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ABSTRACT A computing cluster that interconnects multiple compute nodes is used to accelerate distributed
reinforcement learning that uses DQN (Deep Q-Network). In distributed reinforcement learning, actor nodes
acquire experiences by interacting with a given environment and a learner node optimizes the DQN model.
When distributed reinforcement learning is used in practical applications such as robotics, we can assume that
actor nodes are located in edge side while the learner node is located in cloud side. In this case, the long-haul
communication between them imposes significant communication overheads. However, most prior works
simply assume that actors and learner are located closely, and do not take the overheads into account. In this
paper, we focus on the practical environment where the actors and learner are located remotely, and they
interact via a buffer node that collects information from multiple actor nodes. We implement a prototype
system in which the buffer and learner nodes are connected via a 25GbE (Gigabit Ethernet) switch and a
10km optical fiber cable. Although a replay memory functionality is closely associated with the learner side,
in this paper we propose to combine the replay memory into the buffer node. In our experiments using the
prototype system, the proposed approach is compared with an existing approach in terms of the training
efficiency (i.e., training loss) and the transfer efficiency over the long-haul communication (i.e., average
priority of transferred experiences). As a result, the training loss of the proposed approach is reduced to
26% of the existing approach, and the average priority is 3.92 times higher than the existing approach
after the training loss is converged. These results demonstrate that the proposed approach can improve the
training/communication efficiency compared with the existing approach in a practical system that imposes
long-haul communication between the actors and learner.

INDEX TERMS Distributed deep reinforcement learning, deep Q-network, prioritized experience replay.

I. INTRODUCTION
Reinforcement learning is a machine learning approach to
acquire an action policy that can maximize a long-term
reward by repeating trial and error in action and observation
at a given environment. Q-learning is a typical reinforcement
learning method, where Q-value means effectiveness of an
action in a given state. By taking an action based on Q-value
and observing the environment, the Q-value is continuously
updated in order to acquire an optimal action policy. DQN
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(Deep Q-Network) introduces a deep neural network called
Q-network to approximate the conventional Q-learning, and
it has been applied in various application domains, such
as game AI [1], robotics [2], recommendation systems [3],
autonomous driving [4], computer vision [5], and network
control [6]. In this case, the reinforcement learning takes
an action based on Q-network, observes the environment,
and updates the Q-network by deep learning. Since these
steps are repeated until the Q-network training is converged,
it typically takes a time. In this paper, we focus on a typical
case of distributed reinforcement learning, in which the first
two steps (i.e., taking an action by Q-network and observing
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FIGURE 1. Environment assumed in prior works (a) and that assumed in
this paper (b).

the environment) are distributed over multiple edge nodes in
order to accelerate acquisition of the optimal action policy.

In distributed reinforcement learning systems using
DQN [7], [8], actor processes are in charge of the first two
steps and a learner process is in charge of the last step (i.e.,
updating Q-network by deep learning). State transitions and
rewards experienced by the actor processes are accumulated
in an experience buffer, called experience replay memory,
and the learner process samples a batch of experiences
from the memory in order to train and update Q-network.
Since data transfer between actor and learner nodes increases
depending on the number of actor processes, experience size,
and Q-network model size, their communication overhead
is one of major performance bottlenecks in such distributed
reinforcement learning systems.

In a practical assumption of the distributed reinforcement
learning for the robot and IoT device control, actor nodes are
located close to these target devices in the field, and a learner
node is operated as a server in data centers. In this case,
actor and learner nodes are located different places, and the
communication overhead is significant due to an increased
latency between the actors and learner. However, most of
existing works did not consider such a practical situation and
evaluated with an ideal environment where actor and learner
nodes are located in the same place.

Figure 1 illustrates the environment assumed in prior
works [7], [9], [10], [11] and that assumed in this paper.
Figure 1 (a) corresponds to the existing work, where actors
and learner are located in the same LAN (Local Area
Network). A replay memory is closely associated with the
learner. In contrast, Figure 1 (b) shows our proposed system
that consists of actors, buffer, and learner. The actor and
buffer nodes are located in the same LAN, while the learner
node is operated at the cloud side. The buffer node receives
experiences from the actors and sends them to the learner.
In the latter environment, the communication overhead tends
to be high, and this overhead reduces the training efficiency.
To address this issue, in this paper we improve the transfer

efficiency, which intends to transfer more experiences which
are useful for the model training.

There are broadly two approaches to improve the transfer
efficiency. The first approach is accelerating the communica-
tion by network optimization techniques. Our previous work
adopts this approach using DPDK and F-Stack [12]. The
second approach is sending useful experiences preferentially
for the training. This paper adopts the second approach.
We propose to combine a replay memory into the buffer node
and locate it in the actor (or edge) side. Our approach can
preferentially extract and transfer experiences that are useful
for the model training by the learner; thus, it can improve the
training efficiency even in environments where the amount of
experiences which can be transferred is limited.1

Our contributions are summarized as follows.
• We implement a prototype system in which the buffer
and learner nodes are connected via a 25GbE (Gigabit
Ethernet) switch and a 10km optical fiber cable to
evaluate distributed reinforcement learning in a practical
assumption.

• We propose a new architecture that combines the replay
memory with the buffer node and locate it in the actor
(or edge) side to improve the transfer efficiency. In the
proposed approach, only the experiences which are
really used for the model training are transferred.

• We evaluate the proposed approach by comparing it with
the baseline approach, which is assumed in most prior
works. The evaluation results show that the proposed
approach can improve both the transfer and training
efficiency.

This paper is organized as follows. Section II overviews
background knowledge on distributed deep reinforcement
learning and prioritized experience replay and introduces
related work on acceleration of distributed deep reinforce-
ment learning. Section III illustrates the baseline approach,
while Section IV proposes our proposed approach. Section V
evaluates the proposed approach by comparing with the
baseline approach, and Section VII concludes this paper.

II. RELATED WORK
A. DISTRIBUTED DEEP REINFORCEMENT LEARNING
High-performance distributed deep reinforcement learning
systems have been widely studied recently. Distributed deep
reinforcement learning approaches are classified into the
model-based and model-free approaches. The model-based
distributed reinforcement learning is widely used for game
AI [13], [14]. In the edge-cloud computing settings, it is
assumed that the edge interacts with the environment in the
field; however, it is difficult to build models at the edge, so the
model-based approach is not considered in this paper.

The model-free approaches can be further divided
into two communication styles: those sending experiences

1This paper is an extended version of our conference paper [12] by adding
implementations of the proposed and existing architectures in a practical
assumption and evaluations of the proposed approach in terms of training
and transfer efficiency compared with the existing approach.
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FIGURE 2. Ape-X architecture.

(e.g., transitions) and those sending gradients from actors to
learner [15], [16]. In the case of those sending experiences,
actors take actions and observe the environment to generate
experiences, and then they send the experiences to the
learner. The model is trained only by the learner, and then
the trained model parameters are shared by the actors.
Distributed Prioritized Experience Replay (Ape-X) [7] is a
typical example of this communication style.

In the case of those sending gradients, on the other hand,
each actor trains a local model and sends the gradients
of the model to the learner. Then, the learner builds the
global model based on the received gradients. Asynchronous
AdvantageActor-Critic (A3C) [17] and ImportanceWeighted
Actor-Learner Architecture (IMPALA) [18] are typical
examples of this communication style.

In edge-cloud environments, the communication style
of sending experiences has advantages in terms of the
communication amount between actors and learner and the
computation cost of actors compared with that of sending
gradients. Thus, Ape-X is assumed as a baseline architecture
of distributed deep reinforcement learning in this paper.
Ape-X architecture is described in the following section.

B. DISTRIBUTED PRIORITIZED EXPERIENCE REPLAY
(APE-X)
Figure 2 illustrates Ape-X architecture. Ape-X introduces
a prioritized experience replay for large-scale distributed
reinforcement learning systems that consist of actor pro-
cesses, experience replay memory, and learner process. The
actor processes take actions based on Q-network inference
results and observe state transitions and rewards by the
selected actions. The state transitions and rewards (i.e.,
experiences) are stored in an experience replay memory, and
the Q-network model is trained using sampled experiences by
the learner process.

Several improvements based on Ape-X have been pro-
posed. In Recurrent Replay Distributed DQN (R2D2) [9],
RNN (Recurrent Neural Network) based reinforcement learn-
ing agents are trained via distributed prioritized experience
replay. Never Give Up (NGU) [10] improves R2D2 by intro-
ducing an episodic memory-based intrinsic reward to avoid
the same state in the same episode. Agent 57 [11] improves
NGU by selecting efficient internal reward reflection rates.
All these prior works use distributed prioritized experience

Algorithm 1 Actor
1: Pull parameters θ0
2: for t = 1 to T do
3: at ← ϵ-greedy(A)
4: (rt , stC1)← Environment(at , st)
5: LocalBuffer.Add(st , at , rt , stC1)
6: if LocalBuffer.Size() ≥ Batch_Size then
7: τ ← LocalBuffer.Get(Batch_Size)
8: p← ComputePriorities(τ )
9: Push(τ , p)

10: end if
11: Pull θt every Npull steps
12: end for

replay originally proposed in Ape-X; thus, experiences are
sent from actors to learner in these prior works. Since
we also follow this direction, our proposed approach can
be applied to these Ape-X style distributed reinforcement
learning systems.

In the following, the actor, experience replay memory,
and learner processes in the Ape-X style architecture are
explained.

1) ACTOR
Actor is a process that takes actions based on DQN inference
results and observes the environment to generate experiences
each of which consists of the original state, action, reward,
and next state. Algorithm 1 shows actor’s behavior. An actor
makes inferences using model parameters θ obtained from
learner to select an action at at current time t (Line 3).
ϵ-greedy is awell-known algorithm to select an action at from
a set of possible actions. It can increase the diversity of action
search by randomly selecting an actionwith a probability of ϵ.
A different ϵ value is set to each actor. The actor then takes
the selected action at and observes reward rt and next state
stC1 from the environment so that an experience (at , st , rt ,
stC1) is generated (Line 4). The generated experiences are
temporarily stored in a local buffer (Line 5), and then those
of a predefined batch size are transferred to an experience
replay memory (Lines 6-10). τ is a batch of experiences, and
p is a batch of their priorities. A priority is assigned to each
experience by the actor so that experiences that can accelerate
the DQN training are preferentially trained by the learner
(Line 8). A difference between estimated and target Q-values,
called TD (Temporal Difference) error, is used as the priority
of an experience.

2) LEARNER
Algorithm 2 shows learner’s behavior. A learner samples

experiences accumulated in an experience replay memory
based on their priorities assigned by actors (Line 3). The
learner uses the sampled experiences of a training batch
size as training data, and then it updates parameters θ of
Q-function so that a loss value by the training data is
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Algorithm 2 Learner
1: θ0← Initialized parameters
2: for t = 1 to T do
3: id , τ ← Sampling(Batch_Size)
4: lt ← ComputeLoss(τ ;θt−1)
5: θt ← UpdateParameters(lt ;θt−1)
6: UpdatePriorities(id)
7: if Receive parameter pull request then
8: Send θt to actor
9: end if

10: Update replay memory every Nreplay steps
11: end for

minimized (Line 5). More specifically, in DQN, the model
parameters of Q-function are updated so that the Q-function
can predict a sum of the latest reward rt+1 and the maximum
expected reward in the next state stC1 as follows.

Q(st , at )← rt+1 + γ max
at+1

Q(stC1, at+1), (1)

where γ is a discount rate of reward. Since priorities of
experiences once used for the training should be decreased,
the learner updates the priorities of such experiences in the
experience replay memory (Line 6). The model parameters
are sent to an actor when a parameter pull request is received
from the actor (Lines 7-9).

3) PRIORITIZED EXPERIENCE REPLAY
Although it is expected that preferentially using the experi-
ences or state transitions with higher priorities can improve
efficiency of training, there are some issues. Specifically,
experiences with lower priorities may not be used for a long
time, and an overfitting which becomes sensitive to noises
may occur due to a limited diversity of experiences actually
used. To address these issues, a probabilistic sampling
of experiences based on their priorities [19] is used in
recent distributed deep reinforcement learning. A sampling
probability of an experience (or state transition) i is calculated
based on priority p of the experience as follows.

Pi =
pα
i

6kpα
k
(pk ̸= 0), (2)

where α is a hyper-parameter that weights the priority and
6kpk means the sum of priorities of entire replay memory.
In the prioritized experience replay, data manipulation

and probabilistic sampling of experiences can be efficiently
implemented by using SumTree as a data structure.
Algorithm 3 shows the probabilistic sampling using
SumTree. By traversing the tree structure from root to leaf as
described in Algorithm 3, a probabilistic sampling based on
priority is implemented without reordering the experiences.
Computational complexity of the probabilistic sampling is
O(logN ), where N is the number of experiences in SumTree.
Several improvement methods of the experience replay

have been proposed. There are mainly two directions for the

Algorithm 3 Probabilistic Experience Sampling Using
SumTree
Require: 0 ≤ s (Random number) ≤ 6k pk
1: n← root
2: if n is leaf_node then
3: return n
4: end if
5: if n.left_val ≥ s then then
6: return Sampling(n.left, s)
7: else
8: return Sampling(n.right, s - n.left_val)
9: end if

improvement: reducing off-policy (i.e., difference between
the policy on training and the replay memory) and rapid
convergence. Combined Experience Replay (CER) [20]
reduces the off-policy by adding an experience generated
by the latest parameters to the training batch after the
sampling. Attentive Experience Replay (AER) [21] also
reduces the off-policy by using similarities between states of
experiences in the replay memory and current agent’s states.
Large Batch Experience Replay (LaBER) [22] improves
the convergence speed by two-step sampling. The first
step makes a larger batch than training batch from replay
memory by uniform sampling, and the second step makes a
training batch from the large batch by sampling based on the
priority.

In this paper, we use a prioritized experience replay based
sampling. Since these improved sampling methods described
above do not affect the actor-learner communication archi-
tecture, our proposed approach can be combined with these
sampling methods.

C. IMPROVEMENT METHODS OF TRANSFER EFFICIENCY
OF DISTRIBUTED REINFORCEMENT LEARNING
As mentioned in Section I, there are two approaches to
improve the transfer efficiency: accelerating the communica-
tion and sending useful experiences preferentially.

As an acceleration method of communication, Li et al. [23]
assume a distributed reinforcement learning architecture,
in which each computer is high-performance and the
experience generation and learning take place on all the
computers. In this case, gradient aggregation between
computers becomes a performance bottleneck; thus, they
propose to accelerate this process by performing the gradient
aggregation within network switches. Our past work [12] also
proposes an acceleration method of communication between
actors and learner in Ape-X style architecture using DPDK
and F-Stack.

As an improvement method for sending more useful expe-
riences, Liu et al. [24] propose a distributed reinforcement
learning architecture in which both actors and learner have
a replay memory. The experience sampling is done twice in
a hierarchical manner in both actors and learner. Since the
sampling is done by actors too, it can reduce communication
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overheads between the actors and learner. However, they
assume the same environment as in [7], where actor and
learner nodes are located closely; in this case, workload of
actors is increased because actors have a replay memory and
sample their experiences. Their work is different from our
assumed distributed reinforcement learning setting, and thus
it cannot be applied to ours as is.

Chen et al. [25] propose a communication efficient
policy for the distributed reinforcement learning, in which
gradients are transferred from actors to learner. Their method
adaptively skips the gradient communication during training
iterations without degrading learning performance. However,
their method cannot be applied to distributed reinforcement
learning that transfers experiences.

In addition, the improvement methods of experience replay
introduced in Section II-B can also be used for sending
more useful experiences, because these methods aim to
sample more effective experiences for training. Overall, our
proposed approach is classified as an improvement method
for sending more useful experiences to improve the transfer
efficiency in the edge-cloud settings, but the prior works
mentioned above do not focus on edge-cloud implementation
where actors and learner’s communication is long-haul as
assumed in this paper. Although our previous work [12] also
focused on such an edge-cloud environment as mentioned in
Section I, this paper is quite different from the previous work
since the previous work proposed an acceleration method of
communication by DPDK.

D. APPLICATIONS OF DISTRIBUTED REINFORCEMENT
LEARNING FOR EDGE-CLOUD ENVIRONMENT
Several applications of distributed reinforcement learning in
edge-cloud environments have been proposed. Please note
that most of them are based on Ape-X.

Boni et al. [26] propose a distributed reinforcement
learning architecture for task offloading in autonomous IoT
systems. In their architecture, IoT devices correspond to
actors, and a cloud node corresponds to a learner; in addition,
a smart access point is installed to aggregate information from
the IoT devices, while a replay memory is included in the
cloud node.

Liu et al. [27] propose a mobile crowdsensing optimization
of unmanned vehicles using a distributed reinforcement
learning. In their method, each unmanned vehicle forms a
network that uses its own replay memory. The architecture
is similar to Ape-X; since there are multiple vehicle
networks in the system, a single learner maintains multiple
replay memories and trains an individual model for each
network.

Li et al. [28] propose a multipath TCP congestion
control using a distributed reinforcement learning. In their
architecture, multipath TCP connections are corresponding to
actors. A server called ‘‘collector’’ receives experiences from
clients. A learner node then receives the experiences from
the collector. The learner node has a replay memory, and it

FIGURE 3. An implementation of baseline architecture.

trains the model using experiences sampled from the replay
memory.

Geng et al. [29] propose a distributed reinforcement
learning based computation offloading in vehicular edge
computing networks. There are three components in their
assumed environment: vehicles which interact with environ-
ment, mobile-edge servers which collect data from nearby
vehicles, and a cloud server. The distributed reinforcement
learning is based on Ape-X. The vehicles are corresponding
to actors, and the cloud server is corresponding to a learner
with replay memory.Mobile-edge servers collect experiences
from the vehicles and send them to the replay memory of the
cloud server.

Qiu et al. [30] propose a distributed reinforcement learning
based computation offloading for smart home devices. This
method is also based on Ape-X. Each device in a smart
home is corresponding to an actor, and a cloud node is
corresponding to a learner with replay memory. Management
hubs of smart home devices collect experiences from these
devices and send them to the replay memory of the cloud
node.

These applications adopt a prioritized experience replay,
and the replay memory is included in the learner node oper-
ated at the cloud side. Therefore, we use this architecture as a
baseline to compare with our approach. The implementation
of the baseline architecture in this paper is illustrated in
Section III.

III. BASELINE DISTRIBUTED DEEP REINFORCEMENT
LEARNING ARCHITECTURE
In distributed reinforcement learning for edge-cloud environ-
ment, there are three types of nodes; actor nodes interact
with environment and generate experiences, a buffer node
collects the experiences from the actor nodes, and a learner
node trains model parameters. As mentioned in Section II-D,
in the Ape-X based architecture, a replay memory is typically
implemented in the learner side. This architecture is used as
baseline in this paper.

Figure 3 shows an implementation of the baseline archi-
tecture that consists of actor node, buffer node, and learner
node. Although multiple actors are running on a single actor
node in this figure for simplicity, we can assume that they are
running on multiple edge computers in practical situations.
These nodes are connected via 25GbE. The actor and buffer
nodes are connected via the same LAN, while the buffer and
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FIGURE 4. An implementation of proposed architecture.

learner nodes are connected via a 10km optical fiber cable
since we assume that the learner is running at the cloud side.

The behaviors of the actor and learner nodes are same
as those in Algorithms 1 and 2. The buffer node acts as a
buffer between the actor and learner nodes. Specifically, the
buffer node receives experiences from actors, stores them in
a local buffer, and then transfers the buffered experiences to
the learner when it receives a send request from the learner
during the periodic update of replay memory in Algorithm 2.
The learner then updates replay memory using the received
experiences.

Figure 3 shows the communication flow over the actor,
buffer, and learner nodes. The data transfer amount from actor
to buffer is determined by given hyperparameters, that from
buffer to learner depends on the replay memory size, and
that from learner to actor via buffer depends on the model
parameter size. Especially, data transfer amount from buffer
to learner is large as shown in a big arrow in Figure 3.

IV. PROPOSED DISTRIBUTED DEEP REINFORCEMENT
LEARNING ARCHITECTURE
A. OVERVIEW OF PROPOSED APPROACH
Figure 4 shows an overview of the proposed architecture.
As well as the baseline architecture, it consists of actor node,
buffer node, and learner node. The behavior of the actors is
the same as that of the baseline. Themajor difference from the
baseline is that the buffer node includes the replay memory
functionality, and it sends only sampled experiences to the
learner. As shown in a slightly narrow arrows from buffer
to learner in Figure 4, a batch of sampled experiences is
transferred to the learner whenever the learner consumes a
batch of the experiences for the model training. This may
increase the frequency of data transfers from the buffer
to learner nodes, while it can transfer only the sampled
experiences, which stochastically have higher priorities,
thereby increasing the transfer efficiency compared to the
baseline architecture.

B. PROCESSES OF PROPOSED APPROACH
In the proposed approach, modifications are not needed for
the actors, while the algorithms of the buffer and learner
nodes are changed from the baseline. Especially, a main
difference from the baseline is that the buffer node has a
replay memory. The buffer node receives the experiences
from the actors and adds them to the replay memory.

Algorithm 4 Receiving Process of Buffer From Actors
1: while Replay memory is not full do
2: Receive τ , p from actor
3: Replay.Add(τ , p)
4: end while
5: for t = 1 to T do
6: Receive τ , p from actor
7: Replay.Update(τ , p)
8: if Receive parameter pull request then
9: Send θt to actor

10: end if
11: end for

Algorithm 5 Sending Process of Buffer to Learner
1: Wait for replay memory to be full
2: for t = 1 to T do
3: if Receive pidold , idold from learner then
4: if τidold have not been updated then
5: UpdatePriorities(idold )
6: end if
7: id , τ ← Sampling(Batch_Size)
8: Push(id , τ )
9: end if

10: if Receive new parameters from learner then
11: Update θt
12: end if
13: end for

In the proposed approach, contents of replay memory are
sequentially updated in a FIFOmanner, while an entire replay
memory is updated at once in the baseline.

Because the buffer node communicates with both actor
and learner nodes asynchronously, Algorithm 4 shows the
receiving part of the buffer node from actors, and Algorithm 5
shows the sending part of the buffer node to learner. Variables
in these algorithms are same as those in Algorithms 1 and 2.
In these new algorithms, τ is a batch of received experience,
p is a batch of their priorities, and id is a batch of IDs of
experiences which are extracted by the sampling. A subscript
old means that these variables are corresponding to a previous
training batch.

At the startup time, since no experience is accumulated in
the replay memory, the received experiences are only stored
in the replay memory (and thus they are not sent to the
learner) until the replay memory becomes full (Lines 1-4
in Algorithm 4). After the replay memory becomes full,
whenever new experiences are received, these experiences
are added to the buffer while the oldest experiences in the
buffer are deleted (Lines 6-7 in Algorithm 4).When the buffer
node receives a sending request from the learner, pidold and
idold of the previous training batch are also received from
the learner (Line 3 in Algorithm 5). Then, it can update the
priorities related to idold (Line 5 in Algorithm 5). Please note
that there is a possibility that the experiences of idold have
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FIGURE 5. Sampling method of replay memory in baseline approach
(a) and that in proposed approach (b).

been already updated due to the receipt of new experiences
from actors asynchronously. Therefore, only the priorities of
the experiences which have not been updated are updated
(Lines 4-6 in Algorithm 5). This update is followed by the
sampling that adds new experiences to the buffer (Lines 7-8
in Algorithm 5). The latest model parameters are sent from
the learner to actors periodically. When the buffer node
receives new parameters, θt are updated (Lines 10-12 in
Algorithm 5).

The learner algorithm is changed as follows. First, the new
algorithm eliminates the periodic updates of replay memory.
Second, the learner requests the buffer node to fetch a batch
of experiences instead of sampling the local replay memory.
Third, the learner sends the model parameters θt everyNupdate
steps to the buffer node instead of sending them to an actor
when the learner received a parameter pull request from the
actor.

The proposed approach has two advantages over the
baseline. The first advantage is the efficient use of com-
munication bandwidth. In the proposed approach, only the
sampled experiences are sent to the learner node. Thus, higher
priority experiences are more likely to be sampled, and all
the transferred experiences are used for the model training.
In the baseline approach, on the other hand, experiences
coming from actors are directly transferred to the learner.
Since lower priority experiences may not be sampled for
training at the learner side, many transferred experiences are
not used for the training, which decreases the communication
efficiency.

The second advantage is that the proposed approach can
prevent overfitting, because in our approach experiences in
a replay memory used for the sampling are different for
each batch transfer. Figure 5 illustrates experiences stored
in the replay memory for sampling in the cases of the
proposed and baseline approaches. In Figure 5, white-colored

TABLE 1. Specification of actor, buffer, and learner machines (three
machines with the same specification).

cells represent experiences generated based on θ1−4, while
dark-colored cells represent those generated based on newer
parameters θ5−8. As shown in Algorithm 2, the model
parameters are updated every Nupdate times. In the proposed
approach, immediately after the parameters are updated, the
experiences obtained by the updated parameters are added
to the replay memory by a FIFO manner, so that the replay
memory is updated like a sliding window. In other words,
experiences based on the parameters closer to the latest
ones can be included in the replay memory as shown in
Figure 5(b).

Such a FIFO method is one of updating methods of
replay memory [31], [32], and this method is suitable for
the proposed approach to avoid overfitting and improve the
transfer efficiency of the proposed approach. The benefit of
this FIFO manner is evaluated and discussed in Section V.
On the other hand, in the baseline approach, the entire
replay memory is updated at the same time but with a lower
frequency, so the same experiences tend to be sampled for the
training repeatedly until then (see Figure 5(a)). Thanks to this
modification, the proposed approach can prevent overfitting
and use the most recent parameters for the sampling, thereby
increasing the training efficiency.

V. EVALUATIONS
A. EVALUATION ENVIRONMENT
In this evaluation, a separate machine is used for each of
actor node, buffer node, and learner node. These machines
are connected by 25GbE. In particular, the buffer and learner
nodes are connected via a 25GbE switch (QNAP QSW-
M5216-1T) and a 10km optical fiber for 25GBASE-LR,
to build a long-haul communication between the buffer and
learner nodes assuming practical use cases. The actor and
buffer nodes are connected via a direct attach copper cable.
Specifications of these machines are the same. Table 1 shows
the specification of the three machines.

As a benchmark environment, we use Atari breakout
included in OpenAI Gym environment [33]. Dueling
Network Architecture [34] is a well-known deep neural
network model used in DQNs such as in [7]. It is used in
our evaluation in cooperation with double-DQN and n-step
bootstrap target (n = 3) techniques, with a parameter size
of approximately 13MB. Training batch size of experiences
at learner is set to 512, and the data size of the batch
is approximately 120MB. The size of replay memory and
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FIGURE 6. Execution time breakdown and throughput (‘‘eps’’ means
experiences per second).

the number of actors are set to 65,536 and 8, respectively,
unless otherwise noticed (these values are varied in some
evaluations). The number of experiences trained during an
epoch is 65,536, which is equal to the replay memory size.
Nupdate in Algorithm 2 is set to 16 in all the evaluations.
Thus, the model parameters in a local buffer are updated
every 16 training batches, and the parameters are pulled by
the actors asynchronously. The data size of replay memory
is approximately 1.6GB. As a practical implementation,
it is assumed that the actors are implemented with edge
computers, but in this evaluation, multiple actors are executed
on a single machine for simplicity.

B. EXECUTION TIME BREAKDOWN
Figure 6 shows the execution time breakdown and throughput
of the actors (the number of actors is 8), the learner of
the proposed approach, and the learner of the baseline
approach. In this figure, the graphs show the breakdown of
each execution time, in which the blue part corresponds to
the computation time and the red part corresponds to the
communication time. The numbers above the graphs show
their throughput. The update frequency of replay memory
for the baseline approach is set to once per one epoch to
normalize the transfer amount per learning in the proposed
and baseline approaches.

The throughput difference between the proposed and base-
line approaches is whether the experience sampling is done
before the experiences are transferred to the learner or not.
The proposed approach that performs the sampling before
the communication can shorten the learner’s computation
time. The proportion of communications is 10% for the actor,
30% for the learner in the proposed approach, and 27% for
the learner in the baseline approach. Even when these nodes
are interconnected by a high-bandwidth 25GbE network, the
communication overhead is significant, which reduces the
throughput for the model training. If the transfer amount is
further increased, the throughput is also reduced, so it is
important to extract and transfer experiences that are expected
to be useful for the model training.

FIGURE 7. Training loss Lt of proposed and baseline approaches.

FIGURE 8. Transferred priority pt and sampled priority ps of proposed
and baseline approaches.

C. COMPARISON BETWEEN PROPOSED AND BASELINE
APPROACHES
To compare the proposed and baseline approaches, the game
score of the benchmark can be considered as one of evaluation
metrics, but the evaluation using the game score is too
time-consuming and shows a significantly different result
for each trial, making it difficult to evaluate our approach
from various perspectives due to time constraints. In this
evaluation, thus, the following three metrics are used to
evaluate the training and communication efficiencies: Lt , pt ,
and ps. Lt is the training loss. pt is the average priority
of experiences sent to the learner node (called ‘‘transferred
priority’’), and ps is the average priority of the sampled
experiences (called ‘‘sampled priority’’).

In the baseline approach, all the experiences stored in a
replay memory are transferred from the buffer to the learner;
thus, the transfer amount depends on the replay memory size.
In the proposed approach, since only sampled experiences are
transferred, the transferred and sampled experiences are the
same (i.e., pt = ps). In this section, the proposed and baseline
approaches are compared in term of the above-mentioned
three evaluation metrics. Then, additional evaluations are
conducted with different numbers of actors and different sizes
of replay memory to analyze characteristics of the proposed
approach.
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1) COMPARISON IN STANDARD CASE
Figure 7 shows Lt of the proposed and baseline approaches,
while Figure 8 shows pt and ps of the proposed and baseline
approaches. In the proposed approach, Figure 8 shows only
ps since pt is equivalent to ps. In these figures, X-axis shows
the number of epochs for the training and Y-axis shows the
training loss or the priorities in a logarithmic scale. The
training loss and the priorities are the averaged values over
10 trials. Their standard deviations are also shown as the error
bars. To keep the number of batch trainings for the proposed
and baseline approaches the same, the replay memory is
updated every 128 batch trainings in the baseline approach.
Thus, it is updated once per epoch because the replay
memory size is 128 times larger than the batch size for the
training.

In terms of the training loss, the difference between these
approaches is small at the beginning of the training, while
the loss of the proposed approach is lower than that of the
baseline approach at the 40 epochs or more. The training loss
of the proposed approach after the training loss is converged
(i.e., average training loss during 50-100 epochs in Figure 7)
is 26% of the baseline approach, and this shows that the
proposed approach has a higher training efficiency than the
baseline approach.

In terms of the transferred priority, the priority of the
proposed approach is higher than the baseline approach,
which means that the proposed approach can transfer higher
priority experiences efficiently. However, the difference of
the transferred priority between the proposed and baseline
approaches is gradually decreasing as the training progresses;
for example, the transferred priority of the proposed approach
is 26.1 times higher than that of the baseline at the beginning
of the training while it is 3.92 times higher after the training
loss is converged (i.e., average transferred priority during
50-100 epochs in Figure 8). There are two reasons of the
decrease. The first reason is that the wasted experiences (e.g.,
those when the game is over with 0 points) are decreased
as the training progresses. The second reason is related to
the difference of the training loss between the proposed and
baseline approaches. Because the transferred priority tends to
be decreased as the training loss decreases, the priority of the
proposed approach becomes low compared to the beginning
of the training.

In terms of the sampled priority, the priority of the
proposed approach is higher than the baseline at the beginning
of training, though contents of the replay memory should be
the same in both the approaches at the beginning of training.
This is due to the difference of the update method for the
replay memory. In the following, we evaluate the training
loss and the sampled priority within each epoch to further
analyze this difference. Figures 9 and 10 show Lt and ps
of the proposed and baseline approaches within each epoch.
X-axis shows the number of trained batches in each epoch,
and Y-axis shows training loss or sampled priority. In these
figures, the results at each number of trained batches are
averaged values of 100 epochs which were presented in

FIGURE 9. Training loss Lt of proposed and baseline approaches within
each epoch.

FIGURE 10. Sampled priority ps of proposed and baseline approaches
within each epoch.

Figures 7 and 8. These Y-axis values are normalized so that
the average values become 1.

The major difference between the proposed and baseline
approaches is the change pattern of the sampled priority. The
sampled priority of the baseline approach is very high at
the beginning of each epoch and then gradually decreases.
In the baseline approach, a replay memory is updated only
once at the beginning of each epoch, and then the batch
training is repeated using the same replay memory. The
sampled priority gradually decreases as the number of trained
batches increases, because priorities of sampled experiences
are updated with low values after these experiences are used
for the training. Thus, experiences with low priorities become
more likely to be sampled as the training progresses since
priorities of the sampled (thus, high priority) experiences
become low. In the proposed approach, on the other hand, the
sampled priority decreases and then increases periodically.
This cyclic period is same as the update cycle of the model
parameters for the actors. The sampled priority becomes
high temporarily because new experiences generated by
new model parameters are included in the replay memory.
In the proposed approach, peaks of the sampled priority are
1.10 times higher than the overall average. These peaks are
significantly low compared to the peak of sampled priority
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FIGURE 11. Training loss Lt of proposed and baseline approaches when
the number of actors is changed.

of the baseline at the beginning of the training, which is
1.77 times higher than the overall average. As mentioned
earlier, the average sampled priority of the proposed approach
within the first epoch is higher than the baseline approach.
This is because, although there is no difference between the
proposed and baseline approaches at the first batch, after
that the sampled priority of the baseline approach is sharply
decreased compared to the proposed approach.2 This is the
reason for the difference of the sampled priority between the
proposed and baseline approaches at the beginning of training
in Figure 8.

In terms of the training loss, the range of fluctuation is
much smaller than that of the sampled priority. However,
the training loss of the baseline approach shows a small
increase at the beginning of the epoch, suggesting the
repeated ineffective trainings on the same replay memory.
The proposed approach does not show such a tendency, so it
can effectively train the model.

2) DIFFERENT NUMBERS OF ACTORS
Since the number of experiences generated at a time is
increased as the number of actors is increased, the proposed
and baseline approaches can be evaluated with different
speeds of experience generation by changing the number
of actors. Figures 11 and 12 show Lt , pt , and ps of the
proposed and baseline approaches when the number of actors
is 1 and 8. X-axis shows the number of epochs, and Y-axis
shows the training loss or the priorities as well as those in
Figures 7 and 8.
In both the approaches, the training loss becomes low

at the 40 epochs or more by changing the number of
actors from 1 to 8. This result shows the faster the speed
of experience generation, the more efficient the learning
process. The training loss of the proposed approach is
lower than that of the baseline approach regardless of the
number of actors, indicating that the proposed approach

2Note that Y-axis of Figure 10 is normalized so that the averaged value
within each approach becomes 1.

FIGURE 12. Transferred priority pt and sampled priority ps of proposed
and baseline approaches when the number of actors is changed.

FIGURE 13. Training loss Lt of proposed and baseline approaches when
replay memory size is changed.

is effective even when the speed of experience generation
is low.

In terms of priorities, the transferred priority of the
baseline approach decreases when the number of actors is
increased. This is because the probability that the low-priority
experienceswill be generated becomes highwhen the training
loss is low. Considering this effect, the proposed approach can
extract high-priority experiences despite the low training loss;
thus, the proposed approach is highly efficient in terms of the
experience extraction.

3) DIFFERENT SIZES OF REPLAY MEMORY
Figures 13 and 14 show Lt , pt , and ps of the proposed and
baseline approaches when the replay memory size is 8,192
and 65,536. In this evaluation, the number of batch trainings
within each epoch is fixed at 128 for a fair comparison
between different replay memory sizes. However, the transfer
frequency of replay memory is changed to once per 16 batch
trainings when the replay memory size is 8,192, so that the
ratio of the number of transferred experiences and the number
of experiences used for the model training is fixed. X-axis
shows the number of epochs, and Y-axis shows the training
loss or the priorities as well as those in Figures 7 and 8.
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FIGURE 14. Transferred priority pt and sampled priority ps of proposed
and baseline approaches when replay memory size is changed.

Basically, a larger replay memory size contributes to
higher priorities since the larger replay memory has more
experiences to be extracted. In the baseline approach, the
transferred and sampled priorities tend to be low when the
replay memory size is 8,192, while this tendency is not
observed in the proposed approach. In the proposed approach,
new experiences, which have stochastically higher priorities,
are always included in the replay memory, and this can
compensate for the decrease of the priorities due to the small
replay memory.

In the baseline approach, the training loss does not increase
when the replay memory size is decreased from 65,536 to
8,192 though the priorities become low. In this evaluation,
the update frequency of the replay memory is high when the
replay memory size is 8,192; it is expected that such high
frequency updates of replay memory can mitigate a negative
impact of the overfitting induced by the repeated training for
the same replay memory.

VI. DISCUSSIONS
A. CONDITION FOR EFFECTIVENESS OF PROPOSED
APPROACH
The evaluation results of the baseline approach show that
the repeated training against the same replay memory causes
overfitting, while the proposed approach is effective to
prevent this kind of overfitting. Other than our proposed
approach, another approach that transfers experiences and
updates replay memory more frequently may be able to
prevent the overfitting. In this alternative approach, only a
part of the replay memory is transferred at a time and the
replay memory is updated in a FIFO manner. Such an update
method of replay memory is similar to the proposed approach
as shown in Figure 5. However, unlike the proposed approach,
this alternative approach requires all the experiences in the
replay memory, which means that experiences with lower
priorities are also transferred. Thus, this alternative will suffer
from negative impacts of the lower transferred priority as well
as the baseline approach.

The benefit of the extracting higher-priority experiences
by the proposed approach depends on the balance between

the generation rate of experiences and the consumption rate
of experiences for the training. Here, this ratio is denoted
as α, and it can be calculated by the number of experiences
generated in a given time period divided by the number of
experiences used for the training in the same period. If α

is less than 1, the extraction of experiences by the proposed
approach does not improve the transfer efficiency because all
the experiences are transferred to learner node.3 On the other
hand, when α is greater than 1, the training efficiency can be
improved by extracting only higher-priority experiences.

When the number of actors is 8 in our evaluation,
α is 1.52, which means that the proposed approach improves
the transfer efficiency in our environment. In this evaluation
environment, more than 8 actors were not implemented in
the actor node due to a performance limitation of our single
actor machine, but further efficiency improvement would
be expected with a larger number of actors. For example,
360 actors run on 360 CPUs in [7]. The proposed approach is
considered to be more effective in such a large environment.
Please note that there is a possibility that the proposed
approach may still transfer the same experiences multiple
times when sampling targets are overlapped; thus, further
efficiency improvement can be expected by newly introduc-
ing a cache on the learner side to reuse experiences selected
multiple times. Exploring such optimization techniques is our
future work.

B. EFFECTIVENESS AND SCALABILITY OF PROPOSED
APPROACH FOR REAL-WORLD APPLICATIONS
To evaluate the proposed distributed reinforcement learning
approach in practical environments, in this paper, we built
a test environment where the buffer and learner nodes are
connected via a 25GbE switch and 10km optical fiber.
However, we should consider the following two additional
cases in our test environment for practical applications
including those introduced in Section II-D:
• A situation where the communication distance and
bandwidth between the buffer and learner nodes become
longer and narrower, and

• A situation where multiple sets of actor and buffer nodes
exist.

In the first situation, the communication overhead increases
and the transfer efficiency of experiences to the learner
node decreases. In this case, since the consumption rate
of experiences by the learner node decreases, α would be
increased from 1.52 which is corresponding to our test
environment. As mentioned in Section VI-A, the training
efficiency can be improved when α is greater than 1; thus,
it is expected that the proposed approach is effective in the
first situation where α is greater than 1.52.

3Strictly speaking, the baseline approach requires sampling of experiences
at a learner node, which incurs an additional computation time at the learner,
so the training throughput will be lower than that of the proposed approach.
However, for the sake of simplicity, the training throughput is assumed to be
constant in this discussion.
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The second situation may occur in applications where
experiences are collected from larger systems (e.g., multiple
LANs) as in [26], [27], [28], [29], and [30]. The proposed
approach can address such a situation by adding more buffer
nodes each of which has its own experience replay memory.
In this case, since the data processing between the actor
and buffer nodes in an LAN is independent from that of
the other LANs, Algorithm 4 will not be changed. On the
other hand, Algorithm 5 should be slightly modified so that
the experience sampling can be done from multiple replay
memories. More specifically, the experience sampling should
be modified so that N

R experiences are sampled from each
replay memory, where N is the batch size and R is the
number of replay memories. Thus, the proposed approach
can be used for the practical applications that felt into the
second situation. To address the heterogeneity of various
computing platforms, it is expected that multiple buffer nodes
are implemented on multiple edge servers; in this case, the
number of experiences sampled from each buffer node should
be tuned depending on the experience generation rate of each
buffer node (e.g., more experiences should be sampled from a
buffer node that produces more experiences). As the number
of the buffer and actor nodes increases, the learner node
would be a performance bottleneck; such a scalability issue
can be addressed by introducing a hierarchical structure as
in [24], and this direction is our future work.

VII. CONCLUSION
To improve the performance of the deep reinforcement
learning such as DQN, the distributed deep reinforcement
learning using a cluster of computers is a promising approach.
In a practical use case of distributed deep reinforcement
learning, since it is assumed that learner node is located
in cloud side while actor nodes are located in edge side,
the communication overheads negatively impact the training
efficiency. We implemented the realistic environment with
three types of nodes (i.e., actor, buffer, and learner nodes),
in which the buffer and learner nodes are connected via a
25GbE switch and a 10km optical fiber. In this environment,
the communication overhead accounts for 27% of the
execution time of the learner in the baseline approach. This
suggests a high importance to extract and transfer only
experiences which are useful for the model training.

In this paper, we proposed an architecture that places the
replay memory on the buffer node, whereas existing methods
place it on the learner side. We evaluated the proposed and
existing approaches in terms of the training loss and priorities
of the transferred experiences. The evaluation results using
the Atari breakout game show that the training loss of the
proposed approach is 26% of the existing architecture. The
transferred priority of experiences is 3.92 times higher than
the existing approach just after the training loss is converged.
These results demonstrate that the proposed approach out-
performs the existing approach in terms of both the training
efficiency and the transfer efficiency of experiences in
long-haul cloud-edge communication environments.
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