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ABSTRACT Glioma is a kind of brain disease with high incidence, high recurrence rate, high mortality,
and low cure rate. To obtain accurate diagnosis results of brain glioma, doctors need to manually
compare the imaging results of different modalities many times, which will increase the diagnosis time
and reduce the diagnostic efficiency. Image fusion technology has been widely used in recent years to
obtain information on multimodal medical images. This paper proposes a novel image fusion framework,
target information enhanced image fusion network (TIEF), using cross-modal learning and information
enhancement techniques. The framework consists of a multi-sequence feature extraction block, a feature
selection block, and a fusion block. The multi-sequence feature extraction block consists of multiple sobel
dense conv leaky ReLu block (SDCL-block). SDCL-block mainly realizes the extraction of edge features,
shallow features, and deep features. The feature selection block identifies the feature channels with rich
texture information and strong discrimination ability through the effective combination of global information
entropy criterion and feature jump connection. The feature fusion block mainly comprises multi-head and
spatial attention mechanisms, which can realize the fusion of intra-modality and inter-modality features.
On this basis, considering the influence of tumor spatial location and structure information on the fusion
results, a loss function is designed, which is a weighted combination of texture loss, structure loss, and
saliency loss so that texture information frommultimodal magnetic resonance imaging (MMRI) and saliency
information from different anatomical structures of the brain can be fused at the same time to improve the
expression ability of features. In this paper, the TIEF algorithm is trained and validated on the MMRI and
(Single-Photon Emission Computed Tomography-MRI) SPECT-MRI datasets of glioma and generalized
on the (Computed Tomography-MRI) CT-MRI dataset of meningioma to verify the performance of the
TIEF algorithm. In the image fusion task, quantitative results showed that TIEF exhibited optimal or
suboptimal performance in information entropy, spatial frequency, and average gradient metrics. Qualitative
results indicate that the fused images can highlight tumor and edematous features. A downstream image
segmentation task was used for evaluation to further verify TIEF’s effectiveness. TIEF achieved the
best results in both (Dice similarity coefficient) Dice and (Hausdorff distance 95%) HD95 segmentation
metrics. In the generalization task, quantitative results indicated that TIEF obtained more information in the
meningioma dataset. In conclusion, TIEF can effectively achieve cross-domain information acquisition and
fusion and has robustness and generalization ability.

INDEX TERMS Medical image fusion, multimodal magnetic resonance imaging, transformer, feature
selection.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhen Ren .

I. INTRODUCTION
Brain tumors rank among the most common diseases
globally. From 2019 to 2020, China recorded an average
of 12,768 brain tumor patients annually on the (National
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FIGURE 1. MMRI of brain tumors in the BraTs2019 dataset.

Brain Tumor Registry Research Platform) NBTRC platform,
a figure nearly 10 times higher than the cases reported in
the past decade [1]. Cancer arises from the mutation or
change of cellular function [2], resulting in an inability of
cells to undergo programmed death [3]. These tumors affect
various organs and tissues [4], [5]. While brain tumors rarely
spread to other parts of the body, they remain perilous. The
growth of tumors can lead to the proliferation and harm of
brain tissue in neighboring areas. Even benign tumors can
exert significant pressure on brain tissue, causing high-impact
complications [6], [7]. Brain tumors account for about 2.17%
of all cancer-related deaths, and their 5-year survival rate is
only 5.6% [8]. In diagnosing brain tumors, clinicians need to
combine different sequences of multimodal MRI, or CT and
MRI, to determine the condition of brain tumors and further
determine whether the brain tumors are benign or malignant
and what kind of treatment plan to use.

MMRI represents different sequences of MRI. Different
MRI sequences offer distinct different details about brain
tissues and anatomical features. Clinicians will combine
multiple modes of MMRI to comprehensively judge the
situation of tumors. In recent years, MMRI has emerged as
an indispensable tool for precise and personalized medical
care [9]. Unlike techniques involving ionizing radiation, MRI
remains unaffected by sampling errors and internal variations.
Fig. 1 shows a panel of brain tumor images obtained
through various MRI sequences. Observation of Fig. 1
reveals unique characteristics across different sequences.
T1 weighted imaging sequence (T1WI) presents clear
anatomical structures but fails to distinctly depict lesions.
In contrast, T1 weighted enhancement scanning imaging
sequence (T1Gd) highlights areas with active blood flow,
a crucial criterion for accentuating tumors. T2 weighted
imaging sequence (T2WI) displays relatively straightforward
images aiding in overall tumor assessment. Fluid attenuated
inversion recovery image sequence (FLAIR) suppressing
high signals in cerebrospinal fluid, delineates peritumoral
edema areas. These diverse imaging patterns capture addi-
tional pathological information. Given the limitations of
individual imaging modes, image fusion aims to merge
multi-modal images into a unified output, amalgamating
complementary information to facilitate enhanced human
visual perception and automated tumor detection. Multi-
modal brain MRI image fusion contributes to more precise
insights into lesion shapes, organizational structures, and
relative space position [10], facilitating the design of more
accurate individualized treatment plans.

Image fusion methods can be divided into two branches:
traditional fusion framework and deep learning fusion
framework. Conventional methods include multi-scale trans-
form [11], sparse representation [12], spatial domain
method [13], and hybrid method [14]. Traditional image
fusion methods are limited by factors such as the complexity
of source images, the complex design of artificial fusion
rules, and the prolonged processing time [15]. Medical image
fusion algorithms based on deep learning are divided into
convolutional neural networks (CNN), generative adversarial
networks (GAN) and Transformer. On the contrary, deep
learning methods CNN [16] and GAN [17] have the
advantages of detailed edge texture information, reduced
computational cost, and elimination of explicit fusion rule
design. However, due to the localized nature of convolution
operations [18], they need help to capture comprehensive
global knowledge. In addition, the Transformer model has
been successful in various vision tasks [19] and applied
to medical imaging. Still, the Transformer model mainly
focuses on the global information within the domain and
ignores the crucial cross-domain integration in the image
fusion task. This approach faces challenges distinguishing
between target volumes, such as enhanced tumors and
background.

Although the results of existing multimodal image fusion
algorithms are better than those of traditional image fusion
methods, many things could still be improved. Due to the lack
of ground truth formedical image fusion,mostmethods based
on deep learning achieve image fusion by designing loss
functions. At present, most of the design of the loss function
is limited to the global pixel information level, which is not
enough to form a fused image better than the source image
and limits the quality of the fused image, thereby limiting
the applicability of image fusion in medical applications.
Although the fusion results of some methods also contain
rich texture details, they have no significant contrast and
cannot clearly distinguish the target from the background.
The features containing rich texture information and edge
information only exist in specific feature channels. Using all
the shallow features for fusion reduces the fusion effect of the
model.

To solve the above problems, this paper proposes a brain
tumor MMRI fusion network based on feature selection
and attention mechanism: TIEF. This network’s fusion
image of a brain tumor contains clear brain structure
and anatomical information. More importantly, it integrates
the description of the edema part, enhanced tumor, and
necrotic tumor core of multiple modalities, and the dis-
crimination degree of each area is evident, which can
provide doctors with more precise and more accurate tumor
information. This work contributes significantly to multiple
aspects.

1) We proposed a feature information measurement block
based on information entropy, a simple yet robust tool
that measures feature information effectively. This block
establishes efficient skip connections between encoding and
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decoding stages, filtering high-detail and texture-rich feature
channels to enhance feature reuse.

2)We designed a fusion block devised to extract and merge
multi-modality deep features. Comprising a cross-modality-
based token learner block, transformer block, token fusion
block, and spatial attention block, this block dynamically
identifies critical areas within the input multi-modality deep
features, enabling spatial and cross-modal fusion.

3) We proposed a new loss function that incorporates
modality and tissue weighting, utilizing the regional contrast
index. This function controls the preservation degree of
information from source images and focuses on regions of
interest vital in various medical applications.

The remainder of this paper is organized as follows.
Section II provides a brief review of existing methods in
multimodal medical image fusion. Section III introduces an
efficient method tailored to the task of multimodal MRI
brain tumor fusion. Section IV delves into experimental
Settings, Outlines implementation details, presents fusion
experimental results, performs ablation studies and gen-
eralization studies, compares efficiencies and parameters,
and discusses limitations and potential future directions.
Section V draws conclusions based on the findings in this
paper.

II. RELATED WORK
In this section, the focus is on reviewing pertinent research
in image fusion and vision transformer techniques. These
two techniques hold considerable relevance to the method
adopted in this study, and we aim to provide an overview of
their significant developments.

A. TRADITIONAL MEDICAL IMAGE FUSION METHOD
Traditional methods for medical image fusion can be
categorized into spatial domain techniques, frequency
domain-based fusion, and sparse representation approaches.
Jiang et al. [20] introduced and applied the linked inde-
pendent component analysis method in a multi-modal MRI
study of Alzheimer’s patients. The study revealed increased
mean diffusivity, decreased graymatter volume, alterations in
anisotropy fraction and diffusion tensor patterns in the corpus
callosum and forceps, and increased anisotropy fraction
and diffusion tensor pattern in the regions of the superior
longitudinal fasciculus passing through the descending fibers,
such as the internal capsule, corona radiata, and superior
longitudinal fasciculus. Wang et al. [21] proposed a joint
Laplacian pyramid method integrating multiple features to
effectively transfer salient features from source images to a
single fused image, improving indicators such as standard
deviation (STD) by 10-15% compared to other traditional
methods. Kang et al. [22] presented a novel approach
utilizing group sparsity and graph positivity regularization in
dictionary learning (DL-GSGR) for medical image denoising
and fusion. This method demonstrated more effective feature
extraction compared to standard sparse representation and
multi-resolution analysis, enhancing indicators like mutual

information (MI) and universal quality index (UIQI) by
5-15%. Additionally, Guo et al. [23] proposed a multi-
modal image fusion framework based on two-scale image
decomposition and sparse representation, overcoming the
limitations of single traditional methods. This approach
retained finer details and edge features, showing an average
improvement of 30% in metrics like edge intensity (EN)
compared to optimal strategies.

Traditional multimodal medical image fusion methods
combine the target task to set the fusion rules and improve
the image clarity by processing the complementary infor-
mation between multiple images. However, although these
traditional algorithms are relatively simple, they are only
applicable to specific tasks or specific datasets, have limited
generalization ability, and they require more demanding
feature extraction and processing, leading to slower com-
putation speeds. The image fusion algorithm based on deep
learning provides a promising solution to solve the limitations
of traditional methods by enhancing the image fusion
effect.

B. DEEP LEARNING IMAGE FUSION METHOD
Deep learning-based image fusion methods encompass
various techniques such as CNN, GAN, and Transformer.
CNN excel at processing spatial and structural information
within adjacent regions of input medical images. Typically
composed of convolutional, pooling, and fully connected
layers, CNN extract features from source images, mapping
them to final outputs. These networks define image fusion as
a classification problem, utilizing CNN-based algorithms to
transform images, measure activity levels, and devise fusion
rules. Medical image fusion based on CNN mainly includes
pixel-level fusion and feature-level fusion. Pixel-level fusion
is simply a weighted average of pixel values. The fusion of
feature levels mostly involves joining or adding the channels
of the feature map. For instance, Vaswani et al. [24] designed
an early CNN-based fusion method, integrating traditional
activity level measurements with CNN-based feature extrac-
tion to produce fused images via pixel-weighted averages or
selected fusion strategies. Similarly, Li et al. [25] designed a
multi-scale CNN framework, training the network to generate
decision graphs for image fusion. Despite CNN’s ability to
learn from limited medical image datasets, the challenge
of overfitting persists due to the scarcity of medical image
samples. CNN learn hierarchical features, enhancing image
content comprehension and analysis. However, because CNN
only focuses on local information, the complexity and
diversity of multimodal medical image fusion limits its ability
to achieve optimal results.

The GAN algorithm differs significantly from CNN,
employing a generator and discriminator for feature extrac-
tion and optimization. In GAN, the generator produces an
image, while the discriminator discerns between real and
generated images. GAN is trained using an adversarial
loss function, where the generator and discriminator are
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FIGURE 2. The overall architecture of the proposed TIEF method.

in a constant adversarial interplay, striving for equilibrium.
The medical image fusion of GAN mainly generates the
fused image through the generator and judges whether
the generated image is realistic by discrimination. The
confrontation between the generator and the discriminator
optimizes the fusion effect. Liu et al. [26] proposed the fusion
GAN algorithm, treating image fusion as an image generation
task and utilizing the least squares GAN objective to stabilize
training. While GAN-based fusion methods address some
issues through adversarial confrontation, the simplicity of
single-scale networks in generators may lead to information
loss and excessive smoothing, causing distortions in the
fused image. To address this challenge, Liang et al. [27]
introduced the fusion network, incorporating lightweight
transformer blocks and adversarial learning to emphasize
global fusion. This model enables interaction between
shallow CNN-extracted features and the transformer fusion
block, refining spatial and cross-channel fusion relationships.
GAN models excel in retaining the selected information
from source images without requiring labeled data, delivering
clear and minimally distorted images. However, due to the
complexity of the GAN model, the gradient is prone to
disappear. Although the generator and discriminator of GAN
can realize cross-modal learning, they cannot adaptively
learn complementary information and screen important
information and channels.

Recently, Transformer-based algorithms has received a
lot of attention in the image fusion community. There are
many medical image fusion frames based on Transformer
that have achieved impressive performance. To extract
local and global information, Du et al. [28] used Patch
Pyramid Transformer (PPT) to extract non-local information
from the entire image [29], based on the AE-based fusion
framework. In addition, Maqsood et al. designed spatio-
Transformer as a multi-scale fusion strategy to capture both
local and global contexts [30], based on CNN-based fusion

framework. For better fusion result, Du et al. introduced
parallel Transformer and CNN architecture into the AE-
based fusion framework, (i.e., TransMEF [31]). Furthermore,
Wang et al. also injected Transformer into GAN-based fusion
framework to learn the global fusion relations [32]. To reduce
computational costs, Guo et al. [33] proposed a hierarchical
Transformer (i.e., Swin Transformer) by adopting shifted
windows to compute the representation. In their method,
Swin Transformer allowed cross-window connection and
limited self-attention computation to non-overlapping local
windows, which achieved greater efficiency and flexibility.
Motivated by [34], residual Swin Transformer (RSTB)
has been proposed to extract deep feature for image
restoration [35]. The image fusion method based on the
Transformer ignores the cross-domain information, fails
to capture the local and correlation information between
different modalities, and fails to highlight the lesion in the
tumor tissue area emphasized by enhanced tumor and other
multimodal images. This is the key to the problem of MMRI
brain tumor image fusion.

III. METHODS
In this section, we designed a TIEF network tailored for
mining and fusing multi-modal MRI images, illustrated in
Fig. 2. The architecture primarily comprises the SDCL-block,
feature selection block, and fusion block. The SDCL-block
operates as a detail-enhanced dual branch for deep feature
extraction, while the feature selection block serves as a block
for channel selection, focusing on information-rich channels.
The fusion block is responsible for integrating intra-modality
and inter-modality deep features obtained from the encoder.
TIEF adopts a U-shaped framework, featuring four branches
in the encoding section for individual extraction of deep
features from four source images. Conversely, the decoding
section consists of a single branch dedicated to reconstructing
the fused image.
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FIGURE 3. Illustration of the proposed SDCL block.

We denoted the source multi-modal MRI images as
X ∈ RI×H×W , where I represents the number of modalities.
For the MMRI fusion task, I = 4, cor-responding to T1WI,
T1Gd, T2WI, and FLAIR modalities. In the case of SPECT
-MRI fusion, I = 3, cor-responding to T1WI, T2WI, and
SPECT modalities. The symbols of W and H denote the
image’s width and height.

To enhance feature extraction within the encoding stage,
we designed a novel SDCL-block, depicted in Fig. 3,
employing a double parallel structure. One branch comprised
a dense block, optimizing the utilization of features extracted
through various convolutional layers. The other branch
employed gradient operations to calculate feature gradient
magnitudes, focusing on texture information extraction. The
Conv up and Conv down stages incorporated 1 × 1 con-
volutional layers to standardize channel counts within the
double-branch structure features. Subsequently, an additional
operation integrated the depth and detail features obtained
from the dual branches. The latter part of the SDCL-block
further accentuates feature integration by repeating the dense
block structure, reinforcing the propagation strength of the
extracted features.

A. FEATURE SELECTION
According to the pruning algorithm [36], the importance
of neurons, filters, and channels can be measured using
specific criteria. The less important branches can be pruned
to reduce the model size and speed up the calculation without
compromising the accuracy. To optimize feature utilization
in decoding, we’ve devised a novel feature selection block.
This block dynamically filters richer-detail features for more
effective skip connections.

We opted for information entropy as the criterion of
choice. Information theory supports entropy as an eval-
uation metric to quantify the information content within
an image or feature. It effectively reflects the intensity
distribution’s spatial and aggregative characteristics. A higher
entropy value signifies greater information content within
an image. While one-dimensional entropy assesses the gray
value aggregation, it does not capture spatial information.
Contrastingly, two-dimensional entropy encapsulates spatial
characteristics. In this study, the two-dimensional entropy
enables the characterization of content abundancewithin each
feature channel. For a feature map Fd ∈ RH×W in l th layer,
where d = 1, . . . ,D(with D being the number of channels).
We used a 3 × 3 sliding window to traverse the whole map

FIGURE 4. Illustration of the process of feature selection.

(stride is 1). The two-dimensional information entropy of Fd
is defined as:

H (Fd ) = −

∑255

i=0

∑255

j=0
pij log2 pij (1)

pij =
f (in, jn)
WH

(2)

where in denotes the gray value of the center pixel in the
nth sliding window, jn represents the mean gray value of
the neighborhood of the rest pixels centered at in in the nth
sliding window. Thus, we get a set {(in, jn)}HWn=1 to reflect
the comprehensive characteristics of the central pixel and its
surrounding pixels. The occurrence probability of f (in, jn) in
the image is defined as pij, where f (in, jn) is the occurrence
number of (in, jn), and W and H are the dimensions of the
feature map.

Visualizing feature maps across different depths and
channels and calculating their information entropy assists
in discerning the relationship between feature information
richness and feature map entropy. This process is particularly
valuable in identifying feature maps that align more closely
with human vision.

We calculated the entropy of Flair and T1ce feature maps
across different layer depths (Fig. 5 and Fig. 6). Both figures
demonstrate that each channel extracts distinct information.
The value in the upper right corner of the figure is the
information calculated by Eq. (1), and the circle in the upper
left corner represents the channel whose information entropy
is greater than the threshold. Channels within the same layer
focus on varied details and different areas. Channels with
higher entropy values, compared to those with lower entropy
values, exhibit richer texture details and more salient pixels
in tumor areas, aiding in visual tumor detection. To optimize
fusion image reconstruction in the decoding phase, selecting
feature maps with rich information–specifically, channels
with high entropy–is essential. We calculated and ranked all
channel features’ entropy values {H (Fd )}Dd=1 in lth layer,
selecting the top r entropy channels. In this paper, the
researcher adopted r = 8. Merely selecting features with
rich spatial information might not accurately and compre-
hensively represent image content. Hence, a feature selection
model is integrated as a network branch, addressing crucial
features in decoding through skip connections (Fig. 4).
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FIGURE 5. Visualization and entropy of shallow features.

FIGURE 6. Visualization and entropy of deeper layer features.

B. FUSION BLOCK
In this study, we introduce a fusion block aimed at mining
and integrating multi-modality deep features. This block

comprises a cross-modality-based token learner block, trans-
former block, token fusion block, and spatial attention block.
These components adaptively tokenize crucial regions within
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FIGURE 7. The architecture of Fusion Block: Cross-Modality-Based Token Learner Block, Transformer Block, Fused Tokens Block, and Spatial
Attention Block.

the input multi-modality deep features, facilitating spatial
and modality-based fusion. The network architecture of this
proposed fusion block is depicted in Fig. 7. We represented
the deep feature maps from each modality as {F1, . . . ,FI },
Fi ∈ RC×H×W (i = 1, 2, . . . ,I ), where C denotes the number
of channels. Upon concatenating {F1, . . . ,FI }, we derived a
tensor F ∈ RIC×H×W .

1) CROSS-MODALITY-BASED TOKEN LEARNER BLOCK
We learned to generate a series of tokenizer function {Ai}Si=1,
where S represents the number of tokens, aiming to map the
modality feature F to a token vector Vi.

Vi = Global average pool(F ⊙ Ai (F)) (3)

where Vi ∈ RIC×1×1 and ⊙ is the Hadamard product
(i.e., element-wise multiplication). This approach enabled the
tokens to dynamically adapt their spatial selections rather
than being fixed splits of the input tensor. These varying
tokens effectively mine intra-modality and inter-modality
deep features, enabling the modeling of their relationships
and interactions. The resulting tokens are aggregated to form
the learned token tensorV ∈ RSI×C . In this paper, we adopted
S = 8. Subsequently, the learned token tensor is forwarded
to the subsequent transformer block.

2) FUSED TOKENS BLOCK
Following the token generation by the cross-modality-
based token learner block and subsequent processing by
the transformer block, the fused tokens block is employed
to further amalgamate information among the tokens. This
functionality facilitates themodel in capturing cross-modality
‘patterns’ formulated by these tokens. The synergy between
the cross-modality-based token learner block and the fused
tokens block aims to fuse intra- and inter-modality deep

features effectively, ensuring robust integration of comple-
mentary information.

We started by applying a simple linear layer (denoted as
flinear , where flinear ∈ RHW×SI ) independently across each
channel of F , incorporating a sigmoid activation function
and reshaping operation. This operation results in Ft ∈

RSI×C×HW . Subsequently, the token tensor, denoted as
Ttokens ∈ RSI×C , is generated by the transformer block.
We then executed Fs = Ft⊙Ttokens(resulting in F s ∈

RSI×C×HW ) and executed token-wise addition on Fs along
the token axis. Consequently, we obtained the modality-
enhanced feature embedding Ffused tokens ∈ RC×HW .

3) SPATIAL ATTENTION BLOCK
Spatial attention serves to identify crucial regions within an
image by assigning significance scores to various spatial
regions within the feature map. This mechanism accentuates
important areas while dampening features in less relevant
regions. The spatial attention block employs global max-
pooling and global average-pooling operations along the
channel axis, concatenating their outputs to generate an
effective feature descriptor. The computation of the spatial
attention mechanism unfolds as follows:

Matrixmax = Global max pool
(
Layernorm

(
FC

))
(4)

Matrixavg = Global average pool
(
Layernorm

(
FC

))
(5)

Weightspatial =Sigmoid (Conv (Concat (Matrix1,Matrix2)))

(6)

Ffused features = Weightspatial ⊙ Ffused tokens (7)

Subsequently, we acquired the fused feature maps that
encompass a selection of pixels, spatial locations, and modal-
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ities, ensuring an adaptive and informative amalgamation
across modalities and spatial aspects.

C. LOSS FUNCTION
To facilitate the reconstruction of multi-modal image fusion,
we established a comprehensive loss function considering
three perspectives: texture information, structural informa-
tion, and salient target information.

1) TEXTURE LOSS
Different source images exhibit different features, such as
independent units, signal-to-noise ratio, voxel count, spatial
smoothness, and intensity distribution. Images of the same
morphology but different regions share overall structural
similarity but demonstrate different specific details and
textures. The purpose of fused images is to bridge the
detail gap caused by modal heterogeneity while preserving
the complex texture details. Through feature visualization
experiments, an optimal texture loss function is determined in
this paper. This function preserves more texture information
by fusing different modes of the image. At the same
time, to reduce the loss of image details, the loss function
introduces the Canny operator to depict the subtle differences
in the texture. With these considerations in mind, texture loss
was formulated to encourage fused images to contain richer
texture information. Mathematically defined as:

Ltexture =
1
HW

∥|∇G| − max(|∇Ii|)∥1 (8)

where∇ denotes the canny operator and ∥.∥1 denotes the loss
of L1.

2) STRUCTURE LOSS
The Structural Similarity (SSIM) [37] metric is commonly
employed to impose structural constraints, ensuring that the
fusion results encompass adequate structural details. The
SSIM applies a structural similarity index measurement to
constrain the resemblance between the fusion image and the
source images. Mathematically defined as:

SSIM (x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ 2
x + σ 2

y + C2)
(9)

where µ and σ are the mean and variance operations, σxy
denotes the covariance, C1 and C2 are two constants.
Entropy is used to measure the richness of image informa-

tion. From the information theory perspective, regions with
richer texture details have higher information content and
entropy. It is worth noting that although both entropy and
gradient methods can evaluate texture richness, the entropy
method is more advantageous than the gradient method. The
imaging gradients showed varying degrees of response in
different modes. For example, on T2WI, there is a strong
gradient in the tumor region at the edge of the tumor, while
the gradient in the other areas is sparse andmoreminor. T1WI
showed a slight tumor response with a weak gradient. T1Gd
showed marked intratumoral enhancement with a relatively

uniform distribution of pixels and a mild gradient outside the
tumor. The distribution of pixel intensity in FLAIR images
was not uniform, and the gradient change was noticeable.
However, relying solely on gradients as a measure may
lead to misleading results that significantly affect marginal
assessments.

The entropy calculation depends on the probability dis-
tribution of the individual gray levels within the image.
Considering the overall pixel intensity distribution through
the probability distribution, it is not easy to be affected by
the sparse gradient. The higher the information entropy in
the image, the richer the content contained in the image.
The contribution of different modal photos to the final image
fusion was calculated according to the information entropy of
the image, and the corresponding weight was given.

wij =
eκHij∑
i,j e

kHij
(10)

where κ is the adjustment coefficient, balancing the ratio
between Hij.

In similarity calculation, amask is considered for the tumor
region to ensure that critical information is covered within a
small receptive field range. Therefore, this paper designs a
mask region similarity loss function:

LM−SSIM = 1 −
1
IJ

∑I

i=1

∑J

j=1
SSIM (wijIMij,Gj) (11)

IMij = Ii ⊙Mask j (12)

Gj = G⊙Mask j (13)

Here, i = 1, 2, . . . . . . ,I ; j = 1, 2, . . . . . . ,J ; I =

4;J = 4.⊙ denotes element-wise multiplication, and Mask j
represents masks of different tumor regions, with Mask1
indicating the normal tissue area.

3) SALIENT LOSS
To better meet the human vision and realize the significant
presentation of different tumor parts in the fusion image, this
paper increased the contrast between different tissues of the
tumor to make the tumor salient. Therefore, we introduce the
Salient Loss term:

Lsalient = 1−
1
3

∑4

j=2

∣∣∣∣∣R
(
Gj

)
− R(G′

j)

R(G)

∣∣∣∣∣ (14)

R
(
Gj

)
=

sum(Gj)
sum(Mask j)

(15)

G′
j denotes the rest of the image region of G except Gj.

R
(
G′
j

)
=

sum(G′
j)

sum(A−Mask j)
(16)

Here, A is an all-ones matrix of size H ×W .

4) TOTAL LOSS
Total loss is calculated by the following formulae:

Ltotal = αL texture + βLM−SSIM + ηLsalient (17)
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where α, β, η is the balance coefficient, which is used to
control the proportion of the influence of texture information,
structure information, and saliency information on the fusion
result.

IV. RESULTS AND DISCUSSION
This section presents a comparative analysis of TIEF and
several state-of-the-art methods using multimodal med-
ical images. These experiments involve qualitative and
quantitative comparisons using publicly available datasets.
In addition, we performed ablation and generalization studies
to delve into the performance and components of the method.

A. DATASETS
The fusion effect of TIEF was verified by using several
different multimodal medical datasets, and the generalization
effect of TIEF was verified by using one multimodal medical
dataset of various diseases. The BraTs2019 dataset [38]
consists of 335 cases, each containing four MRI sequences
(FLAIR, T1WI, T1Gd, T2WI) and tag sequences that outline
the tumor core, post-enhancement tumor, edema, and the
entire tumor region. These labels helped we make masks.
A fusion experiment was performed on RGB multimodal
medical images from the neoplastic disease (brain tumor)
dataset in AANLIB [39] to verify the fusion performance.
This dataset included SPECT-T1WI, GAD, and T2WI
images. Notably, the BraTs2019 dataset consists of gray-
scale images, while the SPECT-T1WI images in the AANLIB
dataset are in RGB format. Medical image fusion of CT
and MRI was performed using meningioma data from the
ANNLIB dataset to verify the model’s generalization.

B. COMPARSION METHODS AND EVALUATION
INDICATORS
We compared the proposed TIEF with a comprehensive
set of established image fusion methods used in the field.
This comparison included traditional methods such as CBF
(2015) [40] and MGFF (2019) [41], alongside contemporary
techniques like U2Fusion (2020) [42], EMFusion (2021)
[43], and SeAFusion (2022) [44], which are CNN-based
fusion approaches. Additionally, we evaluate the proposed
technique against GAN-basedmethodologies such as Fusion-
GAN (2019) [45], DDcGAN (2020) [46], and GANMcC
(2020) [47]. Furthermore, the performance of the proposed
TIEF was assessed against recent Transformer-based fusion
methods, including SwinFusion (2022) [48], MRSCFusion
(2023) [49] and DesTrans (2024) [50].
Further, for quantitative comparison, we utilized eight

metrics to assess fusion performance across all models
presented in this study. These metrics included average
gradient (AG) [51], spatial frequency (SF) [52], entropy
(EN) [53], mutual information (MI) [54], peak signal-to-
noise ratio (PSNR) [55], structural similarity index measure
(SSIM) [56], gradient-based fusion performance (QAB/F )
[39], and contrast index (CI) [57]. SSIM evaluates structural

similarities between source and fused images in terms of
correlation, luminance, and contrast distortion. Higher SSIM
values indicate lower structural loss and distortion. PSNR
represents the ratio of peak value power to noise power
in the fused image, where higher PSNR values signify
closer proximity to the source images. EN quantifies image
information, where greater information entropy signifies
richer knowledge in the fused image. AG measures grayscale
changes across image boundaries, indicating image sharpness
and detail contrast. Higher AG values indicate better fusion
performance. SF gauges row and column frequency in
the fused image, reflecting image texture and edge detail
richness. CI signifies contrast between foreground and
background, aiding in differentiating diseased and normal
tissue areas visually. Higher CI values improve tumor
visibility. MI assesses image intensity similarity between
source and fused images, while QAB/F measures edge
information similarity. Greater MI and QAB/F values denote
superior fusion performance.

C. EXPERIMENTAL DETAILS
The epoch count was set at 320, employing an initial learning
rate of 0.0005 with exponential decay and using the Adam
optimizer. Each batch size is set to 32. BraTs2019 dataset
cases, comprising FLAIR, T1WI, T1Gd, and T2WI multi-
modal MRI images, were aligned to FLAIR modality and
resized to 128 × 128 × 32. AANLIB dataset cases, which
encompassed T2WI, GAD, and SPECT-T1WI multi-modal
MRI images, were aligned to GAD modality and resized to
128× 128× 32. For hyperparameters in Eq. (10), κ was set to
0.25. In Eq. (17), α, β, and η were set to 0.3, 0.4, and 0.3. All
experiments were conducted using PyTorch on a Windows
workstation equipped with an Intel®Core™i9-10900X CPU
and an NVIDIA Geforce GTX Titan A100 GPU.

D. RESULT
1) BRATS2019 MULTI-MODAL MRI FUSION
The fusion results on the BraTs2019 dataset are shown
in Fig 8, showcasing outcomes from three experiments,
each involving four distinct MRI image modalities: FLAIR,
T1 WI, T1Gd, and T2WI. We selected three specific images
that highlight variations in modalities regarding information
richness and imaging quality, notably the image quality of
T1WI. Each mode encompasses distinct details about the
tumor, resulting in noticeable differences.

The fusion results on the BraTs2019 dataset are shown
in Fig. 8, and each experiment involved four different
MRI image modalities: FLAIR, T1WI, T1Gd, and T2WI.
We selected three images that showed differences in
information richness and imaging quality. Combined with
Fig. 8, it can be found that the fusion results of CBF,
FusionGAN, DDcGAN, GANMcC, and MGFF lose more
details of the source map, which reduces the identifiability
of structural information and makes the image unclear.
In contrast, TIEF preserves the critical information, modal
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TABLE 1. Quantitative comparison of different methods for 8 evaluation items indicators in the Brats2019 dataset (Red: Optimal, Blue: Suboptimal).

structural details, texture details for each modality, and
pixel intensities in the fusion results, thus enhancing clarity,
structure, and texture. This advantage is because the adopted
method enhances the extraction and transfer of structural
information, ensuring that the extraction and retention of
source image knowledge is more comprehensive than other
techniques. TIEF shares information in the fusion block and
the loss function part. Therefore, when a particular mode
image quality is low and the texture is unclear, the fusion
result minimizes the interference of the low-quality mode,
strengthens the information of other modes, and prevents
the loss of edge texture cues. On the contrary, in the third
line of the experiment, the fused images of other methods
were significantly affected by the T1WI mode, resulting in
a decrease in image quality. In terms of tumor details, while
EMFusion, SeAFusion, and U2Fusion retain information
from a variety of patterns representing different tumor tissues,
like SwinFusion, MRSCFusion, and DesTrans, in their fusion
results, The boundaries of the tumor core, post-enhancement
tumor, and edema were not apparent. In contrast, TIEF
delineates the pixels of different tumor tissues in the loss
function, which ensures a more obvious distinction between
tumor core, enhanced tumor, and edema in the final fusion
result.

The qualitative fusion results are shown in Table 1. The
comparative analysis with the other 11 methods showed
that TIEF had better EN, SF, AG, and SSIM scores,
indicating that the fusion image quality was higher, and the
multimodal image feature information was better preserved.
In addition, TIEF obtained the best QAB/F and CI scores,
indicating reduced distortion, improved visual quality, and
good agreement with human visual perception. The PSNR
index of TIEF is suboptimal. The reason is that PSNR is the
most common and widely used objective image evaluation
index, but it is different from human visual characteristics.
The human eye has a high sensitivity to luminance contrast

differences, and the perception result of a region will be
affected by the brightness of its neighboring areas. Just as
TIEF expects the brightness of different brain lesion tissues to
be significantly different in fused images. Therefore, PSNR
is inconsistent with human subjective feeling, and PSNR is
suboptimal in several algorithms. The MI metric of TIEF
is suboptimal because the information is converted from
the source map to the fusion map, and theoretically, the
amount of information should remain the same. However, the
fusion images obtained by TIEF emphasize the advantages of
different modes, and other lesions are clearly distinguished in
the fusion images. The fused image enhanced the individual
and cooperative information, reducing the interference of
redundant information. So, although the overall mutual infor-
mation decreases from a macro perspective, the synergy of
information increases. So, there is a specific reduction in MI.

2) EXTENSION TO SPECT AND MRI FUSION
TIEF was experimentally performed on SPECT and MRI
images within the AANLIB dataset to further demonstrate
the generality of the proposedmethod. Seventy pairs of multi-
modelMRI/SPECT images were used for training, resampled
to 128 × 128, of which 5 pairs were used for testing. Since
the SPECT images are RGB, the investigators converted
them to YUV and extracted the Y-channel for fusion with
the TIEF single-channel grayscale MRI images. The output
y-component is the basis for the fused image, which is
then converted back to the RGB of the final image. T2WI
images have rich texture details, and in GAD and SPECT-
T1WI images, there is a clear contrast between the pixel
values of normal tissue and the diseased area. Therefore,
the adopted fusion evaluation criteria prioritize preserving
precise texture details, structural information, and pixel con-
trast within the lesion area. The evaluation results are shown
in Table 2 and Fig. 9.
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FIGURE 8. On the three typical image pairs of the Brats2019 dataset. a, b, and c correspond to three typical images. The fusion results
obtained by CBF, MGFF, FusionGAN, DDcGAN, GANMcC, EMFusion, SeAFusion, U2Fusion, SwinFusion, MRSCFusion, DesTran and TIEF are
shown in order. The enlarged section in the bottom corner provides a more detailed comparison.

The results showed that CBF introduced noise and reduced
image quality. MGFF, FusionGAN, GANMcC, SwinFusion,

and U2Fusion images are blurred, lack texture detail, and
have low pixel intensity and contrast in critical areas.
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FIGURE 8. (Continued.) On the three typical image pairs of the Brats2019 dataset. a, b, and c correspond to three typical images. The fusion results
obtained by CBF, MGFF, FusionGAN, DDcGAN, GANMcC, EMFusion, SeAFusion, U2Fusion, SwinFusion, MRSCFusion, DesTran and TIEF are shown in
order. The enlarged section in the bottom corner provides a more detailed comparison.

TABLE 2. Quantitative comparison of different methods for 8 evaluation items indicators in the AANLIB dataset (Red: Optimal, Blue: Suboptimal).

SeAFusion retained relatively rich texture and structural
information, but the overall image was dark, probably due
to the ubiquitous black background in SPECT-T1WI, which
affected the pixel intensity of the final image. MRSCFusion,
DDcGAN, EMFusion, and DesTrans retain more comprehen-
sive source image information but require enhanced detail

contrast. Compared with other methods, TIEF effectively
preserves the intricate texture of the source image and
the color information of RGB, which is more suitable
for human visual perception. Based on the quantitative
analysis, TIEF obtained the optimal EN, SF, QAB/F , CI,
AG, and the suboptimal MI, PSNR, and SSIM in the
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FIGURE 9. On the three typical image pairs of the ANNLIB dataset. a, b, and c correspond to three typical images. The fusion results obtained by CBF,
MGFF, FusionGAN, DDcGAN, GANMcC, EMFusion, SeAFusion, U2Fusion, SwinFusion, MRSCFusion, DesTran and TIEF are shown in order. The enlarged
section in the bottom corner provides a more detailed comparison.

test images. The main reasons for suboptimal MI and
PSNR are the same as the BraTs2019 dataset, but the
main reason for suboptimal SSIM is that the SeAFusion
network takes fine-grained details into account when it is
constructed, and the SeAFusion network does not use any
downsampling, which indicates that SEAFusion keeps more
similar information. This is why the SSIM of SeAFusion

is higher than that of TIEF 0.012. However, from the
visual point of view, the gradient change inside the tumor
of TIEF is more prominent, while there is no gradient
change inside the tumor of SeAFusion, which will have a
particular impact on the localization of the cancer, and this
result is further verified in the downstream segmentation
task.
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FIGURE 10. Qualitative comparison of three typical image pairs in the BraTs2019 dataset to validate the
effect of different blocks. From left to right, the sequence comprises FLAIR, T1WI, T1Gd, and T2WI images,
followed by the fusion results of our method, fusion results without the fusion block, fusion results without
the feature selection block, and fusion results without the feature loss (M-SSIM) block.

TABLE 3. Quantitative results obtained with a combination of different blocks in the Brats2019 dataset (Red: Optimal, Blue: Suboptimal).

FIGURE 11. Qualitative comparison of three typical image pairs in the AANLIB dataset to validate the
effect of different blocks. The sequence from left to right includes T2WI, GAD, and SPECT-T1WI images,
followed by the fusion results of our method, fusion results without the fusion block, fusion results
without the feature selection block, and fusion results without the feature loss (M-SSIM) block.

3) ABLATION STUDY
To assess the impact of various blocks on the model’s
efficacy, we conducted experiments on both the BraTs2019
and AANLIB test datasets. Three representative images were
selected for these experimental evaluations. These images

embody diverse modalities, each showcasing distinct tumor-
related information. The primary aim was to ensure that the
fusion results maintained the intricate details from the source
maps while accentuating discrepancies among tumor regions.
The adopted ablation experiments encompassed different
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TABLE 4. Quantitative results obtained with a combination of different blocks in the AANLIB dataset (Red: Optimal, Blue: Suboptimal).

TABLE 5. Segmentation task results.

combinations of the loss function, feature selection, and
fusion blocks. The ‘‘Baseline’’ scenario denotes training
the network without any additional blocks. Observing the
outcomes (Fig. 10), in the absence of the fusion block,
although the fused image retains part of the texture and
structural information and the tumor area is also apparent,
there is a significant deviation from the actual image. This
bias leads to substantial information loss, contrary to human
visual perception. Comparing the results across experiments
(Table. 3), the addition of the fusion block enhances various
performance metrics such as QAB/F , EN, SF, MI, and PSNR,
while showing suboptimal performance in AG, CI, and SSIM
metrics.

4) ABLATION STUDY
To assess the impact of various blocks on the model’s
efficacy, we conducted experiments on both the BraTs2019
and AANLIB test datasets. Three representative images were
selected for these experimental evaluations. These images
embody diverse modalities, each showcasing distinct tumor-
related information. The primary aim was to ensure that the

fusion results maintained the intricate details from the source
maps while accentuating discrepancies among tumor regions.
The adopted ablation experiments encompassed different
combinations of the loss function, feature selection, and
fusion blocks. The ‘‘Baseline’’ scenario denotes training the
network without any additional blocks. Observing the out-
comes (Fig. 10), in the absence of the fusion block, although
the fused image retains part of the texture and structural
information and the tumor area is also apparent, there is a
significant deviation from the actual image. This bias leads to
substantial information loss, contrary to human visual percep-
tion. Comparing the results across experiments (Table. 3), the
addition of the fusion block enhances various performance
metrics such as QAB/F , EN, SF, MI, and PSNR, while show-
ing suboptimal performance in AG, CI, and SSIM metrics.

5) ABLATION STUDY
To assess the impact of various blocks on the model’s
efficacy, we conducted experiments on both the BraTs2019
and AANLIB test datasets. Three representative images were
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TABLE 6. Quantitative comparison of different methods for 8 evaluation items indicators in the AANLIB meningioma dataset.

selected for these experimental evaluations. These images
embody diverse modalities, each showcasing distinct tumor-
related information. The primary aim was to ensure that the
fusion results maintained the intricate details from the source
maps while accentuating discrepancies among tumor regions.
The adopted ablation experiments encompassed different
combinations of the loss function, feature selection, and
fusion blocks. The ‘‘Baseline’’ scenario denotes training
the network without any additional blocks. Observing the
outcomes (Fig. 10), in the absence of the fusion block,
although the fused image retains part of the texture and
structural information and the tumor area is also apparent,
there is a significant deviation from the actual image. This
bias leads to substantial information loss, contrary to human
visual perception. Comparing the results across experiments
(Table. 3), the addition of the fusion block enhances various
performance metrics such as QAB/F , EN, SF, MI, and PSNR,
while showing suboptimal performance in AG, CI, and SSIM
metrics.

The fusion block better integrated the original image
information and fused imaging. This underscores its critical
role in producing high-quality fusion results. In this study,
the baseline approach of feature selection blocks to enhance
fusion results was compared with TIEF, eliminating the effect
of feature selection blocks. For example, although the image’s
edge texture information from the first row of T2WI is very
prominent, this detail must be accurately represented in the
fusion results. The advantages of using feature selection
blocks become more apparent through our comparison. The
baseline method with a feature selection block significantly
improved the evaluation indicators compared with the base-
linemethod alone. From the comparative analysis in the table,
the lack of feature selection reduces the information richness
of the source map in the fusion results. The experimental
results show that the feature selection block dramatically
improves the network’s fusion effect. In addition, the impact

of adding loss function blocks to the experiment is inves-
tigated. The addition of this block significantly improved
EN, AG, CI, MI, PSNR, and other evaluation indicators.
Comparing the TIEF method with or without the addition of
the loss function block confirmed its importance in enhancing
the contrast between different tumor tissues. The figure shows
that the paired comparison of the fusion results could be
better without the loss function, highlighting the superiority
of TIEF.

The same test was conducted on the AANLIB dataset.
Fig. 11 shows that the experimental results without the
fusion block deviate from the image’s source and distort
the color part. The absence of the feature selection block
in the experiments leads to a noticeable lack of detailed
information, resulting in blurred images. Similarly, when
the experiments lacked a loss function block, the contrast
in the front and back scenes was notably diminished.
Table. 4 also illustrates the different effects of the fusion,
feature selection, and loss function blocks from different
perspectives.

6) DOWNSTREAM TASK VALIDATION
To verify the model’s effectiveness further, we connected
the segmentation network (no-new-Net) nn-Unet after 11
comparison methods and TIEF to further verify the model’s
effectiveness through the effect of segmentation. The
obtained segmentation results are shown in Table 5. Dice
represents the similarity of the two samples, ranging from 0
to 1, and the closer to 1, the better the segmentation effect.
HD95 indicates the degree of overlap of the boundaries, and
smaller values represent better segmentation. ET represents
the enhancing tumor, TC represents the tumor core, and WT
represents the whole tumor. Through the segmentation results
of enhancing tumor, tumor core, and the whole tumor, it was
found that TIEF had the largest Dice and the lowest HD95,
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FIGURE 12. The parameters are selected as grid plots. Values represent
index ranking.

FIGURE 13. Loss function curve.

FIGURE 14. Curves for changes in age-adjusted coefficients of EN and
SSIM.

indicating that the segmentation effect of TIEF-based image
fusion was the best, indicating that the fused image of TIEF
was of high quality.

7) GENERALIZATION STUDY
To further verify the generalization of the model. We used
meningioma CT and MRI data from the ANNLIB data set.
Meningioma is a primary intracranial tumor, primarily benign
and asymptomatic in the early stage. However, with the
compression of the tumor, headache and epilepsy may occur,
and the loss of vision, hearing, and smell may occur in severe
cases. Meningiomas grow between the human skull and brain
tissue, which differs from the growth location of glioma.
Early screening and diagnosis of meningioma can prolong
the survival of patients. TIEF performed a fusion of CT and
MRI, and the results are shown in Table 6. By calculating the
generalization results, it was found that the indexes reached
optimal, indicating that the generalization effect of TIEF was
good.

E. HYPER PARAMETERS COMPARISON
In Eq. (17), α, β, η is the balance coefficient (η = 1−α −

β, α ̸= 0, β ̸= 0, η ̸= 0). In this paper, we set the
value of α = {0.1,0.2,0.3,0.4,0.5,0.7} and the value of
β = {0.1,0.2,0.3,0.4,0.5,0.7} for experimentation. When
α = 0.6 or β = 0.6, the loss function fails to
converge. Each combination was assessed based on various
evaluation indices, and the values were recorded and ranked
in descending order. The best result is when α = 0.3,β =

0.4, η = 1−α − β = 0.3. Observing the loss function of
the pre-experiment, it is found that TIEF begins to decline
smoothly at an epoch equal to 200 and reaches convergence
around an epoch equal to 320, so epoch 320 is selected
for the formal experiment in this paper. In this paper,
κ is the adjustment coefficient, which is used to control
the proportional change of information entropy of different
modes in weight calculation, to ensure the best fusion effect
of the model. κ mainly plays a key role in Eq. (10) and
Eq. (11), which correspond to the two evaluation indexes EN
and SSIM respectively. The curve of EN and SSIM with the
change of κ value showed that when κ was 0.25, both EN and
SSIM reached the maximum.

V. CONCLUSION
This paper proposed a multi-modal MRI image fusion
method, emphasizing the description of the edema part,
enhanced tumor, and necrotic tumor core in different modal-
ities to generate a fusion image with rich texture information
and clear structure. In the coding region, based on denseness,
we adopted the parallel double-branch design of deep
feature extraction and structural feature extraction tomaintain
the balance between structural information and functional
information to better extract and transmit the knowledge
of the source image. The feature information measurement
method based on information entropy was introduced, and
the feature channels containing rich texture information and
complex structure information were selected to fuse with the
deep features to enhance the richness of the fused image
information. The content richness of the source image of
different modes was used as the weight and combined with
the regional structural similarity index and regional contrast,
the loss function was constructed to enhance the difference
between tumor tissues. The transformer block with an
attention mechanism replaced the manually designed fusion
strategy, and the cross-modal image features were fused.
Experiments demonstrate that the linked images generated by
the TIEF model produce satisfactory results in multi-modal
brain tumor image fusion tasks for both MMRI, SPECT-MRI
and CT-MRI images. Qualitative and quantitative analysis
verified the validity and generalization of TIEF.
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