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ABSTRACT In modern power grid project management, project management systems have become
indispensable. However, the intricate and mutable nature of relationships among power grid projects presents
significant challenges to accurate modeling using traditional approaches. To tackle this problem, we propose
a sequential management model that consolidates long-term and short-term potential relationships between
power grid projects, aiming to enhance the efficiency of the project management system. Specifically,
we develop a project relationship network, which leverages graph convolutional neural networks and
attention mechanisms to dynamically capture and integrate project relationship information. This innovative
method enables a more refined representation of inter-project relationships within the power grid domain.
Furthermore, to account for temporal shifts in project execution, we devise a method incorporating project
temporal information to predict project progress. The method employs separate modules for long-term
and short-term project execution, allowing us to distinguish between enduring and immediate impacts
among power grid projects, thereby enriching the portrayal of project relationships. Experiments on public
recommendation system datasets validate the efficacy of our proposed method in the context of power grid
project management.

INDEX TERMS Project management, multi-relationships, long-term and short-term relationships.

I. INTRODUCTION have multiple types and levels of relationships that can

In the digital era, where the Internet reigns supreme, project
management systems have ascended as indispensable pillars
of technology, playing a crucial role in addressing the ““infor-
mation overload” problem of the big data era effectively.
These systems have become an essential component in a
wide range of online services, including news, e-commerce,
streaming video, and more [2], [5], [21], [23], [35], [36].
Essentially, these systems analyze historical interactions of
projects to infer their relationships. However, projects often
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change over time, such as categories, states, and more.
Accurately capturing the various relationships of projects
and distinguishing between their long-term and short-term
relationships is vital, especially in the context of power grid
project management.

Various algorithms have been developed to model project
relationships in different ways. Collaborative filtering meth-
ods [6], [10], [17], [22], [27] predicate relationships by
analyzing historical feedback data. These methods primar-
ily capture long-term relationships but ignore sequential
features, limiting their ability to model projects’ short-
term relationships. To capture short-term relationships,
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sequential methods [11], [31], [35], [37] have been proposed,
which model the sequential features using convolutional
neural networks or recurrent neural networks.

To capture both long-term and short-term relational
dynamics, several methods [2], [24], [33], [34] have
been proposed that meticulously demarcate these distinct
temporal associations. Zhao et al. [34] ingeniously combine
matrix factorization with recurrent neural networks (RNN)
to capture the short-term relationship patterns, employing
two unique modeling techniques to separately unravel the
long-term and short-term dependencies within projects.
Concurrently, Yu et al. [33] make improvements upon the
conventional LSTM (Long Short-Term Memory) framework
to particularly address the modeling of project short-term
ties, while resorting to an asymmetric SVD approach [16]
to discern the long-term relationships among projects.
Attention-based models like DIN [36] and its successor
DIEN [35] are capable of discerning intricate project
relationships inherent in the current candidate item by
gauging the interplay between various projects. Despite
this progress, the challenge lies in the fact that project-to-
project interaction behaviors typically manifest as implicit
feedback within project management systems, rendering the
acquisition of labeled data for delineating long-term and
short-term relationships a formidable task. Consequently, the
independent modeling of these dual facets of project relations
suffers from a lack of explicit supervisory signals that could
effectively differentiate them.

On the other hand, several studies model relationships by
incorporating multiple latent relationship dimensions to more
accurately capture the intricacies of complex relationship
preferences. Pi et al. [26] decouple the processes of project
relationship modeling and click-through rate prediction,
thereby introducing the MIMN model. In this approach,
two distinct matrices rooted within a memory network
architecture are employed to separately house relationship
information and the progression of relationship evolution.
Liet al. [18] advance the representation of a project using
multiple vectors, each encapsulating different facets of its
relationships. They specifically design a Multi-Relationships
Network with Dynamic Routing (MIND), leveraging the
principles of capsule networks [29] to cluster historical
behaviors and derive various relationships accordingly. Simi-
larly, Cen et al. [3] propose a controllable multi-relationships
sequence recommendation model ComiRec, which cap-
tures multiple relationships of projects from their behavior
sequences.

The multi-relationships project modeling method can
reflect complex relationship preferences. However, a lim-
itation lies in its disregard for temporal sequence data.
Project preferences are not merely diverse but also subject
to dynamic shifts over time. Long-term and short-term inter-
action behaviors may have different impacts on a project’s
current relationships. Therefore, it becomes imperative to
discern and isolate the long-term and short-term behavioral
patterns within a project, and correspondingly, to model

VOLUME 12, 2024

their long-term and short-term relationships with due
diligence.

This paper proposes to improve the performance of
project management systems by integrating the modeling of
multiple relationships along with long-term and short-term
relationship preferences. We harness capsule networks [29] to
represent multiple relationships, apply attention mechanisms
to capture long-term connections and use recurrent neural
networks for modeling short-term interactions. Our approach
partitions and independently models these long-term and
short-term relationships within a multi-relationship frame-
work, thus ensuring a more accurate estimation of project
relationship dynamics. We conduct extensive experiments
on various datasets, including AMAZON, TAOBAO, and
Microsoft’s news dataset MIND_NEWS, to demonstrate
the effectiveness of our recommendation algorithm that
fuses multiple relationships and long-term and short-term
relationships.

In summary, the main contributions of this work are as
follows.

« We propose a sequential project management model
called LSPR-PM that integrates long-term and short-
term relationships between projects.

o In our approach, we utilize attention mechanisms to
model long-term relationships within projects, while
employing recurrent neural networks to model short-
term relationships. To enhance the learning process,
we ingeniously integrate these long-term and short-term
relational attributes of the target items in a manner that
is contingent upon their degree of resemblance, thereby
fostering an adaptive fusion strategy.

« We conduct experiments on three public recommen-
dation system datasets, demonstrating that LSPR-PM
outperforms baseline models and achieves significant
performance improvements.

Il. RELATED WORK

A. PROJECT MANAGEMENT

Project Management is similar to recommendation systems,
which have achieved great commercial success by leveraging
project-item feedback information such as click records,
purchase records, and other interaction data to estimate
project preferences, making them increasingly popular in the
era of big data.

Throughout the progression of time, recommendation
systems have evolved through diverse phases of innovation,
including content-based algorithms, collaborative filter-
ing methodologies, hybrid recommendation strategies, and
model-centric approaches. Notably, collaborative filtering,
due to its demonstrated potency, has become ubiquitous in
recommendation systems as evidenced by seminal works
such as Goldberg et al. [6] and Linden et al. [22]. This tech-
nique predicates that projects tend to favor items favored
by analogous projects, leveraging historical interaction
data between projects and items to infer the former’s
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inclinations towards other items. By unraveling the hidden
common preferences of projects, recommendation systems
can significantly boost their predictive accuracy. Preeminent
methods that exemplify this paradigm include Matrix Fac-
torization (MF) [17] and Factorization Machines (FM) [27],
which decompose the complex interaction matrices into
lower-dimensional latent factors. With the development of
deep neural networks, some approaches such as the Neural
Factorization Machine (NFM) [9] and Deep Factorization
Machine (DeepFM) [8] augment the representational prowess
of FM by capturing higher-order, non-linear feature interac-
tions. Building upon this foundation, He et al. [10] make a
significant stride with the proposal of Neural Collaborative
Filtering (NCF), a framework that leverages deep learning
constructs to model the complex interdependencies between
projects and items, thereby enriching the field with an
advanced technique for recommendation systems.

B. MULTI-RELATIONSHIPS MODELING IN MANAGEMENT
Project multi-relationships modeling constitutes an advanced
methodological approach that conceptualizes a project’s
relationships across multiple latent dimensions, aiming to
provide a more nuanced reflection of its multifaceted
preference patterns. In traditional recommendation systems,
the way projects are related is often shown with a single
vector, which might not fully show the many different aspects
of these relationships. For example, it might not capture a
project’s connection to film genres, music styles, or cultural
topics. Because of this, researchers are increasingly interested
in finding better ways to model the multiple relationships that
make up a project, which has become an important area of
study in modern recommendation system research.
Nonetheless, the endeavor to model project multi-
relationships introduces dual salient challenges to the
realm of recommendation systems. Primarily, there exists
the quandary of how to effectively mine and embody
the various relationships of projects from their sequential
interaction histories with items. Secondly, the challenge lies
in matching and recommending appropriate items based on
the varied relational preferences of a project. To overcome
these challenges, researchers develop multi-relationships
recommendation models powered by deep learning. For
example, Pi et al. and colleagues [26] break away from the
usual approach of combining project relationship modeling
with click-through rate predictions, instead introducing
the MIMN model. In this model, they utilize a memory
network architecture that preserves the history of project
relationships and their developments in two separate matri-
ces. Li et al. [18] argue that a single representation of
projects fails to adequately capture the diverse connections
among them. They propose an innovative multi-relationships
extraction layer that leverages the dynamic routing mech-
anism [29] in capsule networks. This mechanism adap-
tively aggregates a project’s historical behavior data into
detailed preference representations. Similarly, Cen et al. [3]

72244

introduce the ComiRec model, a multi-relationships sequence
recommendation framework with controlled labels. This
model skillfully identifies and preserves the numerous
relationships within a project’s behavior sequences, pro-
viding a sophisticated and flexible method for generating
recommendations.

In conclusion, modeling project multi-relationships can
better reflect the project’s complex relationship preferences.
In the future, with the increase in data volume and the
continuous development of recommendation system technol-
ogy, project multi-relationship modeling will be more widely
applied.

C. LONG-TERM AND SHORT-TERM RELATIONSHIPS
MODELING IN MANAGEMENT

Project long-term and short-term relationship modeling is
based on the project’s historical behavior sequence, extract-
ing different relationships of the project, and predicting the
preference of candidate items based on the changes and
evolution of the relationships. In recommendation systems,
project long-term and short-term relationships modeling can
improve the accuracy and diversity of recommendations, and
meet projects’ personalized needs.

To model the project’s long-term and short-term relation-
ships, we need to consider the project’s behavior sequence,
which is the items that the project has recently interacted
with. The project’s behavior sequence can reflect the
changes in the project’s relationships over time, where earlier
behavior represents the project’s long-term relationships,
and recent behavior represents the project’s short-term
relationships. However, traditional Markov chain-based tech-
niques (e.g., [28]) and sophisticated deep learning models
(e.g., [11], [14], [19], [20], [25], [30], [31], [35], [37])
often struggle to explicitly differentiate and separately
model these temporal relational domains, making a uniform
representation insufficient for fully capturing the breadth of a
project’s relationships. To model the project’s long-term and
short-term relationships between projects, some methods [2],
[71, [12], [24], [33], [34] have been proposed to clearly
distinguish between the project’s long-term and short-term
relationships between projects. For example, Zhao et al. [34]
use matrix factorization for long-term relationships and use
Recurrent Neural Network (RNN) for short-term relationship
modeling. Through two different modeling methods, the
project’s long-term and short-term relationships between
projects are separated. Yu et al. [33] design an LSTM (Long
Short-Term Memory) variation to apprehend short-term rela-
tionships, complemented by Asymmetric SVD [16] to gauge
long-term bonds. Meanwhile, attention-based mechanisms,
as exemplified in models such as DIN [36] and DIEN [35],
have proven effective in identifying project relationships
pertinent to the current candidate item. These models extract
and weigh the relevance of each item to the project’s historical
behavior, thereby constructing a precise representation of the
project’s relationship preferences.
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FIGURE 1. Overall architecture of the proposed method.

lIl. PROBLEM FORMALIZATION

In this section, we will introduce the symbols used for for-
malizing the project of sequential recommendation. Formally,
let u € U denote a project u from the project set U,
and let i € Z denote an item i from the item set Z.
For each project, we have a historical sequence of inter-
action behaviors (x{', xj, x5, ..., x;), where the sequence is
sorted by time. x;' records the z-th item that the project
has interacted with in the past. The project of sequence
recommendation is to predict the next item that the project
may interact with, given the historical sequence of interaction
behaviors.

IV. METHOD

In this section, we introduce the LSPR-PM (long-term
and short-term Relationships for Power Grid Project
Management) model, which ingeniously integrates multi-
relationships alongside the long-term and short-term rela-
tionships between projects within the power grid landscape.
In line with the principles of MIND [18], we employ a
capsule network [29] architecture to derive multi-faceted
relationship embeddings for power grid projects. Following
this, we enhance our framework with a pair of dedicated
long-term and short-term relationship encoders that process
the obtained multi-relationship representations of the
projects. These specialized encoders accurately identify and
represent the various relationship patterns of projects across
time, differentiating between stable, long-term relationships
and temporary, short-term interactions. This comprehensive
method provides an exact depiction of the intricate and
diverse relationship preferences in power grid projects,
thereby improving the overall performance and flexibility
of the project management system. The model structure is
illustrated in Figure 1.

A. EMBEDDING LAYER

The Embedding Layer is designed to map sparse features
to a dense vector representation space. Specifically, for
the ¢-th item x;' in the input item sequence, after passing
through the Embedding Layer, its corresponding embedding
representation e} is obtained.
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B. MULTI-RELATIONSHIPS EXTRACTOR LAYER

The Multi relationships Extract Layer is consistent with
the baseline model MIND [18]. As shown in Algorithm 1,
for an input item sequence x’f, x’2’, x’3‘, ... ,xt”_l, the sparse
feature representation of each item is first passed through the
embedding layer to obtain the corresponding dense vector
embedding representation ef, 5, eg, ...,ef ;. Then, the
dynamic routing algorithm of the capsule network is applied
to obtain the project’s multi-relationships representation
Ui, U, ..., UK.

Algorithm 1 Dynamic Routing
Input: The embedding representations of items
e, ey, e5, ..., e/ |, the number of iterations r, and
the number of relationships K.
Output: Multi-relationships
ur,uz,...,Uug.
Initialize behavior capsule i and relationships capsule j,
where b;; ~ N(0, 02).
for k in range(1, r):
for behavior capsule i, calculate w;; = softmax(b;;
for relationships capsule j, calculate z;; = > wye!,
uj = squash(z;)
update b;j = b + u; - e
return uy, us, ..., ug

representations

C. LONG-TERM RELATIONSHIPS REPRESENTATION

As shown in the Long-Term relationships module in
Figure 1, an attention mechanism is applied to learn the
project’s long-term relationships. For the multiple project
relationships vectors up, ua, ..., ux learned by the Multi
relationships Extract Layer, which contains the diverse
range of relationships a project maintains across multiple
categories, including its long-term relationships, we utilize
an attention-based method to isolate these persistent ties.
To extract the project’s long-term relationships, we apply
an attention mechanism. First, the Mean Pooling operation
is applied to obtain the long-term relationships query
vector qf = MeanPooling(uy, ua, ..., ug). This process
averages the elements of all relationship vectors, producing
a comprehensive overview that highlights the consistent,
fundamental connections that define the project’s long-term
relational characteristics. Then, the similarity between the
query vector and the input item embedding representation is
calculated:

Si=q'Wg - Wk, (1)

where W€ and WX are trainable parameters, and then use the
softmax function to calculate the weight impact:

exp(S;)

- - 2
2_i(exp(Si) @

o = softmax(S;) =

72245



IEEE Access

Y. Zhang et al.: Modeling Long- and Short-Term Project Relationships for Project Management Systems

Long-term relationship representation that eventually leads to
the fusion of attention mechanisms:

Ulong—term = Zaie?~ (3)
i

D. SHORT-TERM RELATIONSHIPS REPRESENTATION

As shown in the Short-Term Relationships module in
Figure 1, a recurrent neural network is applied to cap-
ture short-term relationships. For the multi-relationships
extraction layer learned by the multi-relationships extraction
layer uy, up, ... After the ug is spliced, it is used as the
initialization hidden layer of LSTM 4%, and then the final
hidden layer output is obtained by applying LSTM as a
short-term relationships representation of the project:

Ushort—term = LSTM(Q?, elfv elév cees e?_l)- 4)
E. TRAINING AND SERVING

Upon extracting the multi-relationships of a project, the
subsequent step involves utilizing both the Long-Term
Relationships encoding module and the Short-Term Relation-
ships encoding module. This dual processing results in the
generation of the project’s long-term relationship represen-
tation Ujong—rerm and short-term relationship representation
Ushort—term-

During the model’s training phase, given that the embed-
ding representation of the target item e}/, the similarity metrics
are computed separately between e} and both ujong—rerm
as well as ugnorr—serm. The outcomes of these calculations
enable the construction of the fused long-term and short-
term project relationships representation that serves as the
basis for model training. This fusion allows the model to
understand and incorporate the impact of both enduring
and immediate relational contexts when making predictions
or recommendations, thereby enhancing its performance
and contextual understanding, as shown in the following
equation:

Ulong—termandshort—term
exp(ulong—term : etu)
exp(”long—term . e?) + exp(Ushort—term * ezu)
exp(”short—term . e?)

exp(ulong—term : e?)"'exp(ushort—term : e?)

* Ulong—term

* Ushort—term

&)
Then for predicting the probability of the target item is

u
P(e; |ulong—termandshort—term)

= U(ulong—termandshort—term : e?)’ (6)

where o is the activation function.
Then the training objective function is.

L= ZlOgP(e?|ulong—termandshort—term)- @)

During the inference stage, the learned long-term relation-
ships representation ujong—serm and short-term relationships
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representation Ugporr—rerm are used to search for corre-
sponding items in the vector recall library FAISS,! and a
recommendation list is generated.

V. EXPERIMENTAL SETUPS

A. DATASETS

For the above-mentioned recommendation algorithm that
integrates multi-relationships and long-term and short-term
relationships, a large number of experiments have been
carried out on the public datasets Amazon,? Taobao,? and
MIND_NEWS,* and the statistics of the dataset are shown
in Table 1. The Amazon dataset consists of Amazon’s
product reviews and metadata, and we chose to use the
project book purchase data in it, a total of 8,020,294
pieces of data, which contains 543,301 projects, 367,982
book information, and books cover 1,600 categories; Taobao
dataset is a Taobao project behavior dataset provided by
Alibaba for the study of implicit feedback recommendation
problems, which contains all the behaviors of one million
random projects (behaviors include clicks, purchases, add-
ons, likes), of which the project’s purchase behavior records
are 2,015,839, covering 672,404 projects, 638,962 products,
and 7,097 categories; MIND_NEWS is a large-scale dataset
released by Microsoft for news recommendation research,
collected from anonymous behavioral logs of Microsoft news
websites, containing 2,037,630 browsing records of 91,935
projects, covering 44,908 pieces of news, totaling 17 first-
level categories and 248 subcategories.

B. EVALUATION
We use the following metrics to evaluate the performance of
our proposed model.

o Recall. The recall measures the proportion of items that
have been recommended to a project and that the project
has interacted with, out of all the items that the project
has interacted with.

LinlNi,

1 u,N‘ u

Recall@N:—Z—
Ul &1L

, ®)

where IMTN represents the top-N item set recommended
to project u, and I, is the set of items that project u has
interacted with.

« Hit Rate. The hit rate (HR) measures the percentage of
recommended item sets that contain at least one item that
the project has interacted with [4] and [15].

1
HR@N = — " §(
|U| uelU

where §(-) is the indicator function.
o Normalized Discounted Cumulative Gain. The normal-
ized discounted cumulative gain (NDCG) considers the

Loy N 1| > 0), )

lhttps://faiss.ai/

2http://jmcau1ey.ucsd.edu/data/amazon/
3https://tian(:hi.aliyun.com/dataset/dataDetail?clatald=649&projectld:1
4https://msnews.github.io/
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TABLE 1. Dataset statistics.

#iprojects  #Items #Categories #Samples
AMAZON_BOOK 543,301 367,982 1,600 8,020,294
TAOBAO_BUY 672,404 638,962 7,097 2,015,839
MIND_NEWS 91,935 44,908 17(248 subcategories) 2,037,630

position order of the correctly recommended items in the
recommendation list [13].

1 11 N 8(iuk<l)
NDCG@N = ZDCG@N = Z 10| ZMEU Zk:l l()jilz(kk+l)’ (10)

where i,;k represents the k-th recommended item to
project u, Z is a normalization constant representing the
ideal discounted cumulative gain IDCG@N), which is
the maximum possible value of discounted cumulative
gain (DCG@N).

C. COMPARING METHODS

o WALS [1]: WALS, short for Weighted Alternating Least
Squares, is a classic matrix factorization algorithm that
decomposes the project-item interaction matrix into
hidden factors for projects and items. Recommendations
are made based on the compatibility between the hidden
factors of projects and target items.

e YouTube DNN [5]: YouTube DNN is one of the
most successful deep-learning methods for industrial
recommender systems.

o MaxMF [32]: This method introduces a highly scalable
approach for learning non-linear latent factorization to
model multiple project relationships.

« MIND [18]: MIND is a Multi-relationships Net-
work with Dynamic Routing designed to model
projects’ different relationship preferences, with a
multi-relationships extraction layer based on a capsule
network routing mechanism suitable for clustering
project historical behaviors and extracting different
relationship preferences.

D. IMPLEMENT DETAILS

The experiments were conducted on a Linux server with
an Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz pro-
cessor and three Tesla M40 24GB GPUs. The server
runs on CentOS 7.7, with CUDA version 10.2 and Python
version 3.9.7. The deep learning framework used is
PaddlePaddle 2.2.2.

To train and evaluate the recommendation model, we par-
titioned the dataset into training, validation, and test sets
in a ratio of 8:1:1. The dimensionality of the embedding
vectors used by the model is set to 128. We utilized the
Adam optimizer with a learning rate of 0.001 and a batch size
of 128 for model training, with training epochs set to 100.
For model evaluation, we inferred project embeddings from
80% of the project behaviors in the validation and test sets
and used these embeddings to predict the remaining 20% of
project behaviors. We apply grid search for hyperparameter
selection. The parameter K is searched from {3, 4,5, 6},
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representing the number of vectors used to model the project’s
relationship preference. The optimal model is selected based
on the performance of the validation set, and then we report
the results on the test set.

VI. RESULTS

A. OVERALL PERFORMANCE

As shown in Table 2, LSPR-PM represents the proposed
model that combines multiple relationships and long short-
term relationships, which includes the long-term relation-
ships encoding module and short-term relationships encoding
module. LSPR-PM -w/o Short-term removes the short-term
relationships encoding module and only models the project’s
long-term relationships, while LSPR-PM -w/o Long term
removes the long-term relationships encoding module and
only models the project’s short-term relationships.

From the table, we can see that the matrix factorization
method WALS is defeated by other methods, thereby
illustrating the superior capacity of deep learning algorithms
in accurately modeling project relationship preferences and
effectively aligning suitable items within recommendation
systems. Notably, when deep learning is not in play, MaxMF
significantly surpasses WALS, a phenomenon that can
be attributed to its ability to generalize the conventional
MF approach into a non-linear framework and incorporate
multiple project representative vectors. Consequently, it’s
discernible that methods employing multiple project repre-
sentation vectors, such as MaxMF, MIND, and LSPR-PM,
consistently demonstrate enhanced performance compared to
other methodologies like WALS and YouTube DNN.

In addition, our models LSPR-PM, LSPR-PM -w/o Short
term, and LSPR-PM -w/o Long term all achieved optimal
or suboptimal performance, thus suggesting that through
the modeling of multi-relationships within projects, By
separating the long-term and short-term relational aspects
of projects, we can more accurately track their changing
preferences. Incorporating various relationships and consid-
ering both long-term and short-term connections enables us
to detailedly model the complex interactions among projects,
resulting in the most impressive performance results.

B. ABLATION STUDY

As shown in Table 2, we also conducted ablation experiments,
where LSPR-PM represents the model that integrates multi-
ple relationships with long-term and short-term relationships
between projects, including the long-term relationships
encoding module and the short-term relationships encoding
module. LSPR-PM -w/o Short-term removes the short-term
relationships encoding module and only models the project’s
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TABLE 2. Overall performance.

AMAZON_BOOK TAOBAO_BUY MIND_NEWS
Recall@50 NDCG@50 HR@50 | Recall@50 NDCG@50 HR@50 | Recall@50 NDCG@50 HR@50
WALS 0.0397 0.0297 0.0426 0.0876 0.0494 0.0697 0.1073 0.1274 0.3712
YouTube DNN 0.0483 0.0349 0.0698 0.0955 0.0556 0.0930 0.1195 0.1349 0.4025
MaxMF 0.0511 0.0387 0.0974 0.1043 0.0599 0.1399 0.1290 0.1537 0.4309
K=3 | MIND 0.0600 0.0471 0.1237 0.1134 0.0634 0.1416 0.1456 0.1613 0.4602
LSPR-PM 0.0658 0.0490 0.1386 0.1155 0.0864 0.1442 0.2018 0.2159 0.5582
-w/o Short-term 0.0478 0.0362 0.0976 0.01302 0.0081 0.0194 0.2038 0.2081 0.5460
-w/o Long-term 0.0680 0.0519 0.1435 0.1329 0.1110 0.1634 0.1911 0.2064 0.5404
TABLE 3. Hyperparameter analysis results.
AMAZON_BOOKS TAOBAO_BUY MIND_NEWS
Recall@50 NDCG@50 HR@50 Recall@50 NDCG@50 HR@50 Recall@50 NDCG@50 HR®@S50
K=3 0.06002 0.0471  0.12369 0.11338 0.06335  0.14163 0.14555 0.16126  0.46015
MIND K=4 0.04973 0.03944  0.10334 0.10544 0.05604  0.13146 0.13721 0.15374  0.44928
K=5 0.04982 0.04017  0.10344 0.10544 0.06309  0.13158 0.13366 0.14973  0.43922
K=6 0.04825 0.03916  0.10078 0.09612 0.05526  0.12045 0.1275 0.14387  0.42781
K=3 0.06584 0.049  0.13863 0.11551 0.08644  0.14424 0.20177 0.21588  0.55815
LSPR-PM K=4 0.06329 0.0478  0.13405 0.11936 0.0938 0.1486 0.19498 0.21079  0.54969
K=5 0.06358 0.04791  0.13429 0.12018 0.09339  0.14808 0.20164 0.21554  0.55804
K=6 0.06288 0.04806  0.13279 0.12329 0.09757  0.14968 0.19739 0.21224 0.5534
K=3 0.04776 0.03622  0.09755 0.01302 0.00812  0.01941 0.20382 0.20805  0.54603
LSPR-PM K=4 0.04713 0.03462  0.09685 0.01283 0.00809  0.01898 0.20781 0.20947  0.54963
-w/o Short-term  K=5 0.05127 0.03948  0.10456 0.01181 0.00696  0.01764 0.20478 0.20781  0.54542
K=6 0.05171 0.04806  0.10463 0.01198 0.00728 0.0179 0.20805 0.21097 0.5534
K=3 0.068 0.05189  0.14354 0.13287 0.11102  0.16336 0.19114 0.20642 0.5404
LSPR-PM K=4 0.06748 0.0509  0.14195 0.13539 0.11009  0.16364 0.19406 0.20771  0.54253
-w/o Long-term  K=5 0.06877 0.05216 0.1443 0.1343 0.10973  0.16265 0.19403 0.21105  0.54783
K=6 0.0691 0.05225  0.14571 0.13341 0.10962  0.16262 0.19315 0.20983  0.54439
long-term relationships. LSPR-PM -w/o Long-term repre- the long-term relationships capture module, and the

sents that we remove the long-term relationships encoding
module and only model the project’s short-term relationships.

From the results of the ablation experiments, we can
see that although LSPR-PM, LSPR-PM -w/o Short-term,
and LSPR-PM -w/o Long-term achieve optimal or near-
optimal performance, the long-term relationships encoding
module and the short-term relationships encoding module
play different roles in different datasets. On the AMAZON
and TAOBAO datasets, we can see that the short-term
relationships encoding module plays a more important role,
while the long-term relationships encoding module has a
negative effect, possibly because these two datasets are based
on project purchase behavior, and short-term relationships
have a greater impact. In contrast, combining the project’s
long-term and short-term relationships can achieve better
performance on the MIND_NEWS dataset.

The different roles of the long-term and short-term
relationships between projects encoding modules on different
datasets inspire us to consider the characteristics of project
behavior data collected in different application scenarios and
to perform targeted optimization to improve the performance
of the recommendation system.

C. HYPERPARAMETER ANALYSIS

As shown in Table 3, the hyperparameter K = [3, 4,5, 6]
represents the number of multiple relationships represen-
tations for projects. After conducting a large number of
sufficient experiments, we found that the hyperparameter K,
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short-term relationships capture module play different roles
on different datasets. Specifically, as shown in the table,
on the AMAZON book purchase dataset, when the project’s
multiple relationships representation is K = 6, adding
the short-term relationships capture module results in the
optimal performance on all indicators. On the TAOBAO
dataset, when K = 4, adding the short-term relationships
capture module achieves the best results on Recall@50 and
HR @50 indicators, and NDCG@50 is only slightly lower
than when K = 3. On the MIND_NEWS dataset, adding both
the long-term and short-term relationships capture modules
achieves better performance.

To further analyze the role of long-term and short-
term relationships capture modules on different datasets,
the results are visualized in Figure 2. When K = 6,
the MIND_NEWS dataset reflects that the long-term and
short-term relationships have almost the same impact on
performance. On the TAOBAO dataset, the short-term
relationships dominate, and the long-term relationships
almost have no effect. On the AMAZON dataset, capturing
short-term relationships slightly outperforms capturing long-
term relationships.

D. CASE STUDY

In our empirical study, we performed case analysis exper-
iments on the MIND_NEWS, AMAZON, and TAOBAO
datasets, as depicted in Figure 3. The horizontal axis of
each sub-figure is encoded according to the timestamp,
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FIGURE 2. Variation of Recall@50, NDCG@50, HR@50 on different data
sets.
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FIGURE 3. Analyzing the multi-relationships vs. long-term and short-term
relationships of projects on different datasets.

representing the progression of time, while the vertical
axis represents the categories of the items that projects
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interacted with. A preliminary observation reveals that across
all three datasets, projects exhibit interactions with multiple
categories of items—a pattern underscored by the distribution
of item categories displayed graphically. Moreover, as time
unfolds, there is a discernible shift in the types of items that
projects interact with, highlighting the inherently dynamic
character of project relationships. Upon extracting a project’s
long-term relationship preference ujong—rerm Equation 3,
via Equation 3, and its short-term relationship preference,
denoted as ugpors—rerm» utilizing Equation 4, we proceeded to
compute their similarity with the historical sequence of items
with which the project has interacted. Our findings show
that ujong—rerm bears a closer resemblance to the project’s
earlier interaction patterns, whereas ujong—rerm aligns more
closely with the project’s recent behavioral trends. This
evidence substantiates that LSPR-PM effectively discrim-
inates between the long-term and short-term relationships
within a project, and thereby successfully captures and
models the nuanced relationship preferences of a project
over time.

VII. CONCLUSION AND FUTURE WORK

A. CONCLUSION

This study explores various modeling techniques and sys-
tem implementations for managing project relationships
in the context of utility grid management. We utilize
external knowledge, such as contextual information about
grid projects, to aid in modeling project relationships.
Furthermore, we investigate the inherent patterns within
grid project records to better understand multi-level project
dependencies and the long-term and short-term relationships
between projects.

1. In the domain of context-augmented project man-
agement, the research adeptly utilizes social context data
of project teams to strengthen the modeling of project
relationships in utility grid management. However, there is
a need to better exploit the immediate feedback from project
teams within the project management system. To refine the
accuracy of project relationship modeling and to facilitate
smooth project implementation, future research should focus
on optimizing the use of team feedback and also incorporate
additional external knowledge sources to address the issues
arising from limited data availability.

2. In the integration of multi-level and long-term/short-
term relationships in sequence management, the current
approach has partially decoupled multi-level project relation-
ships into long-term and short-term relationships but lacks
explicit and effective supervisory signals for this decoupling.
Therefore, additional research is necessary to develop a
self-supervised framework that can differentiate between
long-term and short-term project interdependencies within
the realm of utility grid management activities.

3. Regarding the development and implementation
of a project management system enhanced by multi-
dimensional project relationships, its effectiveness has only
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been demonstrated through empirical testing on a limited
number of datasets. An important future research direction
is to scale the system to handle larger datasets, making it
genuinely practical and relevant to the intricate challenges
of actual utility grid management projects. Additionally, it is
essential to thoroughly evaluate the system’s performance
and robustness in the demanding environments commonly
encountered in utility grid project management.

B. FUTURE WORK

This study explores techniques for managing project rela-
tionships in utility grid management, leveraging external
knowledge and analyzing grid project records to understand
dependencies and relationships. However, there are still some
shortcomings and areas for improvement, as follows:

1. While the research on socially-enhanced dialogue
recommendation effectively utilizes the context of the project
to enhance the modeling of project interest preferences,
it does not fully leverage the advantage of timely project
feedback in dialogue recommendation systems. Further
research is required to explore more efficient methods of
incorporating and utilizing project feedback data, while also
merging external knowledge, to better address issues of data
scarcity. This endeavor aims to improve the precision of
recommendations and facilitate more interactions within the
project context.

2. In the integration of multi-relationships, long-term and
short-term relationships sequences, the present method par-
tially partitions project preferences into long-term and short-
term segments by leveraging multi-relationships modeling.
Nevertheless, the lack of clear and potent supervisory signals
hinders the complete realization of this demarcation between
temporal interests. Consequently, there is an urgent demand
for additional research into the advancement of methods
that can self-supervise the disentanglement of long-term and
short-term relationships more accurately and efficiently.

3. In the design and implementation of recommendation
systems with enhanced multi-relationships, the functionality
of such systems has thus far been substantiated only on
modestly scaled datasets. Future research needs to further
explore how to handle large datasets to make the system truly
usable and serviceable to the outside world. Additionally,
comprehensive evaluations of the system’s computational
efficiency and its ability to handle high loads in real-world sit-
uations are crucial to confirm their suitability for widespread
use in large-scale settings.
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