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ABSTRACT The adoption of Stereo Imaging technology within endoscopic procedures represents a
transformative advancement in medical imaging, providing surgeons with depth perception and detailed
views of internal anatomy for enhanced diagnostic accuracy and surgical precision. However, the practical
application of stereo imaging in endoscopy faces challenges, including the generation of low-resolution and
blurred images, which can hinder the effectiveness of medical diagnoses and interventions. Our research
introduces an endoscopic image SR model in response to these specific. This model features an innovative
feature extraction module and an advanced cross-view feature interaction module tailored for the intricacies
of endoscopic imagery. Initially trained on the SCARED dataset, our model was rigorously tested across four
additional publicly available endoscopic image datasets at scales 2, 4, and 8, demonstrating unparalleled
performance improvements in endoscopic SR. Our results are compelling. They show that our model
not only substantially enhances the quality of endoscopic images but also consistently surpasses other
existing methods like E-SEVSR, DCSSRNet, and CCSBESR in all tested datasets, in quantitative measures
such as PSNR and SSIM, and in qualitative evaluations. The successful application of our SR model
in endoscopic imaging has the potential to revolutionize medical diagnostics and surgery, significantly
increasing the precision and effectiveness of endoscopic procedures. The code will be released on GitHub and
can be accessed at https://github.com/cu-vtrg-lab/Saliency-Aware-Deep-Learning-Approach-for-Enhanced-
Endoscopic-Image-SR.

INDEX TERMS Robotic surgery, stereo endoscopic surgical imaging, SR, surgical instruments.

Original Image x2 x4 x8

I. INTRODUCTION

The progression of digital imaging technology has markedly
enhanced visual quality in various sectors. The advent of
high-resolution imaging, from black-and-white to 8K resolu-
tions, underscores the pivotal role of pixel density in defining

lmage Clar‘FY- .Hussaln ‘?t al. [51] Present an 1nn0V.at.1ve FIGURE 1. Visual comparison of endoscopic image quality at various
approach utilizing a hybrid deep learning model Combining downsampled resolutions: Original, x2, x4, and x8.
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FIGURE 2. The proposed network architecture is illustrated with /LR symbolizing the input low-resolution images on the left side, and ISR denoting the
output reconstructed image on the right side. This network is designed to process low-resolution endoscopic images and produce high-quality,

super-resolved images as output.

real-time clinical decision-making. Raza et al. [52] developed
a hybrid deep learning model, DeepTumorNet, leveraging
convolutional neural network architectures to enhance the
accuracy of brain tumor classification from MRI images.
In their extensive evaluations, they demonstrated superior
performance over traditional models. However, the need
for better image quality faces significant hurdles, where
blurriness, noise, and the loss of critical details compromise
the integrity of visual data. Despite offering depth and
enriched detail through its dual-viewpoint approach, stereo
imaging is notably susceptible to these challenges, owing to
its intricate spatial and temporal dynamics. This predicament
has ignited interest in super-resolution (SR) techniques
to reconstruct high-quality visuals from lower-resolution
sources. Jiang et al. introduce the Adaptive-Threshold-Based
Multi-Model Fusion Network (ATMFN) [45], an inno-
vative approach that employs CNN-, GAN-, and RNN-
based super-resolvers in an ensemble learning framework
to enhance the quality of compressed face hallucination
images by leveraging the advantages of diverse learning
models. Jiang et al. [46] present the Dual-Path Deep Fusion
Network (DPDFN). This robust system integrates global and
local facial features through a novel dual-path architecture,
significantly enhancing the SR of face images without the
need for extensive facial prior information. In the EDiffSR
framework, Xiao et al. [47] develop an efficient diffusion
probabilistic model tailored for remote sensing image SR,
achieving superior performance by integrating a conditional
prior enhancement module that leverages informative cues
from low-resolution images.

In the domain of endoscopic surgery—a staple for mini-
mally invasive procedures—the adoption of stereo cameras
has been pivotal in transcending the depth perception and
field of view limitations presented by traditional single-
camera setups [1], [2]. Stereo endoscopic imagery, with
its dual-viewpoint depth cues, significantly outpaces the
single-camera modality in delivering superior visual informa-
tion [3]. Nonetheless, the difficulties of the surgical milieu,
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such as constrained operational spaces and fluctuating light-
ing conditions, invariably impair the quality and resolution of
stereo endoscopic visuals, thus impeding essential analytical
tasks, including image classification, segmentation, and
reconstruction [3], [4]. As illustrated in Fig 1, the progressive
degradation of image quality from left to right significantly
hinders the ability of doctors and medical practitioners to
accurately interpret the visual information, which is crucial
for effective diagnosis and treatment.

In addressing these intricacies, our study pioneers a novel
stereo endoscopic image SR paradigm. Our contributions are
deliberate and multifaceted:

e We debut an advanced feature extraction module
specifically engineered to distill fine-grained features
from stereo endoscopic images, elevating the SR
reconstruction’s accuracy.

« A novel cross-view feature interaction module is intro-
duced. It refines the processing of stereo scene images
by capitalizing on the depth and spatial disparities
across viewpoints to augment detail visibility and depth
discernment.

o Our investigation extends to SR at scales 2, 4, and 8,
marking a pioneering stride in SR research to evaluate
and elucidate the impact at scale 8. Our research
distinguishes itself by extending SR investigation to
unprecedented scales—particularly scale 8—making
this the first study within the field to assess and establish
the transformative impact of such a high scaling factor
in endoscopic image SR.

o The robustness and adaptability of our approach are
underscored by comprehensive testing across five pub-
licly available endoscopic image datasets, setting a new
precedent in the literature for such extensive empirical
validation.

By tailoring our efforts to the specific demands of stereo
endoscopic image SR, we aim to fortify the visual quality
of endoscopic procedures and lay the groundwork for
subsequent innovations in medical imaging technology.
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II. LITERATURE REVIEW

This section reviews SR techniques pertinent to our study:
single-image SR [13], stereo-image SR [14], video SR [15],
and stereo endoscopic SR [5], with a focus on enhancing
endoscopic imagery. Single-image SR (SISR) aims to
improve the resolution of individual images, often leading to
suboptimal results for dynamic scenes such as those found
in endoscopy. Multiple Image SR (MISR) addresses this by
using various low-resolution (LR) images to generate a high-
resolution (HR) image, thereby improving quality.

These methods typically involve analyzing LR and HR
image pairs to learn a transformation to HR. Depending on
the training data set, the techniques vary, catering to general
or specific types of images, such as medical images. Sparse
coding is a notable method for example-based SR.

Recent advances have utilized deep convolutional neural
networks for SR reconstruction. Hu et al. [16] refined the
network architecture to enhance performance and simplify
training. Other methods have focused on improving feature
relationships and overall image quality by incorporating
context into the network. Despite progress, ongoing research
is important for further improvements in SR techniques.

A. SINGLE IMAGE SR

Single Image SR (SISR) has witnessed substantial progress
with the integration of deep learning techniques, notably
in enhancing reconstruction accuracy [17], [18], [19]. The
SENext model employs squeeze-and-excitation blocks and
various skip connections to decrease computational demands
while improving feature processing [20]. This approach,
together with the Very Deep SR Network (VDSR) by
Kim et al. [21], the Residual Dense Network (RDN) by
Zhang et al. [22], and architectures like RCAN [23],
RNAN [24], and SAN [25], illustrate the growing complexity
of SR networks. Muhammad et al. introduced an innovative
architecture that reduces network parameters while boosting
speed and image quality, signifying a pivotal advancement in
SISR [26]. Recent methodologies have further expanded the
scope of SR techniques. The ATMFN model [45] combines
diverse deep learning models through adaptive threshold-
based fusion, significantly improving face hallucination by
leveraging their collective strengths. The TTST model [48]
innovates within transformer architectures by incorporating
a top-k token selective mechanism, optimizing the attention
process in SR tasks and reducing computational overhead.

B. STEREO IMAGE SR

Stereo image SR is critical for extracting high-quality images
from stereo pairs, leveraging the rich stereo information.
Bhavsar and Rajagopalan [14] and others have explored
depth and image enhancement methods, employing iterative
processes. CNN-based techniques have marked a significant
evolution in this field, with Jeon et al. [8] addressing parallax
challenges and Wang et al. [27] focusing on cross-view infor-
mation capture through their Parallax-Attention mechanism.
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Yan et al. [7] have furthered this by adapting domain-
specific networks to utilize cross view data more effectively,
while Xu et al. [28] and Chu et al. [29] have refined
CNN methods, focusing on accurate disparity maps and
information integration. These methodologies are central to
advancing stereo SR, demonstrating the potential for nuanced
disparity and detail capture to significantly enhance the SR
process and offer a comprehensive solution for high-fidelity
SR imaging in stereoscopic applications.

C. VIDEO SR

VSR distinguishes itself from SISR by using temporal cor-
relations between frames for reconstruction [23], [30], [31],
[32], with methods often involving frame alignment through
motion compensation. Despite challenges in optical flow
estimation [33], [34], approaches like that of Wang et al. [12]
combine alignment with attention modules for improved
results. Additionally, the Local-Global Temporal Difference
learning network [49] presents a novel approach by utilizing
both short-term and long-term temporal differences for
effective satellite video SR.

D. STEREO ENDOSCOPIC SR

Stereo Video SR has been explored to address challenges
like deblurring and adapting stereo content to various
screen sizes, utilizing 3D scene flow and depth information
for enhanced performance [35], [36], [37]. In endoscopic
surgery, SR techniques have evolved to improve visual
clarity, from the Minimally Invasive Surgery SR in 2011 [41]
to recent developments focusing on attention mechanisms
for detail enhancement and image reconstruction [5], [40].
Hayat et al. [44] proposed a novel algorithm for endoscopic
image SR and surgical instrument segmentation. This pro-
gression reflects a commitment to advancing image quality in
endoscopy, balancing real-time applicability, environmental
adaptability, and computational demands.

Ill. PROPOSED METHODOLOGY
Detailed Description of the Network Architecture: Our
network architecture is designed to address the complex
requirements of enhancing stereo endoscopic images through
SR techniques. The architecture comprises several critical
components: the StereoNet Attention Gate (SNAG), Residual
Dense Block (RDB), Cross-View Interactive Attention Block
(CVIAB), Reconstruction Block, and Pixel Shuffle. Each
element plays a vital role in processing and improving the
image data efficiently.

The model J, parameterized by ¢, generates super-
resolved (SR) images I,Eleﬁ’SR) and I,Enght’SR) from low-

resolution (LR) frames for both the left (I((lle_f;L)R), e,

(left,LR) . (right,LR) (right LR)Y _ . .
Lo im ) and right (I(k_m) oo A ) views. This

approach allows for an enhanced focus on areas of the image
that hold the most diagnostic value, which is essential for
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FIGURE 3. (a): StereoNet Attention Gate (SNAG), (b):Cross-View Interactive Attention Block (CVIAB),
(c): Stereo Attentional Residual Module (SARM), (d): Residual Dense Block (RDB).

medical imaging applications where clarity and detail are
paramount.

The integration of ‘Saliency-Aware’ mechanisms within
the SNAG and CVIAB specifically tailors the model to
emphasize salient features in the images, such as critical
anatomical structures and surgical instruments. This saliency-
aware approach ensures that the most information-rich parts
of the image receive higher priority during the SR process,
leading to more precise and clinically useful images. The
model’s ability to discern and enhance these salient features
directly supports the enhanced diagnostic and surgical
accuracy, which is the primary focus of our research.

(eft.SR) (right SR) _ (left,.LR) (et LR)
L I —J({Iac Sy e Ay
(right ,LR) (rtght LR)

LB, )

A. FEATURE EXTRACTION
1) StereoNet ATTENTION GATE (SNAG)
The StereoNet Attention Gate (SNAG), as an essential feature
extraction mechanism, plays a pivotal role in enhancing the
quality of endoscopic images through SR.

Channel attention mechanisms have been widely employed
in SR tasks to recalibrate feature responses across the
network globally [5], enhancing overall feature sensitivity
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and improving reconstruction quality. However, these mech-
anisms typically operate on a global scale, adjusting
channel-wise features uniformly, which may not be optimal
for specific applications requiring localized attention to
detail, such as medical imaging.

In contrast, the StereoNet Attention Gate (SNAG) in our
model introduces several innovative enhancements over tra-
ditional channel attention, making it particularly well-suited
for the nuanced requirements of endoscopic image SR.
Firstly, SNAG employs Instance Normalization at the outset,
standardizing features across each channel in response to
the fluctuating lighting conditions typical in endoscopic
procedures. This normalization process ensures more stable
network performance and better convergence, a crucial
advantage in medical applications where consistency in
image quality is paramount.

Following normalization, SNAG utilizes depth-wise sepa-
rable convolutions that process data more efficiently than the
convolutions typically employed in channel attention mecha-
nisms. This efficiency is vital for maintaining the extraction
of intricate spatial details necessary for high-quality SR.
Moreover, the integration of a Simple Gate mechanism
further refines the feature flow within the network. Unlike
traditional channel attention that broadly adjusts features
across all channels, SNAG’s gating mechanism focuses more
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selectively on significant features, effectively diminishing
the influence of less pertinent ones. This targeted feature
refinement allows SNAG to enhance the reconstruction of
fine details such as tissue textures and surgical instruments,
which are critical for diagnostic accuracy and surgical
precision in endoscopic imaging, as depicted in Fig 3(a).
Overall, the SNAG mechanism offers a more adaptable
and efficient approach to handling the specific challenges
of endoscopic image SR. By focusing on localized and
dynamic feature recalibration, SNAG not only outperforms
traditional channel attention mechanisms in terms of detail
recovery and adaptation to variable imaging conditions but
also demonstrates substantial improvements in computational
efficiency, making it highly suitable for real-time medical
applications. These innovations highlight the distinctive
contributions of our model to advancing SR technology,
particularly in critical medical imaging contexts.

F® =Conv1 x 1(SP(CDA(SG(DSCAN(I ™))+ 1M
2
F{AG = DSC(SG(DSCAN(F X)) 4 F 3)

ini ini

2) FEATURE REFINEMENT BLOCK

The Residual Dense Block (RDB) [53] is utilized for further
feature refinement after the SNAG block’s initial extraction.
It is unique to process endoscopic images in a SR context.
The RDB consists of several convolutional layers followed
by ReLU activations, with shortcut connections that allow
for feature reuse and avoid the vanishing gradient problem,
which is critical when training deeper networks for complex
tasks such as medical image SR. Fig 3 (d).

Fia = froB(Fiyage) for a € {left, right)  (4)

3) CROSS-VIEW INTERACTIVE ATTENTION BLOCK (CVIAB)
The Cross-View Interactive Attention Block (CVIAB),
as depicted in Fig 3(b), marks a significant advancement in
the domain of stereo endoscopic image SR. It achieves this
by promoting a sophisticated interaction between features
extracted from the left and right views of endoscopic
imagery. At the heart of CVIAB lies the Stereo Attentional
Residual Module (SARM), illustrated in Fig 3(c), which
is ingeniously designed to refine spatial features through
an efficient convolutional strategy. This strategy comprises
a blend of depthwise separable and dilated convolutions,
tailored specifically for endoscopic image analysis where
detailed texture and context capture are paramount. Where
DC is dilated convolution

The functional essence of SARM within the CVIAB
framework can be encapsulated by the following equation:

F&RM =DC (DSC (FI(ZVI%B)) , v e {left, right}  (5)

This expression delineates the sequential processing of
features originating from the Residual Dense Block (RDB),
whereby the Depthwise Separable Convolution operates
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first, ensuring computational efficiency while preserving the
capability for detailed spatial analysis. Following this, the
Dilated Convolution extends the receptive field, enabling
a comprehensive contextual grasp without augmenting the
computational demand— a critical consideration for the
nuanced textural and structural complexity inherent in
endoscopic images.

To further elucidate the process of parallax attention and
occlusion handling within the CVIAB, consider the stereo
images I; and Ig in the set R”*W . Parallax attention
vectors, Pr_,1 and Py _, R, are derived to spotlight occlusions
effectively, thereby transforming I into the perspective of I,
as follows:

IR (v, ) = Prosr (v, 5, 0) - IR(y, 2) (6)

The mechanism for occlusion influence mitigation and
ambient noise compensation involves computing valid masks
Mj, and Mg, which are derived through a scaled hyperbolic
tangent function, enhancing clarity and interpretability in the
super-resolved images:

M, =tanh(n-C}), ve{LR} (7

The integration and fusion of dual-view information in
CVIAB are achieved via a unique dual-view attention
mechanism, facilitated by depth-wise separable convolutions.
This mechanism not only amalgamates but also significantly
enriches the features from both views, as depicted in the
ensuing formulation:

Fcviag = US"Attentiongir(Zi, Yi, X;),
dir € {left — right, right — left} (8)

Through these designed operations, the CVIAB ensures
the seamless integration and enhancement of feature repre-
sentations across both views. This approach not only fortifies
the model’s capacity for high-fidelity image reconstruction
but also significantly contributes to the SR quality, vital
for the exigencies of medical diagnostics and procedures in
endoscopic imaging.

4) RECONSTRUCTION BLOCK
The Reconstruction Block is pivotal in synthesizing the
high-resolution endoscopic image from the extracted fea-
tures. It integrates a series of operations starting from
the Residual Dense Block (RDB) and continuing through
channel and depth attention, strip pooling, 1 x 1 convolution,
and depth-wise separable convolution. Each component
builds upon the previous one, progressively enhancing the
image quality and ensuring the reconstructed image retains
the essential details necessary for accurate medical diagnosis.
The entire process within the Reconstruction Block can be
concisely represented by the following equation:

Frecon = DSC (Convl x 1(SP(CDA(FCVIAB)))) 9)

Here, Frpp denotes the output feature map from the
Residual Dense Block, and Frecon is the final feature map
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output by the Reconstruction Block, ready to be transformed
into the super-resolved image.

IV. EXPERIMENTAL RESULTS

A. EXPERIMENTAL SETTINGS

Our training dataset comprised 894 stereo image pairs
from the SCARED collection. High-resolution (HR) frames
were downscaled using bicubic interpolation to gener-
ate low-resolution (LR) counterparts for training. Data
augmentation strategies, including vertical image flipping,
were applied to enrich the training dataset. For evalu-
ation, we utilized five distinct stereo endoscopic image
datasets: the da Vinci dataset, other datasets which can be
accessed at this link (https://endovis.grand-challenge.org/),
the SCARED dataset, the MICCAI 2017 Kidney Boundary
Detection SubChallenge; the Kidney Boundary Detection
dataset, the MICCAI 2017 Robotic Instrument Segmentation
Sub-Challenge; Robotic Instrument Segmentation, and the
MICCAI 2019 challenge on Stereo Correspondence and
Reconstruction of Endoscopic Data; Stereo Correspondence
and Reconstruction, covering a range of clinical scenarios.
This comprehensive testing framework was designed to
rigorously assess the performance and adaptability of our
model across various clinical conditions.

The model was developed using PyTorch and trained
on an NVIDIA 3090ti GPU for computational efficiency.
We adopted the Adam optimizer for model optimization,
setting 81 = 0.9 and B, = 0.999, with a training batch
size 8. The learning rate was initiated at 1 x 10~*. For our
experiments, the ‘’k” parameter was set to 1, indicating using
three consecutive frames as input during training.

B. LOSS FUNCTION

We have implemented the same loss function as was used
in previous research. The loss function consists of two main
parts for a stereo-matching model: the SR loss Lgg, and
the parallax-attention loss Lpays. The SR loss calculated the
similarity between the predicted and HR ground-truth stereo
images. In contrast, the parallax-attention loss encouraged the
model to emphasize the most salient features of the scene. The
stereo consistency loss ensures that the predicted depth maps
are consistent with the stereo images.

Loss = Lgg + A (Lpholometric + Leycle + Lsmoothness) (10)

1) SR LOSS

An L1 loss is commonly used to compare the predicted SR
stereo images with the corresponding ground-truth stereo
images to calculate the SR loss in a stereo-matching model.
The L1 loss measures the difference between the pixel values
of the two images and is often used over other loss functions
due to its robustness to outliers.

SR _ yHR SR HR
Lsg = ‘Ileft — Lt 1 + Iright - Iright 1 (11)
Il*?fet and Ilthlf represent output SR and HR images respec-

tively, and similarly for right view images.
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2) PARALLAX-ATTENTION LOSS

The parallax-attention loss in a stereo-matching model
typically comprises three terms: photometric, smoothness,
and cycle. These terms are combined to result in a loss
function that encourages the model to address the most
relevant features in the scene while maintaining smoothness
and consistency across the predicted depth maps. The
photometric term ensures that the predicted stereo images are
consistent with the input images, while the smoothness term
encourages smooth transitions between neighboring depth
values. The cycle term ensures that the predicted depth maps
can be used to reconstruct the input images.

Lpam
=A (LphOtometriC + Leycle + Lsmoothness) (12)

Lphotometric

- ¥

pixel€ Viefi-right

>

pixel€ Vyight-left

|18 ixel) — (et sgh * 128, )(pieD)|

IR (pixel) — (Mright et * Iléﬁ)(pixel)‘1

13)

Lcycle

- ¥

pixel€ Vieft-right

>

pixele Vyight-left

|(Mictrightteft(pixel) — Ipixen)|
|(Mright—left—right(pixel) - Ipixel)‘l (14)

RHXWXW

where I € and M includes Miefiright, Mright-left-

Lamoothness = Z[Z (M. j. k) = M@+ 1,j. ),
M

ij,k

+ (MG, j k) =M@, j+ 1, k))|1i| 15)

C. EVALUATION RESULTS

We evaluated image SR performance using peak signal-to-
noise ratio (PSNR) and structural similarity index measure
(SSIM), essential for assessing the quality and similarity
of high-resolution (HR) and super-resolved images. These
metrics were calculated within the RGB color space and
averaged for both left and right images of stereo pairs.

Our proposed network demonstrated superior PSNR and
SSIM scores for both x2, x4, and x8 SR tasks across all
datasets, outperforming existing single, stereo, and video
SR methods as shown in Table 1. This indicates our
model’s effectiveness in employing temporal cross-attention
and parallel attention mechanisms for high-quality image
reconstruction.

Qualitative evaluations through zoomed-in comparisons
on the SCARED, Robotic Instrument Segmentation, and
Stereo Correspondence and Reconstruction datasets pre-
sented in Fig. 4-12 further illustrate our model’s ability
to capture fine details more accurately than single-image
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Ground Truth Bicubic SRCNN VDSR DRRN StereaSR
PSNR/SSIM 28.04/0.8849 28.57/0.8971 35.47/0.9816 38.31/0.9837 38.34/0.9838

Original Image

PASSEnet iPASSRnet DCSSRnet CCSBESR MESFINet E-SEVSR Our

3Pi3/0.0822 40.68/0.9885 40.72/0.9886 40.80/0.9889 40.92/0.5892 42.98/0.9942 43.55/0.9947

FIGURE 4. Assessing the perceptual quality of SR images with a x2 scale on the da vinci dataset.

Original Image Ground Truth Bicubic SRCNN WDSR DRRN StereaSR
PSNR/S5IM 24.89/0.8134 24.98/0.8166 25.07/0.8196 25.14/0.8222 25.23/0.8253
PASSRNet iPASSRNet DCSSRNet CCSBESR MESFINet E-SEVSR Qur
25.30/0.8278 25.37/0.8307 25.44/0.8331 25.51/0.8359 25.63/0.8412 25.77/0.8479 29.12/0.8962

FIGURE 5. Assessing the perceptual quality of SR images with a x8 scale on the da vinci dataset.

Ground Truth Bicubic SRCNN VDSR DRRN StereoSR
PSNR/SSIM 36.16/0.9942 37.29/0.9950 38.22/0.9956 38.78/0.9959 28.08/0.9973

Original Image

PASSRNet iPASSRNet DCSSRNet CCSBESR MESFINet E-SEVSR Our
39.36/0.9962 40.02/0.9966 40.77/0.9970 42.55/0.9977 43.62/0.9981 46.19/0.9988 49.82/0.9995

FIGURE 6. Assessing the perceptual quality of SR images with a x2 scale factor on the scared dataset.

SR methods, resulting in more transparent and higher- 1) EVALUATION RESULTS ON REAL- WORLD DATA

quality images. This underscores our model’s robustness in To ensure the robustness and applicability of our pro-
complex scenarios, marking a significant improvement in SR posed model, we meticulously evaluated its performance
technology. on two real-world image datasets: Flickr1024 [54] and
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Original Image Ground Truth Bicubic SRCNN DRRN StereoSR

PSNR/SSIM 26.74/0.9337 27.91/0.9453 29.05[0 9547 29.73/0.9595 30.49/0.9644
PASSRNet iPASSRNet DCSSRNet CCSBESR MESFINet E-SEVSR Our
31.36/0.9693 32.37/0.9743 33.56/0.9790 34.93/0.9833 36.51/0.9870 38.25/0.9898 41.45/0.9934

FIGURE 7. Assessing the perceptual quality of SR images with a x4 scale factor on the scared dataset.

Original Image Ground Truth Bicubic SRCNN DRRN StereoSR
PSNR/SSIM 30.60/0.9683 31.50/0.9720 32. 38/0 9752 32.85/0.9768 33.35/0.9785

PASSRNet iPASSRNet DCSSRNet CCSBESR MESFINet E-SEVIR Our
33.87/0.9801 34.40/0.9816 34.91/0.9831 35.39/0.9843 35.80/0.9854 36.13/0.9862 41.45/0.9934

FIGURE 8. Assessing the perceptual quality of SR images with a x8 scale factor on the scared dataset.

-- .' .' ;

Original Image Ground Truth Bicubic SRCNN VDSR DRRN StereoSR
PSNR/SSIM 27.09/0.9449 29.34/0.9603 30.07/0.9650 31.06/0.9702 32.74/0.9776

PASSRNet iPASSRNet DCSSRNet CCSBESR MESFINet E-SEVSR Our
34.35/0.9832 36.26/0.9886 36.35/0.9891 36.49/0.9899 36.87/0.9901 37.09/0.9905 39.82/0.9938

FIGURE 9. Assessing the perceptual quality of SR images with a x4 scale factor on the robotic instrument segmentation dataset.

Middlebury [55]. These datasets were selected due to their Our model demonstrated impressive performance on
diverse and challenging nature, which includes a variety of both datasets, producing high-quality visual results that
scenes and image conditions. are illustrated in Fig. 13-15. These figures showcase our
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Ground Truth Bicubic SRCNN VDSR DRRN StereosSR
PSNR/SSIM 28.34/0.9470 29.26/0.9547 30.10/0.9596 30.56/0.9623 31.06/0.9652

¥

o

Qriginal Image

| . W ) ol 9
PASSRNet iPASSRNet DCSSRNet CCSBESR MESFINet E-SEVSR Our
31.64/0.9683 32.31/0.9717 33.09/0.9755 34.06/0.9795 35.25/0.9839 36.33/0.9866 36.76/0.9882

FIGURE 10. Assessing the perceptual quality of SR images with a x2 scale factor on the stereo correspondence and reconstruction dataset.

!n- — -

DRRN StereoSR

iginal Image

PSNR/SSIM 27.62/0.9366 28.59/0.9429 29.49/0.9482 29.96/0.9508 30.45/0.9533
4 E - # = - #
PASSRNet iPASSRNet DCSSRNet CCSBESR MESFINet 5 DEVOR Qur
30.53/0.9556 31.39/0.9577 31.80/0.9594 32.14/0.9608 32.39/0.9618 32.40/0.9616 32.53/0.9624

FIGURE 11. AAssessing the perceptual quality of SR images with a x4 scale factor on the stereo correspondence and reconstruction dataset.

Ground Truth Bicubic SRCNN VDSR DRRN StereoSR
PSNR/SSIM 27.14/0.9247 28.83/0.9454 29.70/0.9547 29.98/0.9563 30.23/0.9577

Original Image

PASSRNet iPASSRNet DCSSRNet CCSBESR MESFINet E-SEVSR Our
30.45/0.9590 30.62/0.9600 30.69/0.9604 30.73/0.9607 30.81/0.9611 30.80/0.9610 32.80/0.9678

FIGURE 12. Assessing the perceptual quality of SR images with a x8 scale factor on the stereo correspondence and reconstruction dataset.

model’s enhanced image details and clarity, validating its Model Efficiency Analysis: Parameters, FLOPs and Infer-
effectiveness in real-world scenarios. The visual results ence Time: This analysis compares various SR models, high-
highlight the model’s ability to preserve fine details and lighting the efficiency of computational demand (measured in
improve image resolution significantly, making it a valuable Giga FLOPs) and model compactness (measured in millions
tool for practical applications. of parameters). A noteworthy point in modern computational
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TABLE 1. Quantitative comparison using PSNR/SSIM on da vinci dataset, scared, kidney boundary detection, robotic instrument segmentation and stereo

correspondence and reconstruction with enlargement factor x2, x4 and x8.

Method Scale |da Vinci SCARED Kidney Boundary De-|Robotic Instrument | Stereo Correspondence
tection Segmentation and Reconstruction
bicubic [38] X2 32.12/0.9799 32.26/0.9791 33.39/0.9736 31.91/0.9701 31.95/0.9755
SRCNN [42] X2 36.18/0.9868 36.10/0.9890 37.55/0.9873 35.01/0.9815 35.10/0.9801
VDSR [21] X2 40.71/0.9906 39.82/0.9931 38.01/0.9887 35.78/0.9830 35.91/0.9813
DRRN [39] X2 40.80/0.9907 39.91/0.9933 38.02/0.9889 35.75/0.9832 35.95/0.9815
StereoSR [43] X2 40.95/0.9909 39.99/0.9936 38.10/0.9890 35.91/0.9834 36.01/0.9817
PASSRNet [27] X2 41.89/0.9919 40.95/0.9941 38.99/0.9899 36.18/0.9839 36.75/0.9825
iPASSRNet [9] X2 41.94/0.9921 41.01/0.9941 39.01/0.9901 36.22/0.9841 36.79/0.9827
DCSSRNet [10] | x2 42.79/0.9940 41.74/0.9955 39.85/0.9912 36.89/0.9875 36.94/0.9830
CCSBESR [5] X2 42.81/0.9942 41.76/0.9960 39.89/0.9914 36.91/0.9877 36.97/0.9832
MESFINet [11] X2 42.89/0.9943 41.79/0.9961 39.91/0.9915 36.94/0.9878 36.99/0.9834
Trans-SVSR [50] | %2 38.21/0.9767 40.73/0.9875 36.31/0.9896 36.96/0.9878 37.00/0.9835
HA-VSR [40] X2 38.37/0.9771 40.80/0.9870 39.81/0.9913 36.99/0.9879 37.01/0.9835
E-SEVSR [6] X2 43.01/0.9945 41.84/0.9963 40.01/0.9916 37.01/0.9880 37.02/0.9836
Our X2 43.64/0.9947 42.30/0.9965 40.51/0.9920 37.70/0.9884 37.96/0.9841
bicubic [38] x4 28.24/0.9489 33.69/0.9594 27.69/0.9389 32.79/0.9376 31.99/0.9381
SRCNN [42] x4 29.11/0.9501 34.59/0.9661 29.49/0.9440 33.59/0.9420 32.69/0.9434
VDSR [21] x4 30.89/0.9599 35.41/0.9704 32.51/0.9501 34.03/0.9497 33.57/0.9528
DRRN [39] x4 30.94/0.9600 35.49/0.9704 32.54/0.9503 34.06/0.9499 33.61/0.9531
StereoSR [43] x4 31.01/0.9601 35.59/0.9705 32.69/0.9505 34.16/0.9500 33.81/0.9533
PASSRNet [27] x4 31.31/0.9603 35.79/0.9707 32.76/0.9515 34.25/0.9506 33.99/0.9538
iPASSRNet [9] x4 31.34/0.9603 35.81/0.9708 32.79/0.9546 34.29/0.9508 34.01/0.9539
DCSSRNet [10] | x4 34.41/0.9605 35.94/0.9709 32.92/0.9548 34.41/0.9511 34.02/0.9539
CCSBESR [5] x4 31.53/0.9607 36.01/0.9710 33.02/0.9551 34.49/0.9512 34.02/0.9540
MESFINet [11] x4 31.61/0.9609 36.09/0.9711 33.09/0.9551 34.64/0.9514 34.06/0.9540
Trans-SVSR [50] | x4 31.81/0.9469 34.68/0.9573 27.33/0.9403 34.71/0.9514 34.10/0.9540
HA-VSR [40] x4 32.03/0.9477 34.79/0.9576 28.59/0.9585 34.68/0.9515 34.14/0.9541
E-SEVSR [6] x4 32.01/0.9615 36.99/0.9718 33.13/0.9551 34.84/0.9515 34.19/0.9541
Our x4 33.98/0.9734 38.43/0.9926 35.11/0.9763 36.74/0.9829 36.12/0.9749
bicubic [38] X8 23.01/0.9211 26.01/0.9501 28.01/0.9509 28.56/0.9578 28.09/0.9481
SRCNN [42] X8 27.63/0.9281 29.79/0.9696 30.01/0.9583 31.51/0.9668 30.11/0.9494
VDSR [21] X8 27.68/0.9283 29.89/0.9701 30.15/0.9586 31.84/0.9672 30.51/0.9500
DRRN [39] X8 27.71/0.9284 29.99/0.9710 30.21/0.9591 31.97/0.9674 30.63/0.9501
StereoSR [43] X8 27.76/0.9285 30.30/0.9746 30.73/0.9594 32.06/0.9676 30.71/0.9503
PASSRNet [27] X8 27.84/0.9288 30.84/0.9752 31.00/0.9598 32.30/0.9681 30.86/0.9506
iPASSRNet [9] X8 27.86/0.9288 30.85/0.9752 31.03/0.9600 32.31/0.9681 30.87/0.9507
DCSSRNet [10] | x8 27.90/0.9291 30.86/0.9752 31.11/0.9602 32.33/0.9683 30.90/0.9507
CCSBESR [5] x8 27.97/0.9294 30.95/0.9754 31.13/0.9604 32.36/0.9685 30.99/0.9509
MESFINet [11] X8 28.01/0.9296 31.09/0.9756 31.21/0.9605 32.44/0.9686 31.01/0.9511
Trans-SVSR [50] | %8 28.06/0.9297 31.13/0.9756 31.29/0.9606 32.48/0.9686 31.03/0.9511
HA-VSR [40] X8 28.11/0.9298 31.16/0.9757 31.33/0.9606 32.51/0.9687 31.05/0.9511
E-SEVSR [6] X8 28.17/0.9299 31.19/0.9757 31.41/0.9607 32.66/0.9688 31.06/0.9511
Our X8 29.21/0.9396 33.20/0.9811 32.08/0.9631 32.74/0.9691 32.03/0.9533

models, especially transformer-based ones, is their substan-
tial computational expense, which can limit their practical
deployment in resource-constrained environments. Table 2.
The data indicates that transformer-based models, such
as Trans-SVSR [50] and HA-VSR [40], are particu-
larly resource-intensive, often requiring significantly higher
FLOPs. In contrast, our model achieves average FLOPs
(9.91 G) compared to these models. This efficiency not only
suggests an optimal balance between computational cost
and performance but also positions as a leading choice for
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practical SR applications, especially in environments with
limited computational resources.

The inference times for various SR models reflect the
trade-off between model complexity and performance. Sim-
pler models like Bicubic interpolation and SRCNN have very
low inference times of 0.46 ms and 0.7 ms, respectively.
In contrast, more complex models such as DRRN and
advanced stereo models like StereoSR and iPASSRNet
exhibit longer inference times of 300 ms, 100.10 ms, and
186.97 ms, respectively. Notably, transformer-based models
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HR/ Ground Truth
PSNR/SSIM

27.46/0.9468

Scene 17 Left View

FIGURE 13. Scene 17 Left View (Flickr1024) on x4.

HR/ Ground Truth

PSNR/SSTM LR
Our
35.45/0.9669
Scene 19 Right View
FIGURE 14. Scene 19 Right View (Flickr1024) on x4.
HR/ Ground Truth
PSNR/SSIM

Scene 08 Right View Our
35.36/0.9830

FIGURE 15. Scene 08 Right View (Middlebury) on x4.

like Trans-SVSR and HA-VSR have significantly higher inference time of 199.47 ms, our model strikes a balance by
inference times of 448.6 ms and 432.53 ms due to their exten- offering high performance with comparatively lower latency,
sive network architectures and attention mechanisms. With an making it more suitable for real-time applications.
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TABLE 2. Comparison of parameters, FLOPs, interference time (on x2) for
SR models.

TABLE 4. Ablation study integrating different cross view feature
interaction blocks using scared dataset on x2.

Method #Params. (M) #FLOPs Inference
(G) Time (ms)
Bicubic [38] - - 0.46
SRCNN [42] 0.07 52.7 0.7
VDSR [21] 0.64 10.77 2.0
DRRN [39] 0.29 6.79 300
StereoSR [43] 1.08 90.11 100.10
PASSRNet [27] 1.37 6.53 176
iPASSRNet [9] 1.38 7.44 186.97
DCSSRnet [10] 1.37 6.94 200.19
CCSBESR [5] 1.76 6.96 205.67
MESFINet [11] 2.98 11.76 248.97
Trans-SVSR [50] 27.29 86.54 448.6
HA-VSR [40] 42.54 99.54 432.53
E-SEVSR [6] 2.99 11.80 252.81
OUR 2.84 9.91 199.47

TABLE 3. Ablation study integrating different FE Block using scared
dataset on x2.

Conv | CCSB | CDCA| SNAG | PSNR/SSIM
FE Blocks v X X X 38.41/0.9921
v v X X 40.50/0.9931
v X v X 40.54/0.9931
X X X v 42.30/0.9965

V. ABLATION STUDY

1) FEATURE EXTRACTION

An ablation study was performed using the SCARED dataset
at a x2 upscaling to evaluate the performance of various fea-
ture extraction blocks. The study compared traditional con-
volution (Conv), Combined Channel and Spatial Attention
(CCSB), Combined Depth and Channel Attention (CDCA),
and the novel StereoNet Attention Gate (SNAG). Results
indicated that CDCA and SNAG blocks significantly enhance
image quality, with SNAG achieving the highest PSNR/SSIM
scores of 42.30/0.9965, demonstrating its superior feature
extraction capability. Table 3

2) CROSS-VIEW FEATURE INTERACTION

An ablation study on the SCARED dataset with x2 upscaling
assessed different cross-view feature interaction blocks:
Stereo Cross-Attention Module (SCAM), bidirectional Posi-
tion Attention Module (biPAM), and the novel Cross-View
Interactive Attention Block (CVIAB). The CVIAB block,
notably designed for this research, achieved superior image
enhancement, evidenced by the highest PSNR/SSIM of
42.30/0.9965, validating its efficacy in cross-view feature
extraction. Table 4

VI. LIMITATIONS AND FUTURE WORK

Our research establishes a significant benchmark in the
Stereo Endoscopic Image SR domain, meticulously adhering
to the experimental frameworks established by prior studies.
While our model is adept at stereo endoscopic image
enhancement, it may not perform comparably on real-world
scene super-resolution, as it is not specifically optimized for
such applications. Despite its strengths, our current model
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SCAM| biPAM| CVIAB | PSNR/SSIM
Cross View Feature Interac- | v' X X 38.01/0.9891
tion

X v X 38.29/0.9900

X X v 42.30/0.9965

falls short of supporting real-time SR in endoscopic surgeries,
primarily due to computational bottlenecks and a shortage
of specialized resources required for immediate application
in surgical scenarios. To transcend these limitations, future
iterations of our model could benefit from the integration of
advanced features such as motion estimation modules, frame
interpolation techniques, and feature temporal interpolation
strategies. Furthermore, embracing hardware innovations—
such as deploying an array of GPUs for enhanced parallel
processing, utilizing high-speed Input/Output interfaces,
incorporating Field-Programmable Gate Arrays (FPGA),
exploring server clusters, or developing Application-Specific
Integrated Circuits (ASIC)—could significantly elevate the
model’s real-time processing prowess.

Expanding beyond its initial scope, our model holds the
potential for adaptation across a wider spectrum of medical
imaging technologies, including but not limited to MRI, CT,
and PET scans. This prospective broadening of application
could revolutionize not only the field of endoscopic surgery
but also the broader realm of medical diagnostics and
treatment planning, offering improved resolution and clarity
in imaging across various modalities. Such advancements
and modifications are not only technically feasible but also
strategically align with the overarching goal of enabling
our model’s practical deployment in real-time surgical
environments and potentially transforming clinical practices
at large. These directions not only aim to surmount the current
operational constraints but also aspire to significantly extend
the utility, performance, and impact of our model in diverse
clinical settings.

VII. CONCLUSION

This research represents a significant advancement in the
field of endoscopic image SR through the introduction of the
StereoNet Attention Gate (SNAG) and CVIAB, its integra-
tion within our SR framework. Our model has demonstrated
aremarkable ability to enhance image resolution, particularly
at high scales, which is pivotal for improving the clarity
and utility of endoscopic images in medical diagnostics and
surgical planning.

While our approach has set new benchmarks in the
accuracy and quality of super-resolved images, it is not
without limitations. One of the primary challenges lies
in the real-time application of the technology in clinical
settings. Although optimized, the computational demands
of our current model still require substantial resources that
may only be readily available in some medical facilities.
Looking to the future, several enhancements are possible to
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overcome these limitations. First, further optimization of the
computational architecture is necessary to facilitate real- time
processing capabilities. This may involve integrating more
efficient convolutional operations or adopting newer, faster
processing units. Moreover, extending the model’s robustness
to handle diverse and unforeseen surgical environments by
training with a broader range of data scenarios will be
significant. Another promising direction is the exploration of
transfer learning techniques to adapt the model for different
types of endoscopic procedures without extensive retraining.
In addition, exploring the integration of motion estimation
and correction algorithms to enhance the model’s applica-
bility in dynamic surgical scenarios, potentially increasing
its utility in a wider range of medical procedures, can be a
potential future direction. These advancements not only aim
to address the current operational constraints but also broaden
our model’s impact and applicability in the medical field,
thereby transforming clinical practices and improving patient
outcomes.

In conclusion, our study, while highlighting significant
achievements, also acknowledges the inherent challenges
and limitations faced by current SR technologies in medical
applications. By addressing these challenges head-on and
setting a clear path for future research, we hope to pave the
way for more robust, efficient, and widely applicable SR
solutions in medical imaging.

DATA AVAILABILITY STATEMENT

The datasets analyzed during the current study are from
the following publicly available sources: The SCARED, the
MICCALI 2017 Kidney Boundary Detection Sub-Challenge,
the MICCAI 2017 Robotic Instrument Segmentation Sub-
Challenge, the MICCAI 2019 Challenge on Stereo Cor-
respondence and Reconstruction of Endoscopic Data and
the EndoVis datasets accessible at (https://endovis.grand-
challenge.org/). An additional da Vinci dataset is available
at (https://github.com/hgfe/DCSSR).

LIST OF ABBREVIATIONS

TABLE 5. Abbreviations.

Abbreviation Full Form

SNAG StereoNet Attention Gate

RDB Residual Dense Block

CVIAB Cross-View Interactive Attention Block
SARM Stereo Attentional Residual Module
PSNR Peak Signal-to-Noise Ratio

SSIM Structural Similarity Index Measure
SR Super-Resolution

CNN Convolutional Neural Network
GAN Generative Adversarial Network
RNN Recurrent Neural Network

Sp Strip Pooling

CDA Channel & Depth Attention

SG Simple Gate

DSC Depthwise Seperable Convolution
IN Instance Normalization

DC Dilated Convolution
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