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ABSTRACT Automated detection of surface defects plays a critical role in the timely maintenance of planar
material-based products from vehicles such as cars and airplanes. Traditionally, skilled individuals have
detected surface defects by visually comparing product surfaces to predefined quality standards, which is
inadequate for modern industrial production because of its reliance on subjective human assessments and
unquantified perception standards. Automated Visual Inspection System (AVIS), through the development of
computer vision (CV)-based methods, has emerged as an alternative to significantly improve the quality of
inspection through reliable defect detection approaches. CV-based surface defect detection systems, however,
are dependent on a large number of defect datasets, which are crucial to training high performing and robust
defect detection models. Existing benchmark datasets used in training these models are relatively small in
size, deficient in defect diversity, and restricted to a relatively small number of defect categories. In this
paper, we propose a novel benchmark dataset, the NCAT12-DET, a comprehensive surface defect dataset
that was collected on cars. It comprises 7,200 high-resolution images across 12 distinct defect categories
with a total of 23,766 bounding-box annotations. Experimental results through a comparative analysis of
object detection models on the NCAT12-DET dataset demonstrated that VarifocalNet outperformed the other
models with an average precision (AP) of 0.329%. VarifocalNet also exhibited a computational profile with
415.1 GFLOPs and 98.07M PARAMS, placing it in a comparable range to Faster R-CNN and highlighting
its balanced model with reasonable computational cost.

INDEX TERMS Automated visual inspection systems, inter-class defect similarities, intra-class defect
differences, NCAT12-DET dataset, surface defects, traditional inspection.

I. INTRODUCTION
Metal planar materials, such as steel, aluminum, copper plates,
and strips, play a crucial role in key industries such as aviation,
automotive, manufacturing, and transportation. They have
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significantly contributed to the progress of modern society
and the overall improvement in quality [1]. The occurrence
of surface defects (dents, cracks, inclusions, or corrosion)
on these planar metal materials during the manufacturing
process and the use of these industrial products can cause
huge economic losses when these defects are left undetected
in a timely manner [2].
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Traditionally, these surface defects have been detected by
trained human inspectors [3], who visually judge the quality
of the defect by comparing product surfaces to predefined
quality standards with the human eye. However, this method,
does not meet the needs of current industrial production
because it increases the downtime of the industrial products
under inspection, which can lead to significant economic
losses for the inspection processes [4]. The quality of this
inspection is also not fully guaranteed and is less efficient
since human inspectors can experience ocular fatigue due
to the high intensity and repetitive nature of the work,
which leads to less reliable defect detection [5]. Given the
aforementioned limitations, there is a growing need for a
more automated approach to detecting and classifying these
defects.
Automated Visual Inspection Systems (AVIS) through the

development of computer vision (CV)-based inspection [5],
[6], [7] have significantly improved the quality of inspection
through effective damage localization, increased defect
detection speed, and reduced labor costs [8]. They have also
improved the productivity of defect detection as they provide
a competitive advantage to the traditional human inspection
process for detecting surface defects.
However, CV-based surface defect detection systems are

dependent on a large number of defect datasets, which
are crucial to training highly performing and robust defect
detection models. Existing steel defect datasets, however, have
challenges that tend to diminish the recognition performance
of the defect detection approaches, as outlined below:

1) the size of the existing datasets is relatively small.
2) the defect categories lack diversity and complexity as

they are confined to a relatively small number of defect
categories.

3) the existing datasets are typically restricted to a single
material type.

In [9], the Kolektor Surface-Defect dataset (KolektorSDD),
which consists of 399 samples (52 anomalous samples and
347 anomaly-free samples), was collected in a controlled
industrial environment in open-world situation. This dataset
is suitable for few-shot defect detection task due to the
relatively small number of defective samples. In [10], the
NEU-DET dataset, which consists of 1800 gray-scale images
with six defect categories, was proposed. This dataset’s size
and defect categories are both relatively small, which limits the
performance of trainedmodels. In [11], theGC10-DET dataset,
which comprises 3,570 grayscale images with 10 defect
classes, was proposed. This dataset, however, is restricted
to a single material type.
To address the limitations posed by existing benchmark

datasets, we present a novel and meticulously curated dataset,
namely, ‘‘NCAT12-DET.’’ This dataset has been carefully
collected from real-world scenarios involving defective cars,
making it a valuable resource for evaluating defect detection
systems more accurately. The key contributions of this study
are as follows:

1) We curated the NCAT12-DET Dataset, a publicly
available comprehensive surface defect dataset on
cars that was collected under uncontrolled external
conditions featuring variations in illumination, weather,
and background, as shown in Figure 1.

2) The dataset comprises 7,200 high-resolution images,
encompassing 12 distinct defect categories. The number
of images per category is as summarized: burn: 215,
clear glass: 698, corrosion: 1591, cracks: 877, cutouts:
130, defaced paint: 1,010, dents: 922, hairline glass: 591,
inclusion: 1,542, paint-peel: 1,787, spidery glass: 195,
and tempered glass: 845. It is enriched with a total of
23,766 bounding-box instances (annotations), making
it a valuable resource for defect detection applications.
It consists of 19,015 training bounding-box instances,
2,435 validation bounding-box instances, and 2,316
testing bounding-box instances.

3) We conduct a comprehensive examination of the
distinctive qualities of the NCAT12-DET dataset. This
includes a wide range of factors, from highly correlated
inter-class defect similarities (differences between
defect categories), distinct intra-class defect differences
(variations within the same defect category), and the
long-tail distribution challenge, which involves the class
imbalance across defect categories.

4) We conducted a comparative analysis of the perfor-
mance of selected anchor-based and anchor-free object
detection models from Faster R-CNN, Cascade R-CNN,
RetinaNet, CornerNet, Grid R-CNN, FCOS, FoveaBox,
FSAF, and VarifocalNet on the NCAT12-DET dataset.

The remainder of this paper is organized as follows:
Section II provides an overview of related works on existing
datasets and object detection models that can be adapted for
surface defect detection. Section III details the new benchmark
dataset, NCAT12-DET. Section IV presents the benchmark,
including implementation details, performance evaluation
metrics, and the experimental results with discussion. Finally,
the conclusion and future work are provided in Section V.

II. RELATED WORKS
A. EXISTING DATASETS FOR SURFACE DEFECT DETECTION
In this section, we discuss an overview of existing steel
defect datasets commonly employed for steel surface defect
detection.

1) KolektorSDD [9]
The Kolektor surface-defect dataset (KolektorSDD) consists
of 400 images with a resolution of 1408 × 512 pixels
that were captured in a controlled environment. The dataset
consists of 50 defective electrical commutators, each with
eight relevant surfaces. For each item, the defect is only visible
in a single image, which means there were 50 images where
the defects were visible (defective or positive samples). For
each image, a detailed pixel-wise annotation mask is provided.
The remaining 350 images serve as negative examples with
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FIGURE 1. Samples of the defect classes in the NCAT12-DET dataset. The defect classes are specified in the columns, while the sample images
corresponding to each defect class are displayed in the rows. The inter-class defect similarities are exemplified by the resemblance between the clear
glass and hairline glass defect classes, as well as the corrosion and burnt surfaces defect categories. The intra-class defect differences is also evident in
the case of the defaced paint and burnt surfaces defect categories.

FIGURE 2. Samples of defective KolektorSDD [9] images with their
annotation masks in the top, and defective-free images in the bottom.

non-defective surfaces. Examples of such images with visible
defects and samples without defects are depicted in Figure 2.

2) NEU-DET [10]
The Northeastern University (NEU) surface defect dataset
consists of 1,800 grayscale images belonging to six distinct
categories of surface defects, as shown in Figure 3. These
categories include rolled-in scale (Rs), patches (P), crazing
(Cr), pitted surface (Ps), inclusion (In), and scratches (Sc).
Each defect category comprises 300 images. Figure 3
demonstrates that within the same defect category, there
can be variations in appearance and texture, as observed in
defect categories P and Sc. Additionally, images belonging
to different defect categories may exhibit some similarities in
their appearance and texture, as seen in defect categories Rs
and Cr.

3) GC10-DET [11]
This dataset, with its 3,570 grayscale images sourced from
real-world industrial steel plates, represents a significant
advancement over the limitations of NEU-DET by offering a
much larger and more diverse collection of data. It includes
ten distinct categories of surface defects as shown in Figure 4,

FIGURE 3. Samples of NEU-DET defect dataset [10] where the columns
specify the defect category, while the rows display representative images
for each defect category.

ranging from punching (Pu), weld line (Wl), crescent gap
(Cg), water spot (Ws), oil spot (Os), silk spot (Ss), inclusion
(In), rolled pit (Rp), crease (Cr), and waist folding (Wf).
This not only addressed the challenges of limited dataset
sizes and defect variety but also enhanced its real-world
applicability and the foundation for developing more robust
machine learning models. The broad spectrum of defects
and the increased dataset size enable the creation of robust
models capable of accurately identifying and classifying a
wide range of surface defects, thereby significantly improving
their practical utility in industrial settings.

B. INSPECTION METHODS
The field of surface defect detection, showcasing a broad
diversity of methods, adopts generic object detection
techniques aimed at identifying the presence of predefined
object classes within an image and defining the spatial
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FIGURE 4. Samples of the defect classes of the GC10-DET dataset [11].
Each cell in the figure corresponds to an image that characterizes a defect
category.

position and size of each instance [12]. These methods,
typically utilizing bounding boxes to precisely encompass
detected objects [13], [14], can be categorized as either
anchor-dependent or anchor-free object detectors. For each
method, a concise review is given below.

1) ANCHOR-BASED DETECTOR
These detectors employ predefined proposals divided into
positive and negative regions, with additional offset analysis to
refine bounding box accuracy. Object detectors are classified
into two types: two-stage detectors, illustrated in Figure 5, and
one-stage detectors, shown in Figure 6. Two-stage detectors,
such as R-CNN [15], SPP-net [16], Fast R-CNN [17], and
Faster R-CNN [18], separate the detection process into
proposal generation and object prediction stages. Conversely,
one-stage detectors like Overfeat [19] and SSD [20] perform
detection in a single network pass, directly predicting
bounding boxes and class probabilities. SSD’s competitive
performance inspired further architectural improvements,
including the integration of contextual information [21], [22],
[23], training models from scratch [24], [25], introducing
innovative loss functions [26], [27], and enhancing anchor han-
dling and matching [28], [29]. However, these anchor-based
detectors introduce numerous hyper-parameters requiring
precise tuning for optimal performance.

2) ANCHOR-FREE DETECTORS
Anchor-free detectors overcome the limitations of anchor-
based systems by directly identifying objects without
predefined anchors, using either keypoint-based methods
(CornerNet [31], CenterNet [32], CornerNet-Lite [32], Rep-
Points [33], CentripetalNet [34]) or center-based approaches
(FCOS [35], FoveaBox [36], FSAF [37], VarifocalNet [38],
GA-RPN [39]). Keypoint-based detectors generate bound-
ing boxes through self-learned image keypoints, while
center-based detectors utilize the object’s center point to
determine positives and predict bounding box dimensions
for detection.

III. NCAT12-DET DATASET
In this section, we provide a comprehensive description of
the NCAT12-DET dataset, covering four essential aspects:
the dataset collection, and annotation process, the dataset’s
descriptive characteristics, and statistical analysis.

A. DATASET COLLECTION
The dataset was collected in uncontrolled environmental
conditions, featuring variations in lighting, weather, and
background in a private car lot in Greensboro, North Carolina,
and the North Carolina A&T State University farm’s car lot.
The images in this dataset were manually captured using a
Skydio 2+ Enterprise drone with varying viewpoints and
altitudes on a variety of 87 automobile products: buses,
sedans, trucks, vans, and tractors, as shown in Figure 7 for a
period of 47 flight hours. The Skydio drone features a Sony
IMX577 camera sensor, capturing high-resolution images
with exceptional detail, and a six-camera collision avoidance
system. The choice of different, uncontrolled environments,
along with the varying viewpoints and altitudes, gives the
dataset an extra layer of uniqueness. This makes it more
realistic and true to the conditions in which defects happen
than defects that are synthetically generated.

B. DATA ANNOTATION
The images in the benchmark dataset were characterized with
distinct defect categories with the aid of an automobile surface
defect (ASD) expert. The ASD expert identified 12 defect
classes intrinsic to the images in the datasets to provide context
for the object detection models.

To construct the benchmark dataset, we manually annotated
the images with bounding boxes using Roboflow [40],
a computer vision platform as shown in Figure 8, to assign
distinct defect categories to each bounding box annotation.
The dataset was distributed to a team of three research
assistants who were trained to classify the defects so that
the process could be assessed for consistency and further
training requirements in the early stages. Furthermore, the
labeled images were analyzed by an additional three research
assistants through the visualization of both the labeled images
and the original images to corroborate that the annota-
tions corresponded to the actual defect categories. Finally,
the ASD expert reviewed and approved the ground-truth
annotations.

The defect categories are defined as follows:
• Burnt surface: This is fire-damaged automotive body-
work that is usually discolored, burned, or melted.

• Clear Glass: It is defined as glass free from visible defects
such as blemishes, scratches, cracks, or irregularities

• Corrosion: It is the gradual decay of metal caused
by chemical reactions with environmental agents like
oxygen, moisture, acids, or salts, commonly leading to
rust.

• Crack: These are discontinuities or fissures on a
material’s surface, varying in size, shape, and depth, are
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FIGURE 5. An illustration of various two-stage object detection models [30]. During the first stage, a diverse set of anchor
proposals which serve as potential regions of interest (ROI) are generated. Transitioning to Stage 2, a region-based
convolutional network (R-CNN) refines and filters the anchor proposals to detect the objects. The red dotted rectangles in the
figure represent the outputs, which specify the loss functions.

FIGURE 6. Summary of different one-stage object detection models [30]. The red dotted rectangles in the picture represent the
outputs, which specify the loss functions.

FIGURE 7. Data collection process involving the Skydio 2+ enterprise drone and the cars.

generally caused by external forces, stress, or material
flaws.

• Cutouts: These are small, irregular holes in the bodywork
of a car due to the cars involved in a collision.
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TABLE 1. Data distribution of the dataset for each defect category. The number of samples and instances denotes the number of images and bounding box
instances, respectively, that can be attributed to the defect category.

FIGURE 8. The data labeling process utilizing the Roboflow annotation
tool.

• Defaced Paint: These are surface defects that alter
the appearance and integrity of a painted surface,
characterized by flaws or irregularities that mar its visual
appeal.

• Dents: They are depressions in the metal bodywork of
cars when they are involved in a collision or when a heavy
object falls onto a car.

• Hairline-Glass: These are extremely narrow cracks that
are visually hard to detect, often caused by factors
like car collisions with objects, temperature changes,
or manufacturing flaws.

• Inclusion: This is a metal surface defect that is loose and
more likely to fall off as it is pressed onto the surface.

• Paint Peel: This is the detachment of paint film from
the underlying substrate, resulting in the appearance of
peeling on a painted surface.

• Spidery-Glass: This is a type of crack in glass that spreads
out in a spiderweb pattern.

• Tempered-Glass: This crack type, caused by a sudden,
high-impact force, spreads quickly and can result in the
windshield shattering completely.

C. DATASET ANALYSIS
The NCAT12-DET dataset is accessible on the GitHub
repository https://github.com/Brym-Gyimah/NCAT12-DET.
This dataset comprises 12 categories, as depicted in Figure 1,
encompassing a total of 7,200 images. For the dataset split,
80% (5,758) of the images are designated for training,
10% (720) for validation, and the remaining 10% (722)
for testing. Additionally, the dataset includes a total of
23,766 manually annotated regions characterizing all defect
categories.

Table 1 presents a distribution of the dataset for each defect
category.

1) DESCRIPTIVE ANALYSIS OF NCAT12-DET DATASET
Despite the diversity in the number of categories with in the
NCAT12-DET dataset, it introduces significant challenges in
distinguishing between the inter-class defect similarities and
the intra-class defect differences within the dataset. As shown
in Fig. 9, inter-class defect similarities happen when defects
from different categories appear nearly identical in their
appearance. For example, the clear glass and hairline glass
defect classes look very similar, as do the corrosion and burnt
surfaces defect classes. This can be due to a number of factors,
as listed below:

1) Minute variations in morphological features: For
example, multiple defect categories may have very
similar shapes and textures, making it difficult to
distinguish them even for human experts.

2) Changes in viewpoint: The same defect category can
appear quite different depending on how it is viewed.

3) Occlusion: It can be challenging to distinguish between
two defect categories when one is completely or partially
occluded by another.

On the other hand, intra-class defect differences refer to
instances where images within a single defect category display
considerable diversity in their appearance. The variations
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FIGURE 9. Samples of the inter-class defect clusters of the NCAT12-DET
defect dataset. The first two columns depict the inter-class cluster 1, which
exemplifies the resemblance between the clear glass and hairline glass
defect classes. The last two columns depicts the inter-class cluster 2, which
exemplifies the resemblance between the corrosion and burnt surfaces
defect classes.

FIGURE 10. Samples of the defect categories that characterize intra-class
defect similarities in the NCAT12-DET dataset. The first row depicts the
different varying object instances of the burnt surface defect category. The
second row depicts the background, occlusion, and viewpoint variation
that characterize the defaced-paint defect category.

within a class can be categorized into two distinct types:
intrinsic factors and imaging conditions.

1) Regarding the intrinsic factors, it is worth noting that
each defect category encompasses numerous defect
instances based on color, texture, material, form, and
size. This may be observed in the burnt surface defect
category depicted in Fig. 10.

2) Variations in imaging conditions arise due to the signifi-
cant effects that uncontrolled settings, including weather
conditions, backgrounds, illuminations, occlusion, and
viewing distances, have on the appearance of defects.
The defect appearance exhibited substantial variations
under each of these conditions, as exemplified in the
defaced-paint defect category in Fig. 10.

These distinct qualities underscore the complexity of the
NCAT12-DET dataset and emphasize the need for robust and
nuanced defect detection and classification algorithms.

2) STATISTICAL ANALYSIS OF NCAT12-DET DATASET
To comprehensively assess the NCAT12-DET dataset,
we conducted a thorough statistical analysis focusing on
two key aspects: the distribution of images across defect

classes and the defect instance distribution within the images.
The distribution of images across defect classes revealed
valuable insights into the dataset’s diversity, highlighting
variations in the frequency of different defect categories,
as shown in Fig. 11. This analysis not only allowed us to
gauge the prevalence of specific defect types but also provided
a foundation for understanding class imbalances (long-tail
distribution), as shown in Fig. 12A. The observed class
imbalance is a direct reflection of the varying frequencies
at which defects occur and the methodologies used during the
data acquisition process. Additionally, we examined the defect
instance distribution within images, shedding light on the
varying degrees of defect occurrence in individual images as
shown in Fig. 12. This aspect of the analysis was instrumental
in identifying potential challenges related to the density and
complexity of defects in real-world scenarios. By inspecting
these two critical dimensions of our object detection dataset,
we gained a comprehensive understanding of the challenge of
long-tail distribution characteristics, laying the groundwork
for robust model development and evaluation.

IV. BENCHMARK
In this section, we conduct a thorough comparative analysis
among some anchor-based and anchor-free object detectors for
surface defect detection as our the benchmark on the proposed
dataset (NCAT12-DET). We also present the implementation
details of these object detection models and their performance
evaluation metrics. We also discuss the significance of the
NCAT12-DET dataset in this section.

A. IMPLEMENTATION DETAILS
The experiments for this study were conducted on Pytorch [41]
and mmdetection [42]. We used three NVIDIA RTX A6000
GPUs to train all the defect detection models on the NCAT12-
DET dataset for a total of 30 epochs. The dataset is split into
80% training, 10% validation, and 10% testing.

During training, the images are resized to a scale of (1333,
800) while maintaining the aspect ratio, and an augmentation
strategy of random horizontal flips with a 50% probability
is also applied to the images for all the object detectors
except the CornerNet. Also, during the validation and testing
process, multi-scale and flip augmentations are applied to
the images, and the images are also resized to (1333, 800)
while maintaining aspect ratio. The implementation details of
the nine object detection models are further explored in this
section.

1) FASTER R-CNN [18]
The Faster R-CNN model uses a ResNeXt-101 backbone
with 4 stages and batch normalization. It incorporates the
Feature Pyramid Network (FPN) with inputs from four layers
[256, 512, 1024, 2048], generating five output stages. It uses
cross-entropy and L1 losses for classification and bounding
box regression, respectively, with equal weightings. The
SGD optimizer has a 0.02 learning rate, 0.9 momentum, and
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FIGURE 11. Defect class distribution of images: Visualizing the frequency of different defect categories in the NCAT12-DET dataset, where A denotes the
training samples, B denotes the validation samples and C represents the testing samples.

FIGURE 12. Defect instances distribution across images: Visualizing the frequency of the defect occurrences in the NCAT12-DET dataset, where A denotes
the training instances, B denotes the validation instances, and C represents the testing instances. The characteristic of the long-tail distribution (class
imbalance) is further highlighted in Figure A.

0.0001 weight decay, with a step policy learning rate schedule,
500 iterations linear warmup, and steps at epochs 8 and 11.

2) CASCADE R-CNN [43]
The Cascade R-CNN model uses a ResNeXt-101 backbone
with 4 stages, freezing the first stage for feature extraction and
applying batch normalization in evaluation mode. It utilizes
cross-entropy and smooth L1 losses equally for classification
and bounding box regression, respectively. The Cascade
RoI Head operates through three stages with diminishing
weights (1, 0.5, 0.25). SGD optimizes the model, featuring a
0.02 learning rate, 0.9 momentum, and 0.0001 weight decay,
with a step policy for learning rate scheduling, a 500-iteration
linear warmup, and step adjustments at epochs 16 and 19.

3) RetinaNET [26]
The Cascade R-CNN model utilizes a ResNet-50 backbone
with 4 stages, freezing the first for feature extraction.
It employs batch normalization in evaluation mode during
training, initialized with pretrained ResNet-50 weights
from torchvision. The model uses focal loss with sigmoid
activation for classification and L1 loss for bounding box
regression. Optimization is via SGD, with a 0.01 learning
rate, 0.9 momentum, and 0.0001 weight decay. The learning
rate schedule starts with a 500-iteration linear warm-up, then
drops step-wise at epochs 8 and 11.

4) CornerNET [31]
This object detector employs an HourglassNet backbone
with five down-sampling levels, two stacks, and varied stage
configurations, using batch normalization during training

without a neck component. It utilizes Gaussian focal loss for
heatmap, associative embedding loss for corner embedding,
and smooth L1 loss for offset prediction. Optimization is
done via Adam with a 0.0005 learning rate, incorporating
gradient clipping with a maximum norm of 35 using the
L2 norm. The learning rate follows a step policy, starting
with a 500-iteration linear warm-up, then a step-wise drop
at epoch 18. Training includes photometric distortion, random
cropping, padding, resizing, and horizontal flipping of images.
Validation and testing adjust the pipeline for dataset specifics,
including image loading, resizing, cropping, padding, flipping,
and normalization.

5) GRID R-CNN [44]
The object detector features a 101-layer ResNeXt [45]
backbone, utilizing frozen stages, batch normalization, and
pretrained weights from resnext10164× 4d . It employs cross-
entropy loss with sigmoid activation for classification and
smooth L1 loss for bounding box regression, balancing both
losses equally. The SGD optimizer is configured with a
0.02 learning rate, 0.9 momentum, and 0.0001 weight decay.
The learning rate schedule incorporates a step policy with a
linear warm-up of 3665 iterations and a 0.0125 warm-up ratio,
adjusting the learning rate at epochs 17 and 23.

6) FCOS [35]
This object detector features a 101-layer ResNeXt [45]
backbone with settings like frozen stages, batch normalization,
and pretrained resnext101_64 × 4d weights, plus a FPN
generating 256 output channels from inputs [256, 512, 1024,
2048]. It uses focal loss with sigmoid for classification, IoU
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loss for bounding box regression, and cross entropy with
sigmoid for centerness. SGD optimizes with a 0.01 learning
rate, 0.9 momentum, 0.0001 weight decay, and gradient
clipping at a max norm of 35. The learning rate follows a
step policy with a 500-iteration warm-up at a 0.3333 ratio,
adjusting at epochs 16 and 22.

7) FoveaBox [36]
This object detector uses a 101-layer ResNet as its backbone
with frozen stages, batch normalization, and pretrained
weights from torchvision : //resnet101, plus a FPN yielding
256 output channels from inputs [256, 512, 1024, 2048].
It utilizes focal loss with sigmoid for classification and smooth
L1 loss for bounding box regression. Optimized with SGD,
it has a 0.01 learning rate, 0.9 momentum, and 0.0001 weight
decay. The learning rate adopts a step policy with a
500-iteration linear warm-up at a 0.001 ratio, adjusting at
epochs 16 and 22.

8) FSAF [46]
This object detector features a 101-layer ResNeXt [45]
backbone with frozen stages, batch normalization, and
pretrained resnext101_64×4d weights, plus a FPN generating
256 output channels from [256, 512, 1024, 2048] inputs.
It uses focal loss with sigmoid for classification and IoU
loss for bounding box regression. Training employs SGD
with a 0.01 learning rate, 0.9 momentum, and 0.0001 weight
decay, including gradient clipping at a max norm of
10. The learning rate schedule includes a 500-iteration
linear warm-up at a 0.001 ratio, with adjustments at
epochs 8 and 11.

9) VARIFOCALNET [38]
This object detector features a 101-layer ResNeXt [45]
backbone with frozen stages, batch normalization, pretrained
resnext101_64 × 4d weights, and a deformable convolution
network (DCN). It uses a FPN with inputs [256, 512,
1024, 2048], outputting 256 channels. Classification employs
varifocal loss, with Generalized Intersection of Union (GIoU)
loss for bounding box regression and refined regression loss-
enhancing detection. Optimization is through SGD, setting a
learning rate of 0.01, momentum of 0.9, and weight decay of
0.0001, and incorporating a linear warm-up over 500 iterations
with a 0.1 warm-up ratio. Adjustments in the learning rate
occur at epochs 16 and 22.

B. PERFORMANCE EVALUATION METRICS
To evaluate the performance of various methods on the
NCAT12-DET dataset for surface defect detection, we use the
Average Precision (AP) metric, as specified in Equation (3)
(computed using Equation (1) and (2)), with varying
Intersection over Union (IoU) thresholds, as defined in
Equation (4), and scales of the defects to assess the overall
performance of the various detection models. We adopt these
metrics as outlined below:

1) AP, which represents the average precision across
various IoU thresholds spanning from 0.5 to 0.95 with
a 0.05-point increment. This is the principal evaluation
metric and measures how well the algorithm performs
at different IoU cutoffs.

2) AP50 (Average Precision at IoU 50%), a specific variant
that considers a detection to be accurate where the IoU
between the predicted and the ground-truth bounding
box is greater than 50%.

3) AP75 (Average Precision at IoU 75%) calculates the
average precision based on a higher IoU threshold
of 75%.

4) APs which focuses on assessing the algorithm’s
performance in detecting small objects where
area < 322 pixels.

5) APm which measures the model’s performance in detect-
ing medium-sized objects where 322 pixels<area<962

pixels.
6) APl which evaluates the model’s performance in

detecting large-sized defects within images where
area > 962 pixels.

Precision =
TP

TP+ FP
(1)

Recall =
TP

TP+ FN
(2)

AP =

∫ 1

0
p(r) dr (3)

IoU =
Area of Overlap of bounding boxes
Area of Union of bounding boxes

(4)

where TP, FP, and FN represent, correspondingly, the number
of true positives, false positives, and false negatives. p(r)
represents precision as a function of recall.

C. RESULTS AND DISCUSSION
The performance of this comparative analysis on the detection
models is investigated and reported from two aspects.

1) PERFORMANCE COMPARISON
The first set of results analyzes the performance of the object
detection models on the NCAT12-DET dataset. These results
are presented in Table 2 in terms of the evaluation metrics
described in Section IV-B.
The comparison of object detection models based on

performance evaluation metrics in Table 2 shows that the
VarifocalNet model surpasses all others on the NCAT12-DET
dataset, as depicted in Fig. 13. This superior performance is
attributed to its Varifocal loss function, which is a dynamically
scaled binary cross-entropy loss that effectively tackles the
class imbalance issue by modulating the loss between positive
and negative examples dynamically. Faster R-CNN and
Cascade R-CNN also deliver commendable average precision
scores across various metrics, indicating their robustness.
Conversely, CornerNet exhibits the lowest average precision,
suggesting its limited effectiveness on this dataset. Notably,
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TABLE 2. Comparison of different models for surface defect detection.

TABLE 3. Comparison of time complexity and space complexity among the object detectors on the NCAT12-DET dataset.

FoveaBox and VarifocalNet excel in detecting small-sized
defects. FCOS achieves a modest APs score of 0.203, while
CornerNet’s lowest score of 0.103 indicates its inadequacy
for small defect detection. VarifocalNet excels in identifying
medium-sized defects with the highest APm of 0.314, followed
closely by Cascade R-CNN and FoveaBox. For large-sized
defects, FoveaBox and VarifocalNet lead with the highest
APl values of 0.348 and 0.377, respectively, showcasing
their effectiveness, with Cascade R-CNN also demonstrating
significant performance in this category.
The performance of object recognition models is greatly

affected by the similarities and differences between defects
in the same class and between defects in different classes.
This impact is observed in both the precision at stricter
IoU thresholds and the detection of defects of different
sizes, as shown in Fig. 13. Models including Faster R-CNN
and Cascade R-CNN exhibited significant differences in
performance between AP50 and AP75, highlighting challenges
with achieving high precision due to ambiguity caused
by visually comparable defects across various categories,
especially at higher precision thresholds. Conversely, intra-
class variations influenced detector accuracy across small
(APs), medium (APm), and large (APl) defects. Larger
defects with more distinct attributes were easier to classify,
whereas minor defects frequently resulted in numerous
misclassifications. Advanced models such as VarifocalNet,
effective in both scenarios, demonstrated robust performance
by adeptly managing the overlap and subtle distinctions within

and between defect classes. These sophisticated architectures
enhance detection accuracy by adapting to a broad range of
defect characteristics, thus improving robustness and precision
in complex defect classification tasks.
The second set of results compares the FLOPS and the

number of parameters for the different object detection
methods. These results are also presented in Table 3.

The FLOPS column indicates the computational complexity
of each method in terms of floating point operations
per second (FLOPS), measured in gigaFLOPs (GFLOPs).
CornerNet with the HourglassNet-104 backbone has the
highest computational cost at 1765.82 GFLOPs. RetinaNet
with the ResNet-50 backbone has the lowest computational
cost at 207.01 GFLOPs. CornerNet demands significantly
higher computational resources compared to other methods.
The PARAMS (model parameters) column measures the

size of the model in terms of the number of parameters,
measured in millions (M). Cascade R-CNN with the
ResNext-101 backbone has the largest model size, around
126.67 million parameters. FoveaBox with ResNet-101 has a
moderately large model size, around 56.76 million parameters.
RetinaNet with ResNet-50 has the smallest model size, around
36.23 million parameters. Cascade R-CNN requires the most
memory for storage and operations, while RetinaNet uses the
least.
VarifocalNet, with the ResNext-101 backbone, stands out

as the top-performing method in terms of object detection
accuracy (AP) and exhibited a computational profile with

72616 VOLUME 12, 2024



N. K. Gyimah et al.: NCAT12-DET: A New Benchmark Dataset

FIGURE 13. Visualization results of the best-performing model, the VarifocalNet.

415.1 GFLOPs and 98.07 M PARAMS, placing it in a
comparable range to Faster R-CNN and highlighting its
balanced model with reasonable computational cost. It’s
top performance is attributed to the Varifocal loss function,
a dynamically scaled binary cross entropy loss which
addresses the class imbalance challenge of the dataset.
It also adopted adaptive anchor mechanisms, which changes
the sizes and aspect ratios of anchors based on how the
objects are characterized in the training dataset. CornerNet,
while computationally expensive, lags behind in terms of
performance metrics. RetinaNet with ResNet-50 offers a
relatively lightweight alternative with acceptable performance.

D. SIGNIFICANCE OF NCAT12-DET
The primary application of this research is to develop a
novel benchmark dataset, the NCAT12-DET, a comprehensive
surface defect dataset collected on cars that provides the
possibility of evaluating supervised object detection methods
for various defect categories. The ability to accurately
detect surface defects on cars is crucial for maintaining
high product quality and safety, as it supports preventative
measures for accidents and reduces maintenance costs.
By providing this dataset and the comparative analysis,
we further contribute to the acceleration of technological
advancements in transportation to drive the development of
more effective and reliable defect detection systems.

V. CONCLUSION AND FUTURE WORK
We have introduced the NCAT12-DET dataset, a compre-
hensive dataset that mimics real-world industrial inspection
scenarios on cars for the detection of surface defects. This
dataset provides the possibility of evaluating supervised object
detection methods for various defect categories. We also
provided a comprehensive discussion of the distinct qualities
of the NCAT12-DET dataset through a descriptive and
statistical analysis across the defect categories.

We have evaluated several state-of-the-art object detection
methods for surface defect detection on this dataset. The eval-
uations are intended to serve as a baseline for the development
of future methods. Our results show that the VarifocalNet
model outperforms all the other models that were adapted for
surface defect detection on the NCAT12-DET dataset. Faster
R-CNN, Cascade R-CNN, and FoveaBox show comparable
performance when also adapted to surface defect detection.
To advance the state-of-the-art, our future work would

focus on the exploration of novel model architectures
and the development of advanced training techniques that
enhance localization precision, reduce background and class
confusion, and optimize the model’s ability to distinguish
between objects with subtle visual differences. To effectively
detect and address long-tail errors, our future work will
incorporate multi-class classification in addition to bounding
box benchmarking, which is crucial for enabling detailed
post-hoc model assessment.

REFERENCES
[1] X. Fang, Q. Luo, B. Zhou, C. Li, and L. Tian, ‘‘Research progress

of automated visual surface defect detection for industrial metal planar
materials,’’ Sensors, vol. 20, no. 18, p. 5136, Sep. 2020.

[2] X. Sun, J. Gu, S. Tang, and J. Li, ‘‘Research progress of visual inspection
technology of steel products—A review,’’ Appl. Sci., vol. 8, no. 11, p. 2195,
Nov. 2018.

[3] Q. Zhou, R. Chen, B. Huang, C. Liu, J. Yu, and X. Yu, ‘‘An
automatic surface defect inspection system for automobiles
using machine vision methods,’’ Sensors, vol. 19, no. 3, p. 644,
Feb. 2019.

[4] M. A. Farooq, R. Kirchain, H. Novoa, and A. Araujo, ‘‘Cost of
quality: Evaluating cost-quality trade-offs for inspection strategies of
manufacturing processes,’’ Int. J. Prod. Econ., vol. 188, pp. 156–166,
Jun. 2017.

[5] N. K. Gyimah, A. Girma, M. N. Mahmoud, S. Nateghi, A. Homaifar, and
D. Opoku, ‘‘A robust completed local binary pattern (RCLBP) for surface
defect detection,’’ in Proc. IEEE Int. Conf. Syst., Man, Cybern. (SMC),
Oct. 2021, pp. 1927–1934.

[6] C. Mera, M. Orozco-Alzate, J. Branch, and D. Mery, ‘‘Automatic visual
inspection: An approach with multi-instance learning,’’ Comput. Ind.,
vol. 83, pp. 46–54, Dec. 2016.

VOLUME 12, 2024 72617



N. K. Gyimah et al.: NCAT12-DET: A New Benchmark Dataset

[7] N. K. Gyimah, K. D. Gupta, M. Nabil, X. Yan, A. Girma, A. Homaifar, and
D. Opoku, ‘‘A discriminative DeepLab model (DDLM) for surface anomaly
detection and localization,’’ in Proc. IEEE 13th Annu. Comput. Commun.
Workshop Conf. (CCWC), Mar. 2023, pp. 1137–1144.

[8] E. N. Malamas, E. G. M. Petrakis, M. Zervakis, L. Petit, and J.-D. Legat,
‘‘A survey on industrial vision systems, applications and tools,’’ Image Vis.
Comput., vol. 21, no. 2, pp. 171–188, Feb. 2003.

[9] D. Tabernik, S. Šela, J. Skvarč, and D. Skočaj, ‘‘Segmentation-based deep-
learning approach for surface-defect detection,’’ J. Intell. Manuf., vol. 31,
no. 3, pp. 759–776, Mar. 2020.

[10] K. Song and Y. Yan, ‘‘A noise robust method based on completed local
binary patterns for hot-rolled steel strip surface defects,’’ Appl. Surf. Sci.,
vol. 285, pp. 858–864, Nov. 2013.

[11] X. Lv, F. Duan, J.-J. Jiang, X. Fu, and L. Gan, ‘‘Deep metallic surface defect
detection: The new benchmark and detection network,’’ Sensors, vol. 20,
no. 6, p. 1562, Mar. 2020.

[12] X. Zhang, Y.-H. Yang, Z. Han, H.Wang, and C. Gao, ‘‘Object class detection:
A survey,’’ ACM Comput. Surv., vol. 46, no. 1, pp. 1–53, 2013.

[13] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman,
‘‘The Pascal visual object classes (VOC) challenge,’’ Int. J. Comput. Vis.,
vol. 88, no. 2, pp. 303–338, Jun. 2010.

[14] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.
Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, ‘‘ImageNet
large scale visual recognition challenge,’’ Int. J. Comput. Vis., vol. 115,
no. 3, pp. 211–252, Dec. 2015.

[15] R. Girshick, J. Donahue, T. Darrell, and J. Malik, ‘‘Rich feature hierarchies
for accurate object detection and semantic segmentation,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 580–587.

[16] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Spatial pyramid pooling in deep
convolutional networks for visual recognition,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 37, no. 9, pp. 1904–1916, Sep. 2015.

[17] R. Girshick, ‘‘Fast R-CNN,’’ 2015, arXiv:1504.08083.
[18] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-time

object detection with region proposal networks,’’ in Proc. Int. Conf. Adv.
Neural Inf. Process. Syst., vol. 28, 2015, pp. 91–99.

[19] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y.
LeCun, ‘‘OverFeat: Integrated recognition, localization and detection using
convolutional networks,’’ 2013, arXiv:1312.6229.

[20] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, ‘‘SSD: Single shot MultiBox detector,’’ in Proc. Eur. Conf.
Comput. Vis. Cham, Switzerland: Springer, 2016, pp. 21–37.

[21] T. Kong, F. Sun, A. Yao, H. Liu, M. Lu, and Y. Chen, ‘‘RON: Reverse
connection with objectness prior networks for object detection,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 5244–5252.

[22] C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg, ‘‘DSSD:
Deconvolutional single shot detector,’’ 2017, arXiv:1701.06659.

[23] P. Zhou, B. Ni, C. Geng, J. Hu, and Y. Xu, ‘‘Scale-transferrable object
detection,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 528–537.

[24] Z. Shen, Z. Liu, J. Li, Y.-G. Jiang, Y. Chen, and X. Xue, ‘‘DSOD: Learning
deeply supervised object detectors from scratch,’’ in Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), Oct. 2017, pp. 1937–1945.

[25] R. Zhu, S. Zhang, X. Wang, L. Wen, H. Shi, L. Bo, and T. Mei, ‘‘ScratchDet:
Training single-shot object detectors from scratch,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 2263–2272.

[26] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, ‘‘Focal loss for dense
object detection,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017,
pp. 2999–3007.

[27] K. Chen, J. Li, W. Lin, J. See, J. Wang, L. Duan, Z. Chen, C. He, and
J. Zou, ‘‘Towards accurate one-stage object detection with AP-loss,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 5114–5122.

[28] Z. Zhang, S. Qiao, C. Xie, W. Shen, B. Wang, and A. L. Yuille, ‘‘Single-
shot object detection with enriched semantics,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 5813–5821.

[29] X. Zhang, F. Wan, C. Liu, R. Ji, and Q. Ye, ‘‘Freeanchor: Learning to match
anchors for visual object detection,’’ in Proc. Adv. Neural Inf. Process. Syst.,
vol. 32, 2019, pp. 1–9.

[30] X. Wu, D. Sahoo, and S. C. H. Hoi, ‘‘Recent advances in deep learning for
object detection,’’ Neurocomputing, vol. 396, pp. 39–64, Jul. 2020.

[31] H. Law and J. Deng, ‘‘CornerNet: Detecting objects as paired keypoints,’’
in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 734–750.

[32] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, andQ. Tian, ‘‘CenterNet: Keypoint
triplets for object detection,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis.
(ICCV), Oct. 2019, pp. 6568–6577.

[33] Z. Yang, S. Liu, H. Hu, L. Wang, and S. Lin, ‘‘RepPoints: Point set
representation for object detection,’’ in Proc. IEEE/CVF Int. Conf. Comput.
Vis. (ICCV), Oct. 2019, pp. 9656–9665.

[34] Z. Dong, G. Li, Y. Liao, F. Wang, P. Ren, and C. Qian, ‘‘CentripetalNet:
Pursuing high-quality keypoint pairs for object detection,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 10516–10525.

[35] Z. Tian, C. Shen, H. Chen, and T. He, ‘‘FCOS: Fully convolutional one-
stage object detection,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 9626–9635.

[36] T. Kong, F. Sun, H. Liu, Y. Jiang, L. Li, and J. Shi, ‘‘FoveaBox: Beyound
anchor-based object detection,’’ IEEE Trans. Image Process., vol. 29,
pp. 7389–7398, 2020.

[37] C. Zhu, Y. He, and M. Savvides, ‘‘Feature selective anchor-free module
for single-shot object detection,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2019, pp. 840–849.

[38] H. Zhang, Y. Wang, F. Dayoub, and N. Sünderhauf, ‘‘VarifocalNet:
An IoU-aware dense object detector,’’ in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 8510–8519.

[39] J. Wang, K. Chen, S. Yang, C. C. Loy, and D. Lin, ‘‘Region proposal by
guided anchoring,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 2960–2969.

[40] Roboflow: Computer Vision Tools for Developers and Enterprises.
Accessed: Jan. 3, 2024. [Online]. Available: https://roboflow.com

[41] A. Paszke et al., ‘‘Pytorch: An imperative style, high-performance deep
learning library,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 32, 2019,
pp. 1–12.

[42] K. Chen et al., ‘‘MMDetection: Open MMLab detection toolbox and
benchmark,’’ 2019, arXiv:1906.07155.

[43] Z. Cai and N. Vasconcelos, ‘‘Cascade R-CNN: Delving into high quality
object detection,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 6154–6162.

[44] X. Lu, B. Li, Y. Yue, Q. Li, and J. Yan, ‘‘Grid R-CNN,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 7355–7364.

[45] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, ‘‘Aggregated residual
transformations for deep neural networks,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 5987–5995.

[46] Y. Zhai, J. Fu, Y. Lu, and H. Li, ‘‘Feature selective networks for object
detection,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 4139–4147.

NANA KANKAM GYIMAH (Member, IEEE)
received the B.Sc. degree in electrical and elec-
tronics engineering from the Kwame Nkrumah
University of Science and Technology, Kumasi,
Ghana, in 2017. He is currently pursuing the
Ph.D. degree in electrical engineering with North
Carolina Agricultural and Technical State Univer-
sity, Greensboro, NC, USA. His research interests
include machine learning, anomaly detection,
unmanned aerial vehicles (UAVs), computer vision,

and surface defect detection.

ROBERT AKINIE received the B.S. degree in
electrical and computer engineering from Calvin
University, Michigan, in 2021. He is currently
pursuing the Ph.D. degree in electrical engineering
with North Carolina Agricultural and Technical
State University, Greensboro, NC, USA. His
research interests include anomaly and intru-
sion detection systems, perceptual uncertainty in
autonomous vehicles, autonomous vehicle architec-
ture, and federated learning for IoT applications.

72618 VOLUME 12, 2024



N. K. Gyimah et al.: NCAT12-DET: A New Benchmark Dataset

XUYANG YAN (Member, IEEE) received the joint
B.S. degree in electrical engineering from North
Carolina Agricultural and Technical State Univer-
sity (NC A&T) and Henan Polytechnic University,
in 2016, and the M.S. and Ph.D. degrees in
electrical engineering from NC A&T, in 2018 and
2022, respectively. His research interests include
clustering, classification, feature selection, data
stream analysis, and active learning.

MAHMOUD NABIL (Member, IEEE) received
the Bachelor of Science (B.S.) and Master of
Science (M.S.) degrees (Hons.) in computer
engineering from Cairo University, Egypt, in
2012 and 2016, respectively, and the Ph.D. degree
in electrical and computer engineering from
Tennessee Tech University, Cookeville, TN, USA,
in 2019. Currently, he is an Assistant Professor
with the Department of Electrical and Computer
Engineering, North Carolina Agricultural and

Technical State University. He is also an Accomplished Researcher and has
authored and coauthored numerous publications in prestigious venues. His
research work has been published in renowned journals, such as IEEE INTERNET
OF THINGS JOURNAL, IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING,
IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, and IEEE TRANSACTIONS

ON MOBILE COMPUTING. He has received significant funding for his research
projects from esteemed national agencies and organizations, including the
National Science Foundation (NSF), the Department of Transportation
(DOT), the Air Force Research Laboratory (AFRL), NASA, Intel, Cisco,
and Lockheed Martin. He has also contributed to leading conferences,
including the International Conference on Communication, the International
Conference on Pattern Recognition, and the International Conference on
Wireless Communication. His research interests include security and privacy
in unmanned aerial systems, smart grids, machine learning applications,
vehicular ad hoc networks, and blockchain applications.

KISHOR DATTA GUPTA (Senior Member, IEEE)
received the Ph.D. degree from the University of
Memphis. He is currently an Assistant Professor
with the Cyber-Physical Department, Clark Atlanta
University. He has one patent and several peer publi-
cations related to adversarial machine learning. His
research interests include bio-inspired algorithms,
computer security, and computer vision. He serves
as a Program Committee Member for the Flagship
Artificial Intelligence Conference AAAI-23.

ABDOLLAH HOMAIFAR (Member, IEEE)
received the B.S. and M.S. degrees in electrical
engineering from the State University of New York
at Stony Brook, in 1979 and 1980, respectively,
and the Ph.D. degree in electrical engineering
from the University of Alabama, in 1987. He is
currently the Samuel P. Langley Distinguished
Professor and the Duke Energy Eminent Professor
with the Department of Electrical and Computer
Engineering, North Carolina Agricultural and

Technical State University (NCA&TSU). He is also the Director of
the Autonomous Control and Information Technology Institute and the
Testing, Evaluation, and Control of Heterogeneous Large-Scale Systems of
Autonomous Vehicles (TECHLAV) Center, NCA&T. His research interests
include machine learning, unmanned aerial vehicles (UAVs), testing and
evaluation of autonomous vehicles, optimization, and signal processing.
He serves as an Associate Editor for Intelligent Automation and Soft
Computing. He is a Reviewer of IEEE TRANSACTIONS ON FUZZY SYSTEMS,
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, and Neural Networks.

VAHID HEMMATI received the M.Sc. degree
in solid state physics from Isfahan University
of Technology, with a focus on computational
quantum (quantum espresso) and computational
linear algebra, the M.Sc. degree in computational
science from the Memorial University of New-
foundland, with a focus on Monte Carlo simulation,
high-performance computing, C++, and Fortran
programming, and the Ph.D. degree in mechanical
engineering from the University of North Carolina

at Charlotte, with a focus on statistical analysis, signal/image processing, and
instrumentation. He is a seasoned researcher and academician with a diverse
background in engineering and computational sciences. His academic journey
includes a postdoctoral experience at the University of Notre Dame, where
he worked on developing tools that leverage nanotechnology for biomedical
applications. His diverse research experiences and expertise in engineering and
computational sciences highlight his commitment to advancing technology for
biomedical applications. His expertise in programming languages, algorithm
development, data analysis, and AI, combined with a passion for pushing the
boundaries of technology, underscores his commitment to advancing research
and innovation.

DANIEL OPOKU received the B.S. degree in
electrical and electronic engineering from the
Kwame Nkrumah University of Science and
Technology (KNUST) and the Ph.D. degree in
electrical engineering fromNCA&T, in 2013. He is
currently a Senior Lecturer with the Department
of Electrical and Electronics Engineering, KNUST.
His research interests include automatic control and
robotics, artificial intelligence, unmanned aerial
vehicles (UAVs), and machine learning.

VOLUME 12, 2024 72619


