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ABSTRACT This paper introduces SATS, an innovative online task scheduling strategy tailored for
hierarchical Mobile Edge Computing (MEC) architectures. Leveraging a Simulated Annealing-based
approach, SATS extends the applicability of this method beyond offline scheduling, demonstrating its
efficacy in real-time task allocation. Crucially, the paper underscores the pivotal role of accurate service
request predictions in enhancing SATS’ performance. Through a comparative analysis of three prediction
models, neutral, conservative, and optimistic, the paper reveals that SATS achieves optimal outcomes
when paired with a conservative predictor, which deliberately overestimates service request volumes.
In fact, employing this predictor yields significantly higher acceptance rates and reduced processing times.
Remarkably, SATS, coupled with a conservative predictor, achieves an acceptance ratio within a mere 5%
deviation from an ideal scenario where the frequency of service request arrivals is known in advance,
maintaining consistency across various experimental scenarios.

INDEX TERMS Online task scheduling, simulated annealing, mobile edge computing, task offloading.

I. INTRODUCTION
The 5G networks are being deployed worldwide, enabling
advanced communication services that will transform society.
Cellular IoT (CIoT) is a crucial element of 5G that will help
digitize society by facilitating large-scale communication
between machines and people. CIoT has many applications,
from basic tasks like asset tracking and smart metering to
more complex ones like AR/VR drones and even highly
demanding ones like autonomous vehicles and collaborative
robotics. CIoT devices collect and transmit vast amounts of
data that need to be analyzed and processed somewhere.
That is where Mobile Edge Computing (MEC) comes in.
MEC extends cloud computing to the Edge of the 5G
network, reducing the load on core cloud data centers and
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moving it closer to CIoT devices. The Edge is a growing
business projected to reach $445 billion by 2030, with
investment in Edge data centers set to exceed $140 billion
by 2028 [1]. Efficient task-offloading is essential for the
successful implementation of MEC in CIoT. It involves
computing the optimal or near-optimal way of offloading
service chain tasks between the CIoT device, Edge servers,
and the core cloud to ensure efficient service processing time.
Many task-offloading approaches have been proposed, but
most are offline approaches that assume all services arriving
at the CIoT devices are known in advance. This assumption
is unrealistic in several cases since the arrival of services is
unpredictable and varies with time.

This paper presents a new online strategy called
SATS (Simulated Annealing Task Scheduling) that uses
Simulated Annealing to determine the optimal or nearly
optimal way to offload tasks in a three-layer MEC
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architecture. The architecture has a bottom layer housing the
CIoT devices, a mid-layer with the Edge servers, and cloud
data centers in the top layer. SATS is both theoretically sound
and practically applicable, as it effectively determines how to
offload tasks in services that run on CIoT devices, minimizing
service processing times.

The main contributions of the paper are as follows:

• The paper examines a variety of user devices that invoke
different numbers of services.

• Different types of services are considered, taking into
account the number of tasks in each service and their
specific requirements based on the service type.

• A computationally efficient strategy for online task
offloading in a MEC architecture, SATS, is proposed.

• It is shown that Simulated Annealing can be used not
only for offline task offloading but also for online task
scheduling.

• SATS is demonstrated to optimally or near-optimally
offload tasks in a three-layer MEC architecture.

The remainder of the paper is structured as follows:
Section II provides preliminaries that include MEC, meta-
heuristic optimization, and Simulated Annealing. Section III
presents the three-layer MEC architecture used to assess
SATS. The task offloading problem is mathematically
formulated in Section IV. The proposed task offloading
strategy, SATS, is described in Section V, and its evaluation is
discussed in Sections VI and VII. In Section VIII, the authors
survey related work and compare and contrast these works
with SATS. Finally, the paper is concluded in Section IX with
a summary and outlook for further research.

II. BACKGROUND
This section provides an introduction to MEC and meta-
heuristic optimization. Section II-A explains Edge computa-
tion and MEC, while Section II-B provides an overview of
metaheuristics, focusing on Simulated Annealing.

A. MOBILE EDGE COMPUTING
MEC is a cutting-edge technology under the 5G umbrella.
It enables cloud-based network resources and services, such
as processing, storage, and networking, to be provided at the
network’s Edge, i.e., closer to the CIoT devices. The Edge can
refer to the base stations themselves, as well as data centers
located near the radio network at aggregation points.

Figure 1 illustrates the general architecture of MEC. Cloud
servers offer CIoT devices powerful computing resources
and pre-installed software and libraries, such as machine
learning support that allows mobile services to support
more sophisticated and complex end-to-end applications
that provide a better CIoT device experience. However,
applications may experience higher end-to-end delays due to
long network latencies between CIoT devices and cloud data
servers.

The MEC layer is located between the mobile devices
and the cloud. It includes several macro base stations that

FIGURE 1. The general MEC architecture is structured into three layers:
the bottom layer for CIoT devices, a mid-layer housing Edge servers, and
the top layer comprising cloud data centers.

typically host city-level data centers containing considerable
computation and storage resources that can host multiple
virtual machines and containers simultaneously.

It mainly complements cloud computing to support and
enhance the performance of mobile subscribers. The mobile
Edge servers are computing equipment installed at or near
base stations. Unlike centralized cloud servers or peer-to-
peer mobile devices, MEC is managed locally by the network
operator.

With MEC, the end-to-end latency perceived by mobile
CIoT devices can be significantly reduced, which is crucial
for many 5G services like the tactile internet. MEC can be
deployed inmultiple ways, andMEC servers can be located in
different areas of the radio access network based on technical
and business requirements.

MEC provides an ultra-low-latency environment that
delivers mission-critical and real-time services by performing
analytics or caching content on theMEC server. MEC servers
are not affected by congestion in other parts of the network,
and data traffic can be minimized by reducing the volume
of data transmitted to the core network for processing.
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This results in the more efficient use of existing network
bandwidth.

B. OPTIMIZATION, METAHEURISTICS, AND SIMULATED
ANNEALING
Optimization is searching for designs and strategies that
meet or exceed specific objectives while satisfying numerous
constraints. In the simplest form, optimization aims to find
an objective function’s maximum or minimum value within
a feasible range or space of variables. However, finding
solutions close to the global optimum of a complex optimiza-
tion problem with traditional methods is usually impossible.
Therefore, metaheuristic algorithms are generally used to
calculate near-optimal solutions. These algorithms are called
metaheuristics because they are higher-level methods or
heuristics used to discover, produce, or select a heuristic that
is a good enough solution for the given optimization problem.

Simulated Annealing is a metaheuristic optimization
technique that imitates the physical annealing of solids,
as proposed by Kirkpatrick in 1983 [2]. The process involves
heating and gradually cooling a solid until it achieves its most
structured crystal lattice arrangement without any flaws.

The Simulated Annealing algorithm starts by creating
a random feasible solution: the system’s current state.
A suitable procedure generates a new state and evaluates
its fitness value. It is accepted if the new state is better
than the current one. However, if the new state is inferior,
it can still be accepted based on a probabilistic function
called the acceptance function, which relies on the system’s
temperature.

The algorithm generates a certain number of new states
at each temperature while progressively decreasing the tem-
perature. Several new solutions are attempted until a thermal
equilibrium criterion is satisfied at each temperature. At that
point, the temperature decreases again. As the temperature
reduces, the likelihood of selecting non-improving move-
ments diminishes. This cycle of generating new solutions
as the system cools down is repeated until the termination
condition is met.

III. SYSTEM MODEL AND REPRESENTATION
This study considers a three-layer MEC architecture consist-
ing of a CIoT device layer, a MEC layer, and a cloud layer.
In the Edge layer the Edge node is located near a base station,
which enables it to serve Cellular Internet of Things (CIoT)
devices within its coverage area. Additionally, it is connected
to the cloud, allowing all CIoT devices to access it via the
Edge node.

In the framework, a heterogeneous network comprising
various nodes is considered, including CIoT nodes, an Edge
computing node, and a cloud node. The set ofµCIoT devices
is represented byM = {m1,m2, . . . ,mµ}, the Edge node is
represented using E , and C represents the cloud. A matrix -
RNn - is used to represent the available CPU (MIPS),
RAM (Gb), and network (Gbps) resources for all nodes. The
matrix rows represent the available CPU, RAM, and network

resources for each node, while the columns represent the
same resources for the nodes. For example, in RNn,

RNn =

Cn1 Cn2 · · · Cnn
Rn1 Rn2 · · · Rnn
Nn1 Nn2 · · · Nnn

 , (1)

where n = m1, Cn1 represents the amount of CPU resource of
the first CIoT device, and inRNE , where n = E ,CE represents
the amount of CPU resource for the Edge node.

A matrix RLl (2) is also defined, representing the available
bandwidth, α(Gbps), and delay, β(s), on the links between
CIoT devices and the Edge node, as well as the links between
the Edge node and the cloud. The rows correspond to the Edge
nodes, while the columns correspond to CIoT devices. For
example, (α, β)lx,y1 in matrix RLl where l = EM defines the
amount of bandwidth and the delay of the link between the
Edge node and the first CIoT device.

RLl =
[
(α, β)lx ,y1 · · · (α, β)lx ,yj

]
, (2)

The set of available services in the system is denoted
as S = (s1, s2, . . . , ss), while the set of sequential tasks
comprising each service is represented by S t = {1, 2, . . . , t}.
Additionally, each service is associated with a predefined
deadline, dss . The amount of CPU, RAM, and network
resources required to complete a task in a service is denoted
by matrix, RQ:

RQ =

Cs11 Cs21
· · · Csts

Rs11
Rs21

· · · Rsts
Ns11

Ns21
· · · Nsts

 . (3)

As in RNn, the rows represent the CPU, RAM, and network
resources, and the columns represent the service tasks. For
example, Cs21

represents the CPU required to complete the
second task of the first service.

In the system, time is divided into discrete time
windows, wt , where

wt = τ × ι. (4)

Each timewindow,wt , comprisesmultiple time slots, denoted
as τ , with a fixed time interval, ι (seconds).

Each CIoT node requests several services at certain
rates (frequencies). To manage these requests efficiently, the
system incorporates a scheduler and each CIoT device is
equipped with an associated execution queue. The scheduler
receives IoT node requests at the start of each time window,
and it processes these requests, allocating them across
individual CIoT device queues based on their corresponding
requirements.

In the study, two scenarios concerning the frequency
of service requests from CIoT devices are explored. The
first scenario considers a variable true frequency, ft , which
changes periodically across different time slots. This variabil-
ity reflects a more dynamic model where the frequency of
service requests is not constant but adapts over time, ensuring
a more realistic representation of CIoT device behavior.
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Consequently, the set of requests dispatched to the scheduler
at the beginning of each time window is not identical but
varies in accordance with the changes in ft . In the second
scenario, the impact of prediction errors on scheduling is
simulated by introducing a degree of uncertainty into the true
frequency. To model this, the true frequency is adjusted by
adding a Gaussian noise component, resulting in a modified
frequency, fp. The equation for this adjustment is given by
fp = ft +N (0, σ 2), where N (0, σ 2) represents the Gaussian
noise with a mean of zero and a specified variance σ 2. This
zero-mean Gaussian noise is added to the true frequency
to simulate the inaccuracies and variability that might arise
in predicting service request frequencies. The low variance
σ 2 ensures that the introduced errors are subtle, reflecting
realistic scenarios where predictions are generally close to the
actual values but not exact. This method allows us to examine
how such prediction errors might influence the allocation
and scheduling of CIoT device requests across varying time
windows.

A solution vector encapsulates the scheduled locations for
each task corresponding to every service requested by CIoT
devices.

For each task, t , in service, s, requested by CIoT device,
mi, a variable, x

sts
mi , is introduced, where x

sts
mi ∈ {0, 1, 2}. This

categorization is achieved through a 3-digit coding system:
0 denotes task allocation to the CIoT device, 1 indicates task
allocation to the Edge node, and 2 represents task allocation
to the cloud.

IV. PROBLEM DEFINITION
As previously discussed, the system operates across multiple
time windows. At the start of each window, requests from
all CIoT devices are received. To manage these requests, the
scheduler employs a First-In-First-Out (FIFO) mechanism,
allocating each request to its respective execution queue.
This FIFO approach ensures that requests are processed in
the order they are received, with the earliest request being
prioritized for execution.

Subsequently, each task associatedwith a requested service
in the CIoT device queue requires scheduling for either local
execution by the CIoT device or potential offloading to the
Edge or cloud, contingent upon available resources. Pending
tasks await resource availability, remaining in the queue until
resources are released by completed tasks. It’s imperative to
note that each service must be completed within its specified
deadline for acceptance; otherwise, it will be dropped. This
paper aims to establish an optimal scheduling solution to
minimize the total system processing time while maximizing
the acceptance ratio.

The acceptance ratio, denoted as η, quantifies the fraction
of successfully processed requests within a given time
window, given by:

η =
ϕ

φ
, (5)

where ϕ represents the number of requests completed within
the time window, and φ denotes the total number of
unfinished requests at the beginning of that window.

The initial step in calculating the system total delay, Ttotal ,
is to compute the combined delay of all tasks in a particular
service, T

sts
d , which is a function of the following components:

• Waiting time: The time spent in the queue before
execution, which is computed as

t
sts
q = t

sts
start − t

sts
arrival . (6)

Upon the arrival of a requested service, the scheduler
marks the initiation by timestamping all tasks belonging
to that service, t

sts
arrival . As each task begins its execution,

an additional timestamp is added to denote the task’s
start time, t

sts
start .

• Processing time: The processing time of each task
represents the time required to complete the task on the
scheduled node (such as an IoT device, an Edge node,
or in the cloud). The task processing time is computed
as

t
sts
ex =

Csts
Cxn

, xn ∈ {0, 1, 2}. (7)

For instance, when xn = 1, this equation calculates the
processing time of task, t , for service, s, on an Edge
node, taking into account the CPU capacity of that Edge
node.

• Transmission delay: A transmission delay occurs when
a task is offloaded to a node different from the location
of the previous task and is computes as

t
sts
tr =

Nsts
αl

+ βl . (8)

The task’s transmission delay, t
sts
tr , is computed as the

quotient between the requested task’s data size, Nsts , and
the available bandwidth of the link,αl , added with the
link delay, βl .

Given that the transmission delay for a single task, t
sts
tr ,

has been calculated, the overall delay of a single task t in a
service s, T

sts
d , as

T
sts
d = t

sts
q + t

sts
ex + t

sts
tr . (9)

Next, the overall delay for a service, T ssd , is calculated
by summing up the overall delays for all tasks within that
service,

T ssd =

∑
t∈{1,2,...,t}

T
sts
d . (10)

Finally, Ttotal is calculated as the sum of all the delays of
the services requested by all CIoT devices,

Ttotal =

∑
m∈M

∑
t∈{1,2,...,t}

T
sts
d . (11)
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Given the knowledge on how to calculate Ttotal, the
optimization problem to be solved by SATS can be for-
mulated. The problem is formulated using the parlance of
consensus optimization, where the aim is to find x, a common
solution that both maximizes the acceptance ratio, η(x), and
minimizes the total system delay, Ttotal(x). The set of all
feasible solutions is represented by X . The optimization
problem can then be written:

Find x such that: max
x∈X

η(x) ∧ min
x∈X

Ttotal(x). (12)

This optimization problems is governed by a set of
constraints that ensure feasibility and adherence to practical
limitations. These constraints are as follows:

∑
S∈ni

∑
ss∈S

∑
t∈ss


C
x
sts
ni

R
x
sts
ni

N
x
sts
ni

 ≤

CniRni
Nni

, ∀x
sts
ni = 0, ∀ni ∈ M (13)

∑
S∈ni

∑
ss∈S

∑
t∈ss


C
x
sts
ni

R
x
sts
ni

N
x
sts
ni

 ≤

CniRni
Nni

, ∀x
sts
ni = 1, ∀ni ∈ E (14)

∑
S∈ni

∑
ss∈S

∑
t∈ss


C
x
sts
ni

R
x
sts
ni

N
x
sts
ni

 ≤

CniRni
Nni

, ∀x
sts
ni = 2, ∀ni ∈ C (15)

∑
ni∈M

∑
S∈ni

∑
ss∈S

∑
t∈ss

Nsts
α
x
sts
ni

≤ 1, ∀x
sts
ni ∈ {0, 1, 2} (16)

T ssd ≤ dss ∀s ∈ S (17)

Equations 13, 14, and 15 make sure that the total
resources consumed by tasks from all CIoT device-requested
services, do not surpass the resource capacity of any given
node.

Equation 16 ensures that the resources available on all
links are greater than or equal to those being utilized,
and Equation 17 guarantees that all accepted requests are
completed within their respective deadlines.

V. SIMULATED ANNEALING TASK SCHEDULING
As previously mentioned, at the start of each time window,
CIoT device requests are received that should be scheduled
in a way that maximizes the acceptance ratio while mini-
mizing the processing time. The proposed task-scheduling
strategy, SATS, is designed to be easy to implement,
computationally lightweight, and be able to find near-optimal
solutions to the optimization problem formulated in
Equation 1.
Figure 2 provides a flow chart over the SATS strategy.

As follows, SATS is initialized with an arbitrary feasible
solution, and proceeds by improving its current solution in
an iterative manner. Let χ denote the current solution. With
χ as starting point, a potentially ‘better’ solution in the
neighborhood of χ , ϒ , is found. To find ϒ , SATS modifies

FIGURE 2. Flow chart over the SATS task-scheduling strategy.

the scheduling decisions of χ . Once found, ϒ is evaluated as
follows: First,ϒ’s processing time,2ϒ , and acceptance ratio,
ηϒ , are calculated. Second, it is decided whether ϒ should
be the next current solution, i.e., the next χ . As follows, ϒ is
accepted as the next χ provided it improves the acceptance
ratio over χ , or has an processing time that is at most that
of χ . In those cases when the acceptance ratio of ϒ is indeed
higher than that of χ , but so is also the processing time, SATS
accepts ϒ with probability ρ, given by

ρ = exp
(

2χ − 2ϒ

ςexc/count

)
, (18)

where ςexc represents the initial processing time and is also
the first of two ‘temperature’ parameters employed by SATS.

If the acceptance ratio of ϒ is lower than that of χ ,
it is accepted as the new χ with a probability, ρ′, which is
computed as

ρ′
= exp

(
ηϒ − ηχ

ςac/count

)
, (19)

where ςac is the initial acceptance ratio and the second
‘temperature’ parameter employed by SATS.

SATS iteratively refines solutions until reaching a
pre-established termination condition, i.e., when (a) the
acceptance ratio and the processing time stabilizes, exhibiting
minimal variance over several iterations, or (b) when a
predefined number of iterations is reached.
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FIGURE 3. Three service types with 4, 5, and 6 tasks.

VI. EXPERIMENT SETUP
The system is structured into three distinct levels: the CIoT
level, encompassing all CIoT devices; the edge level, housing
the edge server; and the cloud level, representing the cloud
server. Each CIoT device, edge server, and cloud server
is equipped with three distinct resources: CPU, RAM, and
Network. Furthermore, the links between CIoT devices
and the edge server, as well as between the edge server
and the cloud, are characterized by specific amounts of
link bandwidth and delay. Throughout the experiments,
the system was configured to accommodate three types of
services, each comprising 4, 5, and 6 tasks, respectively (as
depicted in Figure 3). The services were subject to strict
deadlines, requiring completion within 2 - 3 time windows to
avoid being discarded. The demand for services in the system
fluctuated as CIoT devices made requests with varying
frequencies.

An experiment comprised 20 time windows, each con-
taining 100 time slots of 0.2 s each. All service request
frequencies were considered to be established at the one set
of each time window. The request frequencies were translated
into an arrival sequence within the time window. As shown
in Figure 4, requests were orderly queued in a FIFO manner
within the CIoT devices’ queues according to their arrival
times, which enabled a structured approach to processing.

At the start of an experiment, the current solution of SATS
was initialized to a randomly selected feasible solution, which
was iteratively improved to maximize the acceptance ratio
while simultaneously minimize the processing time. At the
beginning of each time window, when the service requests
arrived, the initial solution of SATS was set to the optimal
solution found in the previous time window. In so doing,
i.e., by utilizing the correlation between service request
frequencies in consecutive time frames, the SATS algorithm
was able to be more effective.

In the experiments, it was assumed that SATS employed
a Machine Learning-based predictor, pre-trained on past
service traffic data, to predict the service frequencies. The
output of theMachine Learning-based predictor wasmodeled

FIGURE 4. Flow chart over the experiment.

FIGURE 5. Three types of predictions of the true service frequency (TF)
were considered in the experiments: ‘neutral prediction’ (NP),
‘conservative prediction’ (CP), and ‘optimistic prediction’ (OP).

as the sum of the actual or ‘true’ service frequency, fTF , and
a Gaussian error function, N (0, σ 2).

Three types of predictions were considered, as
depicted in Figure 5: (a) a ‘neutral prediction’ (NP),
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fNPF = fTF + N (0, σ 2), which permitted both over- and
underestimation of the true service frequency; (b) a ‘con-
servative prediction’ (CP), fCPF = fTF + max{0,N (0, σ 2)},
that overestimated the true service frequency; and (c) an ‘opti-
mistic prediction’ (OP), fOPF = fTF + min{N (0, σ 2), 0}, that
underestimated the true service frequency.

All system setups were implemented using Python 3.11,
utilizing the features of a macOS Monterey environment
running on an M1 chip with 16 GB of memory.

VII. NUMERICAL STUDIES
This section discusses the results of the experiments con-
ducted to evaluate the performance of SATS using the previ-
ously mentioned three types of service frequency predictions:
neutral, conservative, and optimistic. The experiments were
based on two evaluation metrics - total processing time
and acceptance ratio. The experiments were divided into
two categories. SATS and the true frequency were used as
benchmarks, assuming that the predictor could always predict
the actual service frequency.

The first category of experiments, Category A, aimed to
evaluate the performance of SATS across successive time
windows by varying the number of CIoT devices over time.
This was done to simulate the dynamics of the system.

The second category of experiments, Category B, studied
the system’s response to fluctuations in service demand by
keeping the number of CIoT devices constant and varying the
service frequency.

One significant difference between the two categories of
experiments was that in Category A, the amount of available
resources increased as the number of CIoT devices increased.
However in category B, the amount of available resources
remained constant.

A. VARYING THE NUMBER OF CIOT DEVICES
In the first experiment, the performance of SATS was
observed by decreasing the number of CIoT devices in the
system. The frequency of service requests was decreased
by removing more devices at every fourth time window,
from 240 to 160. Subsequently, the number of devices was
increased by adding them at every fourth time window,
from 160 to 240.

Figure 6 shows the results. Figure 6 (a) displays
the arrival rate of service requests over time, while
Figures 6 (b) and (c) show the acceptance ratio and processing
time for different predictors.

It was found that the conservative predictor performed
the best. When this predictor was used, the acceptance ratio
never deviated by more than 8% from the optimal value,
and the processing time was never more than 10% longer
than that obtained with the true frequency. In contrast, the
optimistic predictor performed the worst, with acceptance
ratios sometimes 26% worse than optimal.

These results can be explained as follows. The conservative
predictor overestimated traffic, which caused SATS to
allocate more resources than were necessary. The optimistic

FIGURE 6. In the first Category A experiment, the frequency of service
requests decreased by removing CIoT devices in every four time windows.
The graphs depict (a) the number of requests that arrived in each time
window, (b) the acceptance ratio, and (c) the processing time.

predictor, on the other hand, underestimated traffic, which
resulted in SATS allocating fewer resources than were
required.

In the second experiment, the performance of SATS was
tested as more CIoT devices were gradually added to the
system. The process started with 160 devices for the first
three time windows (0-(3), increased to 180 devices for
the following four time windows (4)-(7), and continued in
this manner until reaching 240 devices in the last four time
windows (16)-(19). The results of this study are presented in
Figure 7, following the same presentation format as for the
first experiment.

It was observed that the conservative predictor performed
the best, while the optimistic predictor performed the worst.
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FIGURE 7. In the second Category A experiment, the frequency of service
requests gradually increased by adding more CIoT devices in every four
time windows. The graphs depict (a) the number of requests that arrived
in each time window, (b) the acceptance ratio, and (c) the processing time.

When SATS used the conservative predictor, the accep-
tance ratio was never more than 16% different from the
acceptance ratio obtained with the true frequency. However,
when SATS relied on the optimistic predictor, it sometimes
resulted in an acceptance ratio that was 21% less than the
one obtained with the true frequency. Additionally, when
SATS used the optimistic predictor, it consistently had longer
processing times than with the other two predictors.

Interestingly, the neutral predictor resulted in almost
as high acceptance rates as the ones obtained with the
conservative predictor. The explanation for this result is In
Figure 7 and particularly in subfigure (a), it’s observed that
the NFT closely aligns with the TF, allowing for accurate
request predictions despite occasional underestimations or

overestimationswithin specific timewindows. This similarity
results in the performance of NPF-SA closely approaching
that of CPF-SA. However, any degree of underestimation,
even if minimal, detracts from achieving the optimal perfor-
mance exhibited by CPF-SA.

B. VARYING THE SERVICE FREQUENCY
In the first experiment, the frequency of service requests
was gradually increased while keeping the number of CIoT
devices constant at 220. The results of this experiment are
shown in Figure 8.

FIGURE 8. In the first Category B experiment, the frequency of service
requests was increased while the number of CIoT devices was kept
constant. The graphs depict (a) the number of requests that arrived in
each time window, (b) the acceptance ratio, and (c) the processing time.

As seen from Figure 8, the results of the first Category B
experiment are similar to those of the Category A experi-
ments. SATS achieved the highest acceptance ratio and lowest
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processing time when it used the conservative predictor and
the lowest acceptance ratio and longest processing time when
the optimistic predictor was used. When the conservative
predictor was used, the acceptance ratio for SATS only fell
below 90% when the service request frequency exceeded
1500 service requests, which occurred in the 11th time
window. On the other hand, when the optimistic predictor
was used, SATS went below an acceptance ratio of 90%
at slightly more than 1300 service requests. With the
conservative predictor, the acceptance ratio for SATS was
never more than 13% lower than that obtained with the
true frequency. However, with the optimistic predictor, SATS
sometimes exhibited an acceptance ratio 26% lower than that
obtained with the true predictor. When SATS used the neutral
predictor, its acceptance ratio fell between that obtained with
the conservative and optimistic predictors. In fact, SATS
overestimated the service request frequency 63% of the time
and underestimated it 37% of the time.

In the second experiment, the number of CIoT devices was
maintained at 220 while the frequency of service requests was
gradually decreased. The results of this experiment are shown
in Figure 9.

Similar to previous experiments, it was observed that SATS
performed best when using a conservative predictor, which
led to the highest acceptance ratio and shortest processing
time. It is worth noting that the acceptance ratio provided by
SATS with a conservative predictor was always at least 95%
of that obtained with the true frequency. In contrast, using
neutral or optimistic predictors resulted in SATS exhibiting a
much more variable acceptance ratio.

Comparing the proposed method results with those
reported in the recent work [3], it is important to note
significant differences in performance. While the authors
focused on scheduling a limited number of tasks, their
results indicate that increasing the task arrival rate from 4 to
7 reduces the task acceptance ratio from over 50% to less
than 30%. In contrast, the proposed method can efficiently
manage the scheduling of more than 1000 tasks per time slot
while maintaining an acceptance ratio of no less than 70% in
worst case. This substantial increase in acceptance ratio, even
under high load conditions, demonstrates that the proposed
method is markedly more practical and effective for dynamic
task scheduling in complex computing environments.

VIII. RELATED WORK
Several strategies have been proposed for offloading tasks
from IoT devices online. For instance, Oo and Ko [4]
proposed a service-aware offloading scheme that considers
the Quality of Service (QoS) requirements of IoT services.
According to their scheme, low-latency tasks are executed on
IoT devices, while less latency-sensitive tasks are offloaded
to edge servers. Another service-aware offloading scheme,
Priority Aware Task Scheduling (PaTS), was proposed by
Bali et al. [5]. The PaTS scheme is designed to offload
IoT sensor data on a factory floor. It categorizes the
incoming tasks produced by sensor devices using a utilization

FIGURE 9. In the second Category B experiment, the frequency of service
requests was decreased while the number of CIoT devices was kept
constant. The graphs depict (a) the number of requests that arrived in
each time window, (b) the acceptance ratio, and (c) the processing time.

function and determines whether to offload the task based on
priority. In [6], Han et al. uses two-timescale optimization
to reduce remote IoT task offloading delays. In this case,
work is dynamically split between terrestrial and satellite
networks using a hierarchical Markov decision process
(H-MDP) with reinforcement learning. Rural areas with
satellite and terrestrial backhaul are the target use cases
for this method. These use cases are a good choice for
low-latency applications. Utilizing hybrid proximal policy
optimization (H-PPO), the system controls discrete and
continuous action spaces across timelines. The simulation
results show that the proposed design works, even with a
restricted spectrum and significant traffic. The job dynami-
cally handles incoming tasks and adapts to online network
conditions. Brik et al. [7] investigate how multi-access Edge
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computing applications can be deployed across a feder-
ated Edge infrastructure. It addresses optimal deployment
location selection to meet application-specific requirements
for computing resources, latency, and service availability.
They use an integer linear programming model to balance
computational loads and propose a tabu search meta-heuristic
algorithm to manage the placement problem efficiently.
The approach dynamically adapts to network conditions
and application demands, ensuring compliance with ETSI
MEC standards and providing an online solution. Among
these strategies, the SATS approach is noteworthy because it
employs the Simulated Annealing metaheuristic optimization
technique, commonly used for offline task offloading. In [8],
they propose the SIaTS framework for task scheduling in
computing power networks (CPNs). This approach enhances
resource efficiency and service performance by integrating
service intent awareness. This system utilizes intent-based
networking principles to overcome the limitations of conven-
tional task scheduling. It accomplishes this by employing an
auction-based mechanism that synchronizes task scheduling
with user service intentions.

Researchers have proposed several task scheduling algo-
rithms that leverage machine learning methods such as Deep
Reinforcement Learning (DRL) to address the computational
challenges IoT applications pose within heterogeneous MEC
networks. The goal is to optimize task execution order and
location, thereby minimizing latency and enhancing service
delivery efficiency.

For instance, Shang et al. [9] introduce a Deep Q-Network-
based (DQN-based) task scheduling algorithm. The approach
models the scheduling problem as a Markov decision
process, leveraging DRL to optimize task execution order and
location adaptively. Lu et al. [10] propose a task scheduling
framework for container-based Edge computing environ-
ments, utilizing the Proximal Policy Optimization (PPO)
algorithm to balance completion time and energy con-
sumption. Two distinct algorithms for independent (PPOTS)
and dependent (PPODTS) task scheduling were developed
and tested against traditional methods. Results indicate a
significant improvement in utility reduction, showcasing the
potential of DRL in optimizing Edge computing operations.
Min et al. [11] explore a learning-based offloading strategy
for IoT devices that incorporates energy harvesting in a
dynamicMEC environment. The study utilizes reinforcement
learning to optimize the offloading of computational tasks
to Edge devices without prior knowledge of the energy
consumption or computation latency models. A DRL model
is also proposed to improve learning speed and decision
accuracy by managing large state spaces efficiently. In [12],
Wang et al. investigate the incorporation of DRL into the
scheduling of cellular networks in order to enhance the
process of decision-making and flexibility. Compared to
conventional techniques, it addresses how expert information
can be included to improve DRL agent training, yielding a
more reliable and effective result. Sellami et al. [13] present

a DRL approach for energy-efficient task scheduling in
SDN-based IoT networks. The proposed DRL model aims to
minimize network latency and energy usage, demonstrating
superior simulation performance compared to deterministic
and random scheduling methods. Sheng et al. [3] propose
a task scheduling framework for IoT applications utilizing
a DRL technique, specifically focusing on Edge computing
environments. The system utilizes a policy-based reinforce-
ment algorithm to improve the scheduling of tasks and
allocation of resources across virtual machines (VMs) on
Edge servers. In [14], Tang et al. explore distributed task
scheduling within serverless Edge computing networks for
IoT, presenting a learning-based approach. It introduces a
multiagent DRL algorithm, specifically a dueling double
deep recurrent Q-network (D3RQN), to optimize task
scheduling and resource allocation by considering Edge
computing resources’ dynamic and heterogeneous nature.
The proposed method aims to enhance the efficiency and
utility of Edge computing nodes by enabling them to
make autonomous scheduling decisions based on local
observations, demonstrating significant improvements over
conventional methods through extensive simulations.

Also, several offline task-offloading strategies have been
proposed for IoT devices.

Authors in [15] suggested using a Genetic algorithm as
an offline task offloading strategy. Al-Habob et al. [16]
also proposed a Genetic-based task offloading strategy.
Authors in [17] proposed employing a Simulated Annealing
algorithm to schedule tasks within a MEC architecture.
Alameddine et al. [18], Alnoman et al. [19], and Lee et al.
[20] have proposed offload strategies that address task
offloading, application resource allocation, and task schedul-
ing problems. These strategies ensure that the deadlines of
the tasks for IoT applications are met. Some studies have
focused explicitly on MEC. For instance, Ning et al. [21]
have proposed an iterative heuristic resource allocation
for delay-aware task offloading in a MEC architecture.
Zhang et al. [22] have suggested a time-sensitive MEC
task scheduling algorithm that reduces the average CIoT
device processing time and saves IoT device energy
consumption.

Previous studies did not consider the varying sizes of
service requests or the frequency at which end devices invoke
them. Unlike these works, which typically model requests
as singular tasks with specific resource requirements, this
research attempts to model a diverse array of requests,
each with unique requirements. Furthermore, unlike the
cited studies, this paper considers a substantial number of
users, each frequently requesting services, something which
leads to the scheduling of a large volume of different
requests within each time window, necessitating complex
partial scheduling across CIoT, Edge, and Cloud layers
rather than merely between Edge and Cloud. Lastly, this
study explores metaheuristics in online systems, evaluating
their performance as faster, simpler, and resource-efficient
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alternatives to machine learning or reinforcement learning
methods.

IX. CONCLUSION
This research paper introduces a new task scheduling strategy
named SATS for MEC architecture. SATS is an online task
scheduling technique that shows that Simulated Annealing is
applicable beyond traditional offline task scheduling. During
the evaluation of SATS, it was found that the accuracy of the
service request frequency predictor played a crucial role in
its performance. SATS showed excellent results when used
with a conservative predictor that consistently overestimated
the actual service request frequency by a small margin. This
predictor could achieve an acceptance ratio comparable to
knowing the frequency of service request arrivals beforehand,
with a difference of no more than 5% and a consistent
deviation within 20% in all experiments. However, there
is a scope for improvement in MEC environments with
diurnal traffic patterns, where the trends are predictable,
but the individual service requests are not. In such cases,
improving the service request frequency prediction may
be possible by using model-based reinforcement learning.

TABLE 1. Listing of notations.

Therefore, applying reinforcement learning (RL) methods
will be considered more extensively. Specifically, a method
based on RL will be proposed and evaluated to see how
effectively it can enhance prediction accuracy and overall
system performance in these contexts.

APPENDIX
TABLE OF NOTATIONS
A comprehensive summary of the notations utilized through-
out the paper is provided in Table 1.
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