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ABSTRACT Satellite mission planning for Earth observation satellites is a combinatorial optimization
problem that consists of selecting the optimal subset of imaging requests, subject to constraints, to be fulfilled
during an orbit pass of a satellite. The ever-growing amount of satellites in orbit underscores the need to
operate them efficiently, which requires solving many instances of the problem in short periods of time.
However, current classical algorithms often fail to find the global optimum or take too long to execute. Here,
we approach the problem from a quantum computing point of view, which offers a promising alternative
that could lead to significant improvements in solution quality or execution speed in the future. To this
end, we study a planning problem with a variety of intricate constraints and discuss methods to encode
them for quantum computers. Additionally, we experimentally assess the performance of quantum annealing
and the quantum approximate optimization algorithm on a realistic and diverse dataset. Our results identify
key aspects like graph connectivity and constraint structure that influence the performance of the methods.
We explore the limits of today’s quantum algorithms and hardware, providing bounds on the problems that
can be currently solved successfully and showing how the solution degrades as the complexity grows. This
work aims to serve as a baseline for further research in the field and establish realistic expectations on current
quantum optimization capabilities.

INDEX TERMS Combinatorial optimization, earth observation, quantum annealing, quantum approximate
optimization algorithm, quantum computing, satellite mission planning.

I. INTRODUCTION
The Satellite Mission Planning Problem (SMPP) is a critical
issue in the aerospace sector [1]. Satellite operators face
the task of determining the optimal subset of images to be
captured during a satellite’s orbital pass, based on a set of
client requests and a defined value metric. The challenge is

The associate editor coordinating the review of this manuscript and
approving it for publication was Yifan Zhou.

compounded by constraints such as geographical proximity
incompatibilities, onboard storage limitations, and specific
image configuration requirements, which make it unfeasible
to collect all images. Fig. 1 depicts a simple scenario of a
SMPP where the satellite has to choose from the set of all
requested images (rectangles) which ones to take (green) and
which to leave unattended (red). The problem’s complexity
increases when considering the continuous influx of requests,
thereby necessitating frequent plan updates and repeated
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FIGURE 1. SMPP diagram. A satellite is orbiting the earth and has to
choose which image requests, represented by rectangles, to capture. One
possible solution to the planning problem is to take the green ones and
discard or delay for the next orbital pass the red ones.

execution of the planning algorithm within short time frames.
This requirement underscores the importance of execution
speed. Current industry challenges such as extending the
problem to satellite constellations, incorporating additional
constraints like cloud coverage, or real-time onboard re-
planning [1], increase computational demands even further.

The SMPP and its extensions exhibit high combinatorial
complexity, as even its simpler versions can be cast to variants
of the knapsack problem [2], which is known to be NP-
complete [3]. This poses significant challenges for classical
computing methods, even for moderately sized instances
with few constraints. Traditional classical approaches have
employed exact integer linear programming algorithms
based on branch-and-bound/cut methods [2], [4], [5],
(meta-)heuristic algorithms [6], [7], [8], [9], and machine
learning based techniques [10]. The latter are typically
favored due to their ability to handle large problems and
comply with execution-time constraints.

Quantum computing (QC) is emerging as a promis-
ing alternative for addressing hard optimization problems
by leveraging properties of quantum physics [11], [12].
Several approaches are currently being investigated by the
community, of which quantum annealing (QA) [13], [14]
and variational quantum algorithms such as the quantum
approximate optimization algorithm (QAOA) [15] are among
the most prominent. These methods, coupled with the
appropriate hardware, may provide near- tomid-term benefits
such as substantial computational speedups, better-quality
solutions or a reduction in energy consumption.

In this paper, we study the SMPP from the QC point of
view, using approaches from two of the leading and available
paradigms: quantum annealers and gate-based devices. To do
that, we present a formulation in which a variety of hard
constraints are analyzed, paying extra attention to the more
challenging ones. We use 31 different problem instances
to evaluate our formulation as well as the performance
of quantum annealing and QAOA methods on currently

available quantum hardware and simulators. Six of these
instances were directly sourced from the well-known SPOT5
dataset [2], while the remaining 25 were generated based on
SPOT5 using an instance reductor specifically implemented
for this study.

The rest of the paper is structured as follows. Section II
provides a comprehensive background related to the problem
under investigation. The mathematical models developed
to efficiently formulate the problem from the classical
and quantum points of view are presented in Section III.
Section IV describes the quantum algorithms evaluated and
the criteria for performance assessment and comparison.
Section V details the dataset, experimental design, conducted
tests, and a discussion of the findings. The paper culminates
with Section VI, which draws conclusions and outlines
potential avenues for future research.

II. BACKGROUND
For years, quantum technologies have had a significant
influence in the space sector [16], with many resources
dedicated to secure satellite communications and QKD
[17], [18] or quantum sensing [19]. Notably, there has been
a recent broadening of focus within the industry towards
quantum machine learning and optimization [20]. This has
led several major space agencies to establish initiatives
like the ESA’s Quantum Computing for Earth Observation1

(QC4EO), NASA’s Quantum Artificial Intelligence Labo-
ratory2 (QuAIL) or DLR’s Quantum Computing Initiative3

(QCI) to propel advancements in research and development
within this domain.

Due to the importance of the SMPP in the aerospace indus-
try and the limitations in terms of computational speed and
solution quality when classical computers are used to solve
it, methods from quantum computing appear as an attractive
alternative. However, most of the published work does not
deal with the SMPP per se, but with other related topics
such as satellite routing, debris removal, or constellation
optimization [21], [22], [23].We take the scarcity of literature
as motivation for this research and devote the rest of this
section to analyzing the published related work.

The seminal work in this field was published in 2020 by
Stollenwerk et al. [24], [25], which deals for the first time
with the SMPP using the quantum annealing paradigm.
They investigate the potential and maturity of then-current
quantum computers to solve real-world problems by carrying
out an experimental study on a reduced number of small
instances of the SMPP.

Another notable contribution is [26], where the authors
demonstrate potential for quantum advantage by using
a hybridized quantum-enhanced reinforcement learning
algorithm and compare it to greedy and classical optimiza-
tion algorithms on a satellite mission planning problem.

1https://eo4society.esa.int/projects/qc4eo-study/
2https://www.nasa.gov/intelligent-systems-division/discovery-and-

systems-health/nasa-quail/
3https://qci.dlr.de/en/start/
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On another note, in [27] variational quantum algorithms
such as the variational quantum eigensolver (VQE) [28] and
QAOA are used to solve several simple instances of the SMPP
with and without simulated noise.

Additionally, the authors of the present paper published
a preliminary study in [29], which analyzed the problem
formulation efficiency together with the performance of the
state-of-the-art quantum annealing solvers at the time.

Thus, this work builds on that preliminary research and
improves it by studying a larger set of problems with
more diverse constraints. The study includes a theoretical
complexity analysis of the models and a more in-depth
experimental study using gate-based and annealing methods.
More concretely, the main elements of this paper with respect
to the state of the art and our preliminary findings can be
summarized as follows:

• The dataset employed in our research, taken from
realistic simulations of the SPOT5 satellite mission,
has been extended to cover a wide range of problem
sizes and constraint types for a more in-depth study,
representing, to the best of our knowledge, one of the
most comprehensive quantum optimization analyses in
the mission planning field.

• Several types of challenging and domain-specific con-
straints are addressed in the study. Notably n-ary
(capacity) and ternary (data flow) constraints, which
greatly affect the performance of the algorithms, require
ancillary qubits and a careful selection of the encoding
method to model them for quantum computers.

• We analytically compare the complexity of encoding
the constraints via several methods and propose a final,
efficient formulation for the problem.

• We perform an experimental study on the performance
of several approaches, namely, two purely quantum QA
solvers, a quantum-classical hybrid method based on
QA, and a gate-based QAOA that involves a classical
optimization stage, providing realistic near-to-mid-term
feasibility indications to the industry practitioners.

• We study a knapsack-like problem on a non-academic,
realistic dataset, which is notably different from synthet-
ically ad-hoc generated datasets commonly used in the
literature.

• We study the influence of graph connectivity when
adding n-ary constraints on the solution quality of both
QA and QAOA.

• We perform a detailed result analysis, measuring the
quality of the solutions via the approximation ratio
against reference classical solutions on the actual
optimization function value, rather than using proxies
such as the energy or only the best solution.

Lastly, it is noteworthy to acknowledge the existence
of publications such as [30] and [31], which employ
quantum-inspired genetic algorithms. These methodologies
belong to the field of quantum-inspired evolutionary
computation, which are classical algorithms augmented by

principles derived from quantum physics for their design and
thus are outside the scope of this paper.

III. MODELLING
In this section, we present the problem and the mathematical
formulations used in this paper. First, in Section III-A we
introduce the key aspects of the problem we are going
to solve. Then, in Section III-B, we present a classical
mathematical model for it. Subsequently, for each type
of constraint we encounter in our model, we discuss in
Section III-C possible penalty encodings and indicate their
efficiency in terms of additional variables and quadratic
terms. Finally, using these derivations we arrive at our
formulation for the experiments which will be conducted in
Section V.

A. PROBLEM DESCRIPTION
In this paper, we work with data from the SPOT5 satellite,
which has three cameras on board and can satisfy two types
of requests: mono images, for which only one of the cameras
must be used, and stereo images, for which two of the cameras
are required to produce the image. Each request has a weight
that represents its value, and it may also have a capacity
weight if it needs to be stored on the satellite’s disk. The
capacity value can vary depending on the camera used to
take the request. This definition is subject to the following
constraints:

a) Constraints enforcing that each request can only be
collected once.

b) Binary constraints that represent incompatibilities due
to geographical proximity among certain pairs (p, q),
where p and q are pairs of (request, camera). We define,
for each instance of the dataset, a set S2 containing
these forbidden pairs.

c) Ternary constraints that represent the instantaneous
data flow restrictions of the instruments, prohibiting
taking more than 2 out of 3 requests at once for certain
triples (p, q, r), where p, q and r are pairs of (request,
camera). We define, for each instance of the dataset,
a set S3 containing these forbidden triples.

d) N-ary (capacity) constraints that represent the fact that
the satellite has a limited amount of disk space available
to store images before relaying them back to earth.
This type of constraint is present only in some of the
instances.

For a more in-depth description of the dataset, the reader
can refer to [2].

B. CLASSICAL MODEL
The classical formulation of the SMPP used in this paper
builds upon the ideas provided on our previous research [29],
and it is stated using mathematical programming as follows:

Let xi,j be the binary decision variables, defined as:

xi,j =

{
1 if request i is taken with camera j,
0 otherwise,

(1)
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where i ∈ {1, 2, . . . ,N } is the index representing the
image requests, N being the total amount of requests and
j ∈ {1, 2, 3, 4} the identifier of the camera. There are three
physical cameras that can take mono images and we define
camera 4 to represent the combined use of cameras 1 and
3 to take stereo images. The necessary variables are created
based on the specific data instance, following the notation
mentioned above. The objective function to be optimized can
then be defined as:

F(x) =

∑
i

∑
j

wixi,j, (2)

where wi ∈ R≥0 is the weight or value of fulfilling
request i. Note that although our task is to maximize the
value, we can express it as the minimization of the negative
of the objective function. This optimization is subject to the
following constraints:∑

j

xi,j ≤ 1, ∀i, (3a)

xp + xq ≤ 1, ∀ (p, q) ∈ S2, (3b)

xp + xq + xr ≤ 2, ∀ (p, q, r) ∈ S3, (3c)∑
i

∑
j

ci,jxi,j ≤ C, (3d)

xi,j ∈ {0, 1}, (3e)

where constraints (3a)-(3d) refer to the four constraints
mentioned above, respectively. Here C ∈ Z≥0 is the total
capacity of the disk and ci,j ∈ R≥0 the amount of space
a request i uses when taken with camera j. For some (i, j)
we effectively have ci,j = 0 due to the corresponding
orbit points being close enough to a ground station for
immediate relay, hence no storage requirement. Importantly,
this makes constraint (3d) take quite different forms for
different instances. As a final remark, note that we can always
flatten our decision variables into a one dimensional vector
through the map xi,j 7→ xi′ , which is what we will use in
practice for our implementation of the experiments.

C. EFFICIENT QUANTUM MODEL
Quantum optimization methods usually require to express
the problem in a quadratic unconstrained binary optimization
(QUBO) formulation due to their connection to the Ising
model [32] and adiabatic quantum computing [33], which
serves as inspiration for many current methods like QA and
QAOA. However, mapping a classical optimization problem
to a QUBO is, in general, a difficult task that the quantum
optimization community is commonly faced with [34].
Additionally, the efficiency of this mapping is critical to
the performance of current quantum computers, given their
limitations in scale, connectivity, and stability. To this end,
we will focus our attention on the encoding of constraints as
penalties. In a nutshell, penalties are a method of encoding
constraints in the objective function by adding a largeM ∈ R
multiplied by an at most quadratic polynomial that represents
the constraint. Thus, on a minimization problem, adding a

large positive M makes the objective function larger when
the constraint is violated. We analyze the efficiency of the
encodings by looking at the two factors that are within our
control and impact the problem size the most: the number
of slack variables (ancillary qubits) and the number of
quadratic interaction terms (qubit couplings) introduced by
the encoding methods.

Constraints (3a) can be trivially converted to penalties by
taking the sum of the two-by-two products of the variables
involved in each constraint:

M
∑
i̸=j

xixj, (4)

resulting in no variable overhead and
(k
2

)
= O(k2) quadratic

interactions, where k is the number of summation terms.
In our case, k ≤ 3 since the image is either stereo (only
possible to take the image with camera 4) or mono (possible
to take the image with at most three different cameras).
Therefore, at most three interaction terms are introduced
for each constraint. We proceed in the same fashion with
constraints (3b), as they have a similar structure. In this
case, k = 2 and therefore we can simply write Mxpxq.
Thus no additional independent terms are introduced and one
interaction term is added for each constraint.

Constraint (3c) can be efficiently treated in a custom
manner. First, we write an equivalent cubic penalty term
M xpxqxr and then reduce it to quadratic followingBoros et al.
[35, Sec 4.4]. A single slack variable s1 replaces the pair
xqxr , and one extra interaction term is added, resulting in the
following quadratic penalty,

M xps1 +M (xqxr − 2xqs1 − 2xrs1 + 3s1). (5)

This method has advantages for constraints such as (3c)
because it involves fewer terms than the more general binary
expansion (discussed next) and introduces a single slack
variable per constraint. Furthermore, if the pair xqxr is present
in multiple constraints, it can be replaced by the same
slack variable in all of them, preventing the introduction of
additional slack variables.

To deal with constraint (3d), which, as mentioned above,
can take different forms depending on the data, we resort to
the standard binary expansion. For ease of reading, we take
p = (i, j) and rewrite the constraint as:∑

p

cpxp ≤ C, (6)

where we sum over every pair p for which cp ̸= 0, with P
such pairs in total. Now we transform this inequality into an
equality. To this end, we add binary slack variables sd such
that the binary representation reaches or exceeds C , that is,
we find the minimum D such that

∑D
d=1 2

d−1
≥ C . This

results in an overhead of D = ⌈log2 C⌉ slack variables. The
constraint can now be written as:∑

p

cpxp +

D∑
d=1

2d−1sd = C, (7)
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which allows the use of the general penalty method:

M

∑
p

cpxp +

D∑
d=1

2d−1sd − C

2

. (8)

Therefore, with this method we are adding O(logC) ancilla
qubits and O

(
(P+ logC)2

)
quadratic interactions for each

constraint of that type.
As a note, although constraint (3c) is a special case of (6),

the well-defined form of the former (three variables and
fixed coefficients) compared to the more variable nature of
the latter compels us to treat them in quite different ways.
While the Boros approach could in principle also be used to
address constraint (3d), two significant challenges arise. First,
we would need to construct the equivalent polynomial to be
reduced, which in general is a highly combinatorial problem.
And even so, faced with a simple case in which cp = 1∀p,
where the polynomial to be penalized is simply the sum of
all products composed of C + 1 distinct xp variables, the
number of new slack variables added scales withO(PC ). This
makes the method unsuitable for widespread use in generic
constraints.

IV. METHODS
In this section, we briefly describe the algorithms and solvers
we use, our motivation to select them, and the measure of
solution quality we chose for this study. Sections IV-A, IV-B
and IV-C outline the quantum annealing process, the QAOA
algorithm, and the D-Wave’s hybrid solver, respectively.
Then, Section IV-D motivates the algorithm selection and,
finally, Section IV-E details the criteria we use to evaluate
solution quality.

A. QUANTUM ANNEALING
Quantum annealing processors are especially suitable for
combinatorial optimization problems. They are thought to
exploit quantum tunneling, entanglement, and superposition
to escape local minima and explore a large solution
space [33]. In QA, a quantum system is made to evolve
under a Hamiltonian that interpolates between a simple
Hamiltonian called mixer Hamiltonian, HM , of which the
ground state is known, and an Ising Hamiltonian that encodes
the desired problem, called cost Hamiltonian HC . A usual
choice for the mixer Hamiltonian is HM =

∑
i Xi, where

Xi is the x Pauli operator on the i-th qubit, and |+ . . .+⟩ is
its ground state. On the other hand, the Ising Hamiltonian has
the following form:

HC =

∑
i

hi Zi +
∑
i̸=j

Ji,j ZiZj (9)

where Zi is the z Pauli operator on the i-th qubit, hi is
its on-site energy and Ji,j the coupling between qubits i, j.
Therefore, we have the following total Hamiltonian:

H (f (t)) = (1 − f (t))HM + f (t)HC , (10)

where f (t) ∈ [0, 1] is the interpolation function, usually
defined as a polynomial function of time t . By means of the
adiabatic theorem [36], if a system is prepared at the ground
state of HM and slowly evolved over time to HC , it will
remain at the ground state and thus provide a solution to the
minimization problem. Figure 2 depicts this process.

FIGURE 2. Schematic drawing of quantum annealing. A system is
prepared in the mixer Hamiltonian and is evolved over time to the cost
hamiltonian. If the evolution is performed slow enough, the system
remains in the minimum energy state.

Importantly, in QA, the choice of interpolation function
aims to correctly retrieve the ground state of HC in the end,
but not necessarily traversing the ground state of H (f (t)) in
intermediate steps, which allows for faster evolution.

We can minimize the corresponding function on classical
binary variables xi (obtained by transforming Zi → 1− 2xi).
This is by analogy called energy, and can be written as:

E(x) = xTQ x (11)

where Q is a matrix that can be assumed symmetric without
loss of generality. A QUBO consists in the minimization of
such functions. Current commercial quantum annealers, such
as the ones provided by D-Wave, natively solve this kind of
problems. The limitation to polynomials of order two comes
from the fact that the Hamiltonian in (9) only couples qubits
two by two, and this is intrinsic to the hardware.

Additionally, the hardware is not able to directly couple
every pair of qubits, so an important feature of the quantum
processing unit (QPU) is its topology, i.e. the configuration
of qubit couplings. Due to this connectivity limitation,
most problems require complex embedding algorithms to
represent them on the QPU. Usually, several physical
qubits are required to encode a logical one, creating
chains that have to stay coherent, which is a challenge
for current devices. For this study, two different QPUs
have been used: Advantage_system6.4 (Advantage)
and the recently released Advantage2_prototype2.2
(Advantage2). The topologies of these devices are
Pegasus and Zephyr, respectively, the latter having higher
connectivity [37], [38].

B. QUANTUM APPROXIMATE OPTIMIZATION ALGORITHM
The quantum approximate optimization algorithm [15] is a
hybrid variantional algorithm (see Figure 3 for a graphical
overview of the basic operation of these algorithms) that
combines gate-based quantum computing with classical
parameter optimization in order to solve combinatorial
optimization problems.
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FIGURE 3. Generic workflow of variational quantum algorithms.
A quantum ansatz (possibly problem dependent) is repeatedly executed
with different parameters, which are updated by a classical optimizer
with respect to some measure of value until a stopping criteria is met.
The proposed solution to the problem is obtained from the circuit with
the best parameters found.

This algorithm can be understood as a discretized approx-
imation of adiabatic evolution, provided the right choice of
parameters. It does so by constructing a variational ansatz
that alternates ℓ times the unitary operators encoding the cost
Hamiltonian HC and the mixer HM (same as in QA), which
results in:

Uℓ(γ,β) =

ℓ∏
j=1

e−iβjHM e−iγjHC , (12)

where the 2ℓ variational parameters are γ = (γ1, γ2, . . . , γℓ),
and β = (β1, β2, . . . , βℓ), with γj ∈ [0, 2π ) and βj ∈ [0, π).
This anstaz is applied to an initial state |ψ0⟩, which is the

ground state of the mixer HM and is generally easy to obtain.
Thus we have the state:

|9ℓ(γ,β)⟩ = Uℓ(γ,β)|ψ0⟩. (13)

We denote Eℓ as the expected value of the HamiltonianHC
when acting on this quantum state. This expectation is given
by:

Eℓ(γ,β) = ⟨9ℓ(γ,β)|HC |9ℓ(γ,β)⟩. (14)

This quantity is minimized via a classical optimization
routine. That is, we aim to find the optimal parameters:

(γ∗,β∗) = argmin
(γ,β)

Eℓ(γ,β). (15)

The solution is then obtained by measuring the state
|9ℓ(γ∗,β∗)⟩ in the computational basis. In principle, this
should allow to obtain an energy equal to or close to the
ground state energy of HC .

The positive integer ℓ controls how discrete the evolution
is. As ℓ → ∞, the closer to adiabatic the evolution can be,
and, in general, the better the results. However, as ℓ increases,
so does the number of parameters and the circuit depth,
making optimization more difficult and time consuming.
In order to compensate for this problem, we use the
parameter-fixing strategy introduced in [39]. Starting from a
ℓ = 1 version of QAOA with random initialization (which
works for shallow circuits), the 2ℓ parameters optimized
for a ℓ-layer QAOA are used as initialization values of a
(ℓ+ 1)-layer QAOA along with γℓ+1 = βℓ+1 = 0.

C. LEAP BQM HYBRID SOLVER
The Leap Binary Quadratic Model Hybrid
(LeapBQMHybrid) is a component of the Hybrid Solver
Service (HSS, [40]) offered by D-Wave, which is a collection
of algorithms created by this company. In order to solve
optimization problems that quantum processors are unable to
directly handle, these hybrid approaches imbricate classical
and quantum processing [41]. As of this writing, the solvers
included in HSS allow the addressing of Binary Quadratic
Models (BQM), Discrete Quadratic Models (DQM) and
Constrained Quadratic Models (CQM). The reason for using
LeapBQMHybrid over the other available solvers is that the
problem dealt with in this paper is defined entirely in binary
variables.

Going deeper into the algorithm, the LeapBQMHybrid
workflow is split into two distinct phases. To be more exact,
the BQM formulation is first introduced as input into a
classical front end. The solver then runs a predetermined
number of parallel processing threads, each of which consists
of a quantum module (QM) and a heuristic module (HM).
On the one hand, HM is devoted to tackling the problem
by means of traditional state-of-the-art heuristic techniques.
On the other hand, QM helps HM by executing a variety
of quantum queries with the objective of guiding the search
towards promising regions of the search space. Eventually,
QM can also improve the existing solutions through these
queries. Finally, LeapBQMHybrid provides the user with
the optimal solution found among the group of generated
threads.

It is interesting to mention that LeapBQMHybrid
resorts to the latest D-Wave quantum computer. At the
time this research was conducted, this device was
the Advantage_system6.4, which is made up of
5616 qubits organized in a Pegasus topology. We depict in
Fig. 4 the main workflow of this solver, which is based in the
work published in [42]. Readers interested in further details
about the LeapBQMHybrid might peruse the D-Wave
related report [41].

D. ALGORITHM CHOICE MOTIVATION
We focus our study on the two main competing quantum
paradigms, annealing and gate-based, which represent analog
and digital computers, respectively. In quantum annealing,
we use the standard adiabatic (or annealing) time evolution of
the transverse field Ising model as implemented by D-Wave.
This choice is rooted in the fact that D-Wave is currently
the most advanced provider of these types of computers
and has readily available hardware to perform experiments
on. Moreover, as their annealers are of a relatively large
size, we can study a broader range of problem instances.
Finally, for completeness, we also explore the capabilities of
D-Wave’s proprietary LeapBQMHybrid solver.
As for the gate-based algorithm, we chose QAOA with

parameter fixing. This choice is motivated by the fact that
QAOA is a version of VQAs that is specifically designed
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FIGURE 4. Workflow of the LeapBQMHybrid solver. QM = quantum
module. CH = classical heuristic module.

for combinatorial optimization, and it can be viewed as
the discretized version of adiabatic evolution, making it the
perfect candidate for comparison with quantum annealing.
Moreover, we use the parameter-fixing strategy as it makes
QAOA more stable when the circuit has a relatively large
amount of layers.

E. SOLUTION QUALITY ASSESSMENT CRITERIA
Benchmarking the performance of quantum optimization
algorithms and hardware is still an open research question
without a clear answer [43]. In this study, we have adopted
a similar approach to prior research in the field, using the
approximation ratio (AR) as a metric for how good a solution
vector x is. We define AR as follows:

AR(x) =


F(x)
Fmax

if x is feasible,

0 otherwise,
(16)

where a solution vector is deemed feasible if it respects the
constraints in (3), and Fmax denotes the maximum objective
function value achievable by any feasible solution.

It is important to note that from the runs of the algorithms,
we get (n+ s)-long vectors, where the first n components are
the actual decision variables and the remaining s are slack
terms introduced by the penalties. Therefore, we define the
solutions x to be the first n components of these vectors.
This definition allows us to evaluate the quality of solution
vectors in the context of the optimization problem at hand,
hence independently of the specifics of the QUBO encoding
utilized, providing a standardized measure to assess their
performance.

V. EXPERIMENTATION AND RESULTS
This section is devoted to the description of the main
elements of the experiments conducted and the results
obtained. In Section V-A we introduce the characteristics of
the dataset utilized in our study and how we generated it.
Then, in Section V-B we detail our design choices for the
experiments performed. Finally, in Section V-C we discuss

and analyze the results. Fig. 5 illustrates the implemented
experimental pipeline.

A. DATA AND INSTANCE REDUCTOR
In this paper, we use the SPOT5 dataset, which comes from
pre-launch simulations of the SPOT5 satellite launched in
May 2002 by the French Space Agency, which remained in
operation until March 2015.4 It contemplates a significant
amount of complexity of present-day industry challenges
and can still be considered relevant, especially to study the
performance of quantum devices, which usually can only
tackle simplifications of real engineering problems in their
current state.

As many of the instances in the dataset are too large
to be handled with QC, we have developed a Python
script for the automatic production of SMPP instances as
part of the current study. The implemented mechanism,
coined SPOTReductor, works as follows: first, an existing
instance of the problem (in SPOT5 format) is introduced
to SPOTReductor together with the number of requests
desired for the new instance. After that, SPOTReductor
reduces the input problem by randomly selecting constraints
and keeping the requests involved in them until the desired
number of requests is reached. Then, the maximum capacity
of the satellite is established as half of the capacity that
would be used if all requests were taken. Finally, to generate
the instances without capacity constraints, the capacity
requirements for each request are simply set to zero and the
maximum capacity is removed. This way, we can study more
in-depth the influence of the capacities in the problem.

In all, the testing planned for this study has 31 distinct
instances. Of them, 6 have been obtained from the SPOT5
benchmark dataset and an additional 25 instances have been
created through SPOTReductor. With these instances,
we cover a range of jobs from 3 to 209, however, it is worth
noting that it is not trivial to order the instances by difficulty,
as their intrinsic variety in terms of request type, amount
of ternary constraints, capacities, etc. play a vital role in
this regard. Here we chose to order them by the amount of
requests for readability. Additionally, to improve this study’s
reproducibility, all generated cases along with the obtained
results are openly available in [44].

B. EXPERIMENTAL SETTING
To conduct the experiments, we have used our QUBO/Ising
formulation as described in Section III-C on the 31 instances
detailed in Table 1. We obtained reference solutions (and
hence Fmax) from exactly solving the classical formulation
with Google OR-Tools [45]. To build the QUBO matri-
ces, we chose to set the value of all penalty coefficients
in each instance to M =

∑
i wi + 1, which is a standard

choice used in the literature if no prior information about
the instances is known [34]. To account for the probabilistic
nature of the methods, we run each combination of instance

4https://earth.esa.int/eogateway/missions/spot-5
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FIGURE 5. Schematic diagram of the pipeline implemented to conduct the experiments. First, we generate the dataset by combining original SPOT5
instances with reduced ones. Then, we formulate the classical model, translate it to our proposed efficient QUBO encoding and obtain the equivalent
Ising model. We get the reference solutions with OR-Tools and run the quantum/hybrid subroutines a total of 5 times per model and instance. Finally,
we compute the approximation ratio for the best found solutions as well as the average from the 2000 samples of each run executed.

TABLE 1. Main characteristics of the used instances, ordered by
increasing number of requests. For each instance, we depict the number
of total and stereo requests, the amount of total and ternary constraints,
and the number of independent and interaction terms in our formulation.
The naming convention is as follows: if an instance is from the original
dataset [2], we keep its original name, which consists of a series of digits
(e.g. 8, 404, 1502). If the instance was generated by our reductor, we use
the following pattern: gDDD(c) (e.g. g003, g003c), where the character g
is used to flag that the instance was generated, then three digits
represent the amount of requests in the instance, and finally,
a character c is present for instances that have a capacity constraint.

and solver 5 times, resulting in 575 total runs (11 instances
with all 5 solvers considered, and 20 instances with only the
3 annealing ones as they were too large for QAOA). With
respect to the results, we report the expected value of the
AR of the solutions and the AR of the best sampled solution,
both with 95% confidence interval error bars computed from
the 5 runs. To make QAOA comparable to QA in terms of

the best solution, we sample from the QAOA statevector
as many times as shots run for QA. Finally, note that the
number of logical qubits that need to be used is the number
of independent terms in the formulation for each instance, i.e.
the number of decision variables + slack variables, which is
specified in Table 1.

For the experiments with QA, we tested three differ-
ent D-Wave solvers: Advantage, Advantage2, and
LeapBQMHybrid. For the two QPU-only based solvers,
we have left all parameters at their default values except for
the number of reads, which we have set to 2000. For the
hybrid solver, only the time_limit parameter is tunable,
which we chose to set to the default value computed by
D-Wave for each instance.

For QAOA, starting with ℓ = 1 and using the
parameter-fixing strategy described in section IV-B, we run
the algorithm for ℓ = 1, . . . , 10 for each instance. For the
mixer Hamiltonian, we employ the standard HM =

∑
i Xi,

and thus the initial state is set to be its ground state, |ψ0⟩ =

|+ . . .+⟩.We use COBYLA as the optimizer [46], configured
with a tolerance of 10−6 as stopping criteria.We report results
for ℓ = 1 and ℓ = 10.
To select the initial parameters from which to start the

optimization process for ℓ = 1, we randomly pick for each
instance 5 pairs of (γ1, β1), run QAOA with depth ℓ = 1 for
each of them and keep the best performing pair among the
five, ranked by the approximation ratio of the output.

The executions with QAOA have been carried out
in an ideal statevector simulator, namely Pennylane’s
default_qubit device [47]. We refrained from using real
hardware in the QAOA experiments as the number of requests
that would need to be made to the quantum computers would
be prohibitive in terms of wait times and costs.

C. RESULTS
Let us now analyze the outputs from our experiments,
which are summarized in Fig. 6. First, we remark that our
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FIGURE 6. Results for all solvers and instances considered. On the left side of the figure, we show the results for the instances without capacity
constraints, while on the right side, the instances with capacities are depicted. On the top row, we represent the expected value of AR, while on the
bottom row, the AR of the best solution is shown. All plots have 95% confidence interval error bars for the 5 runs of each experiment. Note that we did
not include the classical solver’s results, as their approximation ratio is always 1 without variance.

classical exact optimizer achieved the optimal solutions for
all instances and therefore we are not going to focus on the
comparison of the quantum methods against it, but rather
use these solutions as a reference to compare the quantum
(hybrid) methods among themselves.

Beginning with LeapBQMHybrid, we see that it per-
forms remarkably well across the board, achieving perfect
approximation ratios for all but 4 of the considered instances.
However, as described in Section IV-C, it is not clear how
much of the processing happens on the QPU and what is its
contribution. For this reason, we focus our analysis on the
other methods.

In the case of the purely quantum annealing results,
it is interesting to see that the Advantage2, while being
still in development, performs better or comparably to the
established AdvantageQPU for the smaller instances. This
suggests that there is an evolution in the quality of the
processors and sheds a positive outlook on the problems we
will be able to tackle when it is released in full scale.

As seen in the lower half of the figure, the Advantage
solver is able to find the optimal solution for 13 of the
non-capacity instances and 7 of the capacity ones, while
Advantage2 is slightly less performant, with 12 and 5,
respectively. However, the general trend with Advantage2
is that it often samples better solutions overall, as seen
in the upper part of the figure, providing better average
approximation ratios.

It is also noticeable that finding an embedding of a
problem on the QA’s QPUs does not guarantee that a
reasonable solution will be found. This is evident from the
larger capacity instances, where we see that from instance
g025c onwards, even if the problem is sufficiently small
to be embedded in the hardware, the approximation ratio
is 0. However, this behaviour is expected: if a problem’s
connectivity is close to the limit of the QA hardware, the
resulting embedding is very complex, necessitating very long
chains of physical qubits to represent a logical variable. These
long chains are more unstable and it is very challenging to
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keep them coherent, thus resulting in errors that ruin the
solution.

Another interesting behaviour is observed in the expected
AR of capacity instances with QA, where we see jumps
in performance even for problems with similar amounts of
requests. This is due to the fact that not all requests have
nonzero capacity, which is made evident in Fig. 7, where we
can see the contribution of the capacity constraint by checking
the difference between the capacity and non capacity versions
of the instances. We see that g004c is heavily connected,
meaning most images need to be stored on the satellite,
while g005c is sparse since many images can be directly
relayed and thus do not add extra connections. These results
indicate that QA is sensitive to the sparsity of the graph.
While it might seem that QAOA is not affected by this
phenomenon, we stress that we run ideal simulations, and
higher connectivity still poses a problem for real gate-based
quantum computers. Usually, they do not have all their
qubits coupled among themselves, thus necessitating a large
overhead of operations to conform to the connectivity of the
problem, increasing the depth of the resulting circuits and
consequently being subject to more noise induced errors.
In general, the sparsity of the graph is a factor that needs to
be taken into account, especially for noisy intermediate-scale
quantum (NISQ) [48] computers and algorithms.

FIGURE 7. QUBO matrices of instances g004(c) and g005(c)
represented as graphs. Some capacity constraints introduce more
complexity to the problem than others depending on whether or not the
requests take up capacity (due to being immediately relayed or not).

Turning our attention to QAOA, we see that the
10 layer version performs better than 1 layer across
all instances when expected AR is considered, and on
all but one instance (g006) when comparing the best-
solution AR. Although uncommon (only one occurence
in our experiments), we remark that it is possible that

a shallow QAOA might perform better than a deep one.
This phenomenon can be attributed to any combination of
the following three factors. Firstly, the stochastic nature of
the sampling process. Secondly, the fact that we optimize the
parameters with respect to the expected value, not the best
solution. And thirdly, the parameter optimization algorithm
is naturally more prone to getting trapped at local minima
in higher dimensional search spaces, resulting in suboptimal
parameters for circuits with more layers.

Remarkably, looking at the bottom row of Fig 6, we see
that QAOA performs significantly better on instances with
capacities than without, which means that potentially, the
graph structure influences the quality of the solutions given
by the algorithm, being more suitable for complete or close
to complete graphs. This finding supports the evidence
from [49], where the authors show that QAOA performs
better on complete and regular graphs than on random
ones. This fact might become useful in the long-term, when
(if) fault tolerant computers become available, as on NISQ
devices the noise mostly negates this feature.

We further propose that this phenomenonmay be attributed
to the fact that capacity-constrained problems naturally
impose tighter constraints, resulting in a reduced number of
feasible solutions. During the optimization process executed
by QAOA, the algorithm tends to redistribute probability
mass from non-feasible states, characterized by notably
penalized energies, to feasible states. Given the scarcity of
feasible states in capacity-constrained problems, there exists
a higher probability, albeit fortuitously, that the redistributed
probability mass aligns with the globally optimal state.

VI. CONCLUSION AND FURTHER WORK
In this paper, we have experimentally assessed the perfor-
mance of quantum annealing and gate-based optimization
algorithms on an efficient formulation of the SMPP with
intricate constraints and structure. We have resorted to a
realistic benchmark dataset and shown how the quality of
the solutions degrades with problem size, imposing practical
limits on the instances that can currently be solved effectively
and providing a comprehensive overview of the challenges
that arise when dealing with the SMPP in particular. This
work assesses the readiness of quantumoptimizationmethods
and hardware for the SMPP, focusing on the gate-based and
annealing paradigms.

We have shown that it is possible to achieve good results
(best solution AR ≥ 0.9) for moderately sized instances
of relatively complex SMPPs using quantum optimization
methods. With QA, we were able to tackle instances
with sizes of up to about 80 requests (≈ 200 variables)
when no capacities are considered and up to 10 requests
(≈ 30 variables) when capacities are included. Meanwhile,
with QAOA, the sizes of the instances we are able to deal with
are more modest, achieving reasonable results for instances
of up to 6-8 requests (≈ 20 variables), both with and without
capacities, although we were limited by the number of qubits
we were able to simulate.
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On another note, the new generation of D-Wave quantum
annealers is showing promising progress, which leaves an
optimistic outlook on future developments. With respect
to the QAOA, even in ideal simulated environments, the
performance is generally not on par with QA. However,
there is evidence [50], [51] that suggests that, compared to
QA, QAOA can be more robust to vanishing spectral gaps,
and it is possible that adding more layers to the circuit
or finding better optimization strategies could improve the
results.

Additionally, it is important to remark that the parametriza-
tion greatly influences the quality of both methods. This leads
us to believe that an exhaustive tuning of the parameters of the
problem (value of the penalties, variable encodings, etc.) and
models (number of layers in QAOA, optimizers, annealing
time in QA, etc.) might improve the results significantly, but
this poses significant challenges, not only computational but
also with hardware availability, especially if the tuning needs
to be done on today’s scarcely available quantum computers.

Lastly, future research could be focused on extending
the planning to multiple satellites that can cooperate, which
increases the complexity and presents a more realistic sce-
nario of the industry’s challenges. Additionally, it would also
be interesting to compare our results with other variational
algorithms or run the QAOA with simulated noise models or
even on real hardware. Basic questions such as determining
whether quantum phenomena positively affect optimization
are also yet to be explored. Finally, a growing field of research
is quantum-inspired optimization, where other algorithms
such as tensor networks could be explored.
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