is proposed
in [89] to coordinate SRCDs (CBs) and FRCDs (PV’s SIs);
the on-off status for CBs is determined through MDP-DQN
at a slow timescale, while the set point of SIs is determined at
a fast timescale using the model-based optimization through
a linearized power flow model. In [90], a two timescale
VVO is proposed to coordinate SRCDs (OLTC, CBs, and
VRs) and FRCDs (PV SIs) in a distribution network. SRCDs
are controlled by a model-based approach formulated as
a mixed-integer nonlinear programming (MINLP) problem
at a slow timescale (hourly); FRCDs are controlled by the
DDPG algorithm at a fast timescale (every minute), show-
ing low line losses, voltage deviations, and active power
curtailment. In [91], a two-stage voltage regulation frame-
work is proposed to coordinate SRCDs (OLTCs and CBs)
and FRCDs (PV’s SIs) at different timescale operations.
In the day ahead stage, a mixed integer second order cone
optimization programming (MISOCP) model is proposed to
dispatch SRCDs; in the real time stage, a graph convolutional
network-based DDPG (GCN-DDPG) is proposed to regulate
reactive power provided by SIs. It outperforms the fully
connected network-based and CNN-based DDPG methods
in reducing voltage variations. Ref. [92] presents a two-
timescale RL-based VVO to coordinate SRCDs (CBs) and
FRCDs (ESSs and SIs). The optimal scheduling of CBs with
a discrete action space is done by DQN for every three hours;
optimal reactive power of SIs, active and reactive power of
ESSs in a continuous action space are determined by DDPG
for every 30 minutes.
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TABLE 6. The Summary of RL-based VVO algorithms.

TABLE 7. Taxonomy of MDP-based VVO in MDNs.

Surrogate models can enhance VVO by simplifying com-
putations. In [93], a surrogate model-based DDPG algorithm
(SBDDPG) is proposed to reduce voltage deviations and
the PV curtailment of a three-phase unbalanced distribu-
tion network, where a supplementary feed forward deep NN
is trained in a supervised manner as a surrogate model to
learn the relationship between the voltage, active and reactive
power at each node. The DDPG algorithm is then used to
train VVO from historical data while calculating the reward
from the surrogate model. The performance of SBDDPG
is similar to conventional DDPG algorithms with accurate
system information. In [94], a physics-informed surrogate
model-based SAC algorithm (PISMBSAC) is proposed for
VVO, which is robust to anomalous measurements without
relying on network parameters. A physics-informed global
graph attention network (GGAT) and a deep auto-encoder
(DAE) network are first used for feature extraction, SAC is
then applied for voltage control, and GGAT is applied as a
surrogate model to approximate the power flow computation

and provide a reward signal. Table 7 shows the summary of
MDP-based VVO in the literature.

B. MG FOR VVO
In response to the need for multi-agent RL-based VVO,
GridLearn (a flexible framework that extends the opensource
CityLearn platform) for grid-level and an OpenAIGym envi-
ronment for building-level are introduced in [95] to train
multi-agent RL algorithms. Multi-agent PPO (MAPPO) is
used to address voltage regulations with high- penetration of
renewable energy sources along with SIs, ESSs, and DR to
enhance grid stability.

MG-based RL algorithms for VVO in MDNs have been
studied in the literature. In [64], a decentralized multi-
agent MG-based VVO is proposed to optimize large-scale
power grids using DDPG. A multi-agent DDPG (MADDPG)
algorithm is utilized in [96] and [97]. AMG framework is pro-
posed in [96] to solve VVO through a MADDPG algorithm,
which is integrated with an attention model for a system
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TABLE 8. Taxonomy on MG-based approaches for VVO in MDNs.

with high penetration of PVs. The attention model addresses
the scalability issue by increasing the number of control
variables to minimize voltage deviations. In [98], a MAD-
DPG algorithm for real-time VVO is proposed, considering
uncertainties of renewable energy sources, load, electricity
prices, and control technologies for dispatchable DGs, SIs,
ESSs, and the DR program on flexible loads. A coopera-
tive MADDPG with a novel two-stage progressive training
(TSPT) strategy is developed in [97] for VVO with a high
pentation of PVs, leading to the improved training speed and
convergence. All agents are trained separately in the first
stage, and coordinately in the second stage.

A MG framework is proposed in [99] to optimize PV’s SIs
for voltage regulations and the real power curtailment through
SAC. In [100] and [101], a multi-agent SAC (MASAC)
algorithm-based real-time VVO is proposed to regulate SIs
for PVs andWTs. Compared toMADDPG, SAC, and model-
based VVO, the proposed method is effective in mitigating
voltage violations and reducing power losses. In [102], a MG
framework based on an attention mechanism for VVO is
developed to optimize the reactive power of SIs and SVC
through the MATD3 algorithm, assisting each agent to focus
on themost relevant information to its reward. In [103], a one-
step two-critic DRL (OSTC-DRL) approach for both single-
andmultiagents is presented to optimize reactive power of SIs
in MDNs using a deterministic policy algorithm (OSTC-DP).

TheMG-basedVVO in an unbalanced distribution network
is developed in [104] to simultaneously minimize voltage
deviations and power losses; the ZIP load model is used, and
the power flow is solved using the backward-forward sweep
method. In [105], a networked multi-agent MDP is proposed
to solve the VVO problem through a consensus multi-agent
RL (C-MARL) algorithm, which reduces the amount of data
required and improves the communication strategy. In [106],
a non-cooperative MG framework is formulated to optimize

CBs, VRs, and SIs (for PVs and WTs) using a decentral-
ized multi-agent trust region policy optimization (MATRPO)
algorithm while considering uncertainties of load and RERs
power generation.

Coordinating SRCDs and FRCDs at different timescales
through MG is essential [107], [108]. In [107], a multi-
timescale MG-based VVO framework is proposed to coor-
dinate SRCDs (CBs and OLTCs) and FRCDs (SIs) through
MADDPG. In [109], a model-free two-timescale voltage con-
trol method is provided to control SRCDs (CBs and OLTCs)
and FRCDs (SIs). The SRCDs are formulated through a
single agent MDP and solved by SAC with an hourly time
interval; SIs are coordinated as MG in a smaller time interval
and solved by MASAC to address fast voltage fluctuations.
In [110], a bi-level off-policy RL method is proposed to
jointly coordinate SRCDs (CBs and VRs) and FRCDs (SIs)
using the multi-timescale off-policy correction (MTOPC)
technique. For the fast timescale, the optimal schedule of SIs
is obtained by a single agent trained by SAC; for the slow
timescale, the multi-discrete SAC (MDSAC) algorithm is
used to optimize the set point of CBs andVRs. In [108], a two-
timescale VVO is proposed to jointly optimize SRCDs (CBs,
OLTCs, and VRs) and FRCDs (SIs). SIs in the fast timescale
are modeled as MDP and optimized by DDPG; traditional
control devices are modeled as MG and optimized by the
MASAC algorithm in a slow timescale. The two policies are
interconnected by a communication protocol and are learned
concurrently.

However, MDP and MG either consider constraints as a
penalty in the objective function or avoid considering con-
straints, so online execution of the learned strategymay not be
practical in real life due to constraint violations. CMDP and
CMG are more effective by incorporating constraints into the
learning process. Table 8 shows the summary of MG-based
VVO in the literature.
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TABLE 9. Taxonomy on CMDP-based approaches for VVO in MDNs.

C. CMDP FOR VVO
CMDP-based VVO demonstrates its remarkable ability to
navigate operational constraints while optimizing multiple
control devices. In [111], VVO is modeled as CMDP to
optimize SRCDs (CBs, OLTCs, and VRs) by minimizing
operation costs while satisfying the bus voltage constraints.
The developed model is solved by CSAC, and compared
with DQN, SAC, CPO, and optimization-based approaches,
showing better sample efficiency, scalability, and constraint
satisfaction. In [112], VVO is modeled as CMDP by imple-
menting two policy-gradient methods, the trust region policy
optimization (TRPO) and CPO, to optimize CBs, VRs, and
OLTC; CPO outperforms TRPO with negligible voltage vio-
lations. In [113], a safety layer augmented actorcritic (SAAC)
algorithm for VVO is proposed to address two common
RL-based VVO challenges: sample efficiency and safety.
To improve the sample efficiency, a modelaugmented part-
wise derivative technique is incorporated to train the RL
algorithm; to improve safety, the actor is equipped with
a constraint satisfaction layer based on iterative quadratic
programming. A unique mutual information regularizer is
then proposed to boost the performance of the constraint
satisfaction layer. In [114], VVO is formulated as a CMDP to
optimize reactive power generated by HDTs through DDPG,
where a safe exploration approach is proposed as a safety
layer on top of the policy gradient actor to consider oper-
ational constraints. It can immediately respond to voltage
fluctuations and significantly reduce power losses.

Coordination of control devices with continuous and dis-
crete action spaces in VVO is important to ensure a more
efficient and robust voltage regulation and energy cost min-
imization. A comprehensive approach is needed with a
suitable RL algorithm to coordinate SRCDs and FRCDs
with multi-timescale operation. In [115], a VVO problem is
formulated as CMDP to adapt voltage regulation and min-
imize energy costs by optimizing various control devices,
including CBs, OLTC, VRs, DGs, and ESSs. To satisfy con-
straints at each time step during the learning process, CPO
is used; to handle discrete and continuous action spaces,
a hybrid action space through a stochastic control policy is
defined. The designed policy does not have a scalability issue
since actions are generated by sampling from a joint distri-
bution of mixed random variables. In [116], a three-stage

multi-timescale VVO framework is proposed to coordinate
SIs and ESSs. In the first stage, the schedule of ESSs with a
30 -minute resolution is optimized for peak shaving; in the
second stage, a safe SAC (SSAC) algorithm is developed to
coordinate ESSs and PV SIs to minimize voltage deviations
and power losses within a 1-minute resolution; in the third
stage, a proportional-integral (PI) controller supplemented by
real power compensation is integrated into SIs (for PVs and
ESSs) to quickly address voltage deviations in a 0.1-second
resolution. Table 9 shows the summary of CMDP-based VVO
in the literature.

D. CMG FOR VVO
CMG-based VVO facilitates safe multi-agent RL in MDNs
through effective collaboration and optimization among
multiple agents while ensuring that actions taken do not jeop-
ardize the overall stability and functionality of the system.
In [77], a safe multi-agent primal-dual graph reinforcement
learning (MAPDGRL) approach is proposed to optimize
PV’s SIs based on a decentralized VVO in a zoned distribu-
tion network. GCN can capture graph-based characteristics
from distribution networks. This process highlights connec-
tions between VVO and the grid topology while effectively
eliminating noises and imputing missing data. In [117],
an online decentralized multi-agent RL framework is for-
mulated as CMG to solve VVO and optimize the reactive
power of control devices through MACSAC by using local
measurement data without relying on real-time peer-to-peer
(P2P) communication, which is hard to obtain. The proposed
method outperforms modelbased methods, MADDPG and
CSAC algorithms, for online applications. In [118], a novel
CMG framework is proposed by integrating a physics-shield
multi-agent twin delayed deep deterministic policy gradient
(Physics-shield MATD3) algorithm to provide safe schedul-
ing of ESSs, SIs, and SVCs. The physics-based shielding
mechanism helps the agent to replace dangerous actions with
safe actions while maintaining the system stability.

Solving CMDPs and CMGs in VVO is computationally
complex as constraints are incorporated into the decisionmak-
ing process, so the algorithm must handle constraints while
searching for an optimal policy; it also leads to a more frag-
mented and discontinuous action space, so finding an optimal
policy is challenging, and the learning process is more
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TABLE 10. Taxonomy on CMG and AMDP-based VVO in MDNs.

time-consuming and prone to convergence issues. Therefore,
CMDPs and CMGs may require more extensive computa-
tional resources and longer computation time than traditional
MDPs, which may limit their real-time applications.

E. AMDP FOR VVO
AMDP-based VVO offers enhanced safety and efficiency
by incorporating adversarial learning techniques in decision-
making scenarios, suitable for reducing the gap between
offline training and online execution. In [68], a two-stage
DRL method with offline and online stages is proposed to
minimize voltage deviations and power losses through SVCs
and SIs. The offline stage for VVO is modeled as AMDP and
solved by the Jointly Adversarial Soft Actor-Critic (JASAC)
algorithm. Table X shows the summary of CMG and AMDP-
based VVO in the literature.

F. OVERVIEW ON RL-BASED VVO FRAMEWORK
RL-based VVO frameworks offer significant advancements
over traditional model-based optimization techniques by
more effectively addressing dynamics and stochastic events
in modern distribution networks. Traditional methods often
require accurate and extensive systemmodeling, but RLbased
VVO operates through a trial-and-error learning process
that continuously adapts to changes in the network, which
enhances the flexibility and responsiveness to real- time grid
operating conditions. However, RL-based strategies also have
challenges as they typically cannot handle the network topol-
ogy changes, and such changes frequently occur during the
operation of MDNs. DRL-based VVO frameworks perform
relying on the observed states. In most previous work, states
are estimated based on the modelbased power flow, which
may not consider the network topology changes. Another
challenge is the data required to be shared among all entities
in a distribution network may have different owners with
conflict interests, and current DRL-based methods cannot
preserve data privacy. DRL also requires substantial com-
putational resources for training and a well-designed reward
system to ensure convergence on effective policies. Fur-
thermore, DRL-based frameworks are not robust to noises,
particularly non-Gaussian noises (the majority of noises in
power systems do not follow Gaussian distributions [119]),
and communication system malfunctions.

VIII. FUTURE RESEARCH DIRECTIONS
The data-driven VVO is currently at the research stage and
needs significant effort before it can be implemented in real
life. The future research directions in this area are recom-
mended below.

Modeling Complexity: Data-driven VVO models are com-
plex to address nonlinearities and uncertainties of a system,
and accommodate operational constraints and numerous vari-
ables. Integrating RL with other AI techniques, such as
evolutionary algorithms and swarm intelligence, may offer
improvements.
Grid Topology Changes:Adistribution network’s topology

changes frequently due to planned maintenance, equipment
failure, renewable energy sources, and EV charging stations
integration. Data-driven VVO models must be adaptive to
such topology changes. Incorporating the grid topology infor-
mation into the state representation of a DRL model or
rapidly retraining DRL models after the topology changes is
recommended.
Scalability: Data-driven methods tend to have scalability

issues for large power systems due to the high com-
putational burden and long training time. State-of-the-art
data-driven methods, such as distributional reinforcement
learning, implicit quantile networks and dueling architec-
tures, can be used to better manage large power grids.
Data Privacy: Data-driven VVO models need operational

data, which may raise confidentiality and security concerns
for user data. Developing techniques, such as federated learn-
ing, for decentralized learning can ensure data privacy.
Real-Time Implementation: It is important to bridge the

gap between offline training and real-time implementation of
DRL-based VVOmodels to ensure models adapt to real-time
changes in power grids. The approximate dynamic program-
ming (ADP) and adversarial learning (AD) methods can be
explored.
Transfer Learning: Transfer learning allows data-driven

VVO models to learn knowledge from one scenario to
another, and reduces the dependence on a vast amount of data,
so is suitable for scenarios with limited data.
Robustness: Power grids are susceptible to sensor and

communication failures, and other sources of uncertain-
ties. Developing data-driven models that work effectively
with incomplete or imperfect data is a promising research
direction.
Computational Efficiency: Data-driven models have high

computational demand, which may prevent effective realtime
or near-real-time decision-making. Future research should
focus on improving the computational efficiency through
the model simplification, process optimization, distributed
computing resource leverage, and surrogate modeling.
Noise Signals Handling: Noises in the data can adversely

affect a VVO model, which may complicate the learning
process and cause suboptimal decisions. It is recommended
to integrate noise filtering/smoothing techniques into the
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preprocessing stage of a data-driven model, develop robust
data-driven algorithms inherently resistant to noises, incor-
porate uncertainties into the learning process, design state
representations that are less sensitive to noises, and develop
novel learning algorithms to mitigate the noise impact.

IX. CONCLUSION
VVO is an essential technique for regulating voltage and
minimizing power losses in MDNs, especially with a high
penetration of DERs. VVO can be broadly categorized
into model-based and data-driven methods. Based on the
comprehensive literature review conducted in this paper,
approximately 69.6% of the reviewed papers focusing on
model-based VVO, and 30.4% of the reviewed papers focus-
ing on data-driven VVO. In this paper, we have conducted
an in-depth survey of the data-driven VVO using statistics
and machine learning techniques, such as supervised, unsu-
pervised, ensemble, and reinforcement learning. The special
focus is on model-free RL methods, including the MDP, MG,
CMDP, CMG, and AMDP. The coordination of SRCDs and
FRCDs across different time scales for VVO applications is
also summarized. Future research directions in this important
area are recommended to advance the efficiency and effec-
tiveness of VVO strategies in MDNs.
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