
Received 5 April 2024, accepted 9 May 2024, date of publication 17 May 2024, date of current version 24 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3402351

Adversarial Reinforcement Learning Against
Statistic Inference on Agent Identity
YUE TIAN, QI JIANG, ZUXING LI , (Member, IEEE), AND CHAO WANG , (Member, IEEE)
School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China

Corresponding author: Zuxing Li (zuxing@tongji.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 62006173 and Grant 62171322, in part
by the National Key Research and Development Program of China under Grant 2023YFE0112500, and in part by the 2021–2023
China–Serbia Inter-Governmental Science and Technology (S&T) Cooperation Project under Grant 6.

ABSTRACT This paper considers an agent identity privacy problem in Markov decision process. There
are two types of agents with different instantaneous control reward functions, e.g., two types of energy
consumption activities in smart grid. An eavesdropper is assumed to intercept the observations of agent
and make a statistic inference on the agent identity, which is privacy-sensitive and can be utilized by the
eavesdropper to further make corresponding malicious attacks. With regard to the agent identity privacy
problem, a privacy-preserving Markov decision process is formulated and a novel adversarial reinforcement
learning algorithm is further proposed by exploiting the ideas of deep reinforcement learning and variational
method to design the agent policies with the aim to optimally tradeoff improving cumulative control reward
and preventing agent identity privacy leakage. Experiments in a modified OpenAI Gym environment show
different training process patterns and justify the effectiveness of the proposed algorithm.

INDEX TERMS Kullback-Leibler divergence, Markov decision process, privacy-by-design, variational
method.

I. INTRODUCTION
The cyber-physical systems (CPS) employ the computation,
communication, and control technologies to achieve the
desired performance of physical processes, and pave a way
to more efficiently and reliably interact with the physical
environment [1], e.g., smart grid [2] and Internet of vehicles
(IoV) [3] and [4]. For CPS, a decision-making scheme is
optimally designed to process a large sequence of monitoring
data and generate a sequence of corresponding actions, which
can be modeled as a Markov decision process (MDP) and
solved through the model-based optimal control theory [5]
or model-free reinforcement learning (RL) [6]. Since the
breakthrough of deep reinforcement learning (DRL) in 2015,
a large number of DRL algorithms, e.g., deep Q network
(DQN) [7], deep deterministic policy gradient (DDPG) [8],
twin delayed deep deterministic policy gradient algorithm
(TD3) [9], and proximal policy optimization (PPO) [10],
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have been developed to exploit the strong representative
capability of deep neural network (DNN) and the sequential
decision-making optimization methods of RL, and have been
successively applied to a wide range of CPS. With the
evolution of technologies, the efficiency and reliability of
CPS have been significantly improved.

Nowadays, CPS have been deployed in highly-complex
application scenarios, where a large volume of data is
collected, transmitted, and processed. When the data is
intercepted, the eavesdropper can infer on privacy-sensitive
information via data analysis methods, e.g., detection and
estimation theory [11], and deep learning algorithms [12].
Therefore, the research on privacy problems in CPS has
attracted increasing attention recently. Smart meter pri-
vacy [13] is a typical CPS privacy problem, in which
privacy-preserving technologies are briefly introduced as
follows. Note that the ideas of those technologies can be
applied to most CPS to prevent privacy from leakages.

In smart grid, smart meters monitor the real-time energy
data and feed the data back to the energy provider for
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prediction of future energy demand, adjustment of energy
production, and adaptive billing. Meanwhile, smart meter
privacy problem arises since the energy data can leak the
private energy consumption behaviors of user.

Regarding the smart meter privacy problem, obfuscation
is a commonly used privacy-preserving method. Many works
focused on employing local energy resources, e.g., battery,
solar panel, and wind turbine, to distort the smart meter read-
ing from the real energy data to reduce information-theoretic
measure of privacy risk, and characterized the utility-privacy
trade-off [14], [15], [16], [17], [18].

Cryptography is a classical andwidely-used computational-
security technology. For smart grid, Reference [19] proposed
a privacy-aware authenticated key agreement scheme to
secure communication between smart meters and the energy
provider based on lightweight cryptography primitives such
as one-way hash function. In [20], an authentication scheme
using the elliptic curve cryptography was presented for
secure communications in smart grid. Recently, the emerging
homomorphic encryption [21], [22] is seen as a promising
solution to the information security problems since the
encrypted data can be directly processed by the service
provider without revealing the original data. Based on
homomorphic cryptosystem, privacy-preserving energy data
aggregation can be realized [23], [24].

The notion of differential privacy (DP) was originally
formulated to model the privacy problem of neighboring
datasets through query releases [25] and has been applied
to CPS [26]. In [27], a DP scheme was proposed to add
noise obtained from a virtual chargeable battery to the energy
data while maintaining billing accuracy. By jointly utilizing
a battery and a renewable energy source with small storage,
near Laplace distributed random noise is generated to realize
cost-friendly DP of smart meters [28].

Federated learning (FL) [29], [30] provides a privacy-
preserving distributed learning framework, where clients
share locally-trained models instead of their privacy-sensitive
raw data with a server for model aggregation. To enhance
privacy, FL is commonly implemented jointly with
other privacy-preserving technologies. For instance, Refer-
ence [31] applied an inner-product functional encryption
scheme to encrypt the local model parameters during the
FL to realize privacy-preserving energy prediction. In [32],
a differentially private FL-based framework was developed
for residential short term load forecasting and ensuring the
privacy of the smart meter readings.

From the brief recapitulation, it can be noticed that most
efforts have been paid to preserve the privacy in CPS through
additive distortion or cryptography.

The rest of this paper is organized as follows. In Section II,
the related works and our main contributions are presented.
In Section III, the agent identity privacy problem in an MDP
is introduced. The considered privacy problem is formulated
as a privacy-preserving MDP in Section IV. An adversarial
RL algorithm is developed to efficiently optimize the

privacy-preserving policy in Section V. In Section VI,
experiments are conducted to show the effectiveness of the
proposed algorithm. Section VII concludes this paper.

II. RELATED WORKS
As presented in Section I, a diversity of privacy problems
have been formulated and studied in CPS from different per-
spectives. To realize optimal interactions between the cyber
system and the physical environment, RL algorithms are
implemented as efficient methods to solve the corresponding
MDPs, e.g., [33], [34], [35], [36], [37]. Therefore, studying
privacy problems in MDP and developing privacy-preserving
RL algorithms can provide general and practical solutions
for CPS privacy problems. However, not many related works
have been reported.

In the literature, the privacy-sensitive information in
an MDP model can be the environment state [38], [39],
[40] and the reward function of the agent [41], [42].
With regard to the two main types of privacy-sensitive
information, privacy-preserving RL have been developed.
Homomorphic encryption has been employed to develop
privacy-preserving RL algorithms to protect the environment
states and rewards [43], [44]. References [45], [46], [47], and
[48] formulate the DP problem of sharing privacy-sensitive
environment states in a multi-agent control model and study
the privacy-preserving control, where each agent applies the
DP method, e.g., Laplace mechanism and Gaussian mech-
anism, to distort the local states before sharing them with
other agents while guaranteeing the control system network
to operate well. In RL, the value function is closely related
with the privacy-sensitive reward function and therefore an
eavesdropper can infer on the reward function by intercepting
the learned value function. Regarding this privacy problem,
the differentially private Q-learning algorithm [49] adds
functional noise to the value function such that the neighbor
reward functions become indistinguishable.

Although [43], [44], [45], [46], [47], [48], and [49] study
the privacy problems in the MDP context, the proposed
privacy-preserving RL algorithms mainly rely on the additive
DP noise or cryptography mechanism. Due to the stricter
requirements of privacy, e.g., GDPR in Europe [50], the prin-
ciple of privacy-by-design has attracted increasing attention
in recent years. Regarding privacy problem in MDP, privacy-
by-design means that privacy-preserving RL algorithm can
optimize the control policy with both objectives of improving
reward and preserving privacy.

In this paper, we consider a quite different privacy
problem in an MDP, where the agent has two candidates
and the agent identity is the privacy-sensitive information.
Different from the existing works to exploit the DP and
cryptography methods, we model the agent identity privacy
problem as a statistic inference attack, employ an information
theoretic privacy measure, formulate a privacy-preserving
MDP, and develop a novel adversarial RL algorithm from
the privacy-by-design perspective, which can efficiently solve
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FIGURE 1. Agent identity privacy leakage through intercepted
environment states in an MDP.

the optimal privacy-preserving policies. The effectiveness
of the proposed adversarial RL algorithm is justified in
a modified OpenAI Gym environment. In our previous
work [51], we consider the agent identity privacy problem in
a linear quadratic Gaussian control and derive closed-form
expressions of the privacy-preserving policies. Here we
extend the previous work to study the agent identity privacy
problem in a general MDP context.

III. AGENT IDENTITY PRIVACY PROBLEM IN
MARKOV DECISION PROCESS
The considered privacy problem is shown in Figure 1. In the
MDP, the agent identity is a binary hypothesis H , which
can be Agent A corresponding to H = 0, or Agent B
corresponding to H = 1. Let S denote the environment
state set and A denote the action set of both agents. For the
environment, PT : S × A × S → R represents the state
transition probability density or mass function. The major
difference between the agents lays in their instantaneous
control reward functions. Let r0 : S × A × S → R
denote the instantaneous control reward function of Agent A
and r1 : S × A × S → R denote the instantaneous
control reward function of Agent B. For both agents, 0 <

γ ≤ 1 represents the discount factor of the instantaneous
control reward. Therefore, the MDP can be represented by
two alternative tuples: ⟨S,A,PT, r0, γ ⟩ when Agent A is
present, and ⟨S,A,PT, r1, γ ⟩ when Agent B is present.
Under hypothesis H , the N -step MDP operates as follows:
At Step i, the agent observes the environment state s(H )

i ∈ S,
makes a decision of action a(H )

i ∈ A, feeds the action back to
the environment, which evolves to the next state s(H )

i+1 ∈ S
with the probability density or mass PT

(
s(H )
i+1

∣∣∣s(H )
i , a(H )

i

)
,

and receives a reward r (H )
i = rH

(
s(H )
i , a(H )

i , s(H )
i+1

)
.

We assume that an eavesdropper intercepts the obser-
vations of agent, i.e., the environment states s(H )

1:N+1 :=(
s(H )
1 , s(H )

2 , . . . , s(H )
N+1

)
, and makes an adversarial binary

hypothesis testing on the agent identity Ĥ . To evaluate
the privacy risk, we employ the following

Kullback-Leibler (KL) divergence:

D
(
PS(1)1:N+1

∣∣∣∣∣∣PS(0)1:N+1

)
:= E

log
PS(1)1:N+1

(
S(1)1:N+1

)
PS(0)1:N+1

(
S(1)1:N+1

)
 . (1)

From the information theoretic perspective, a larger value of
D

(
PS(1)1:N+1

∣∣∣∣∣∣PS(0)1:N+1

)
means that the random state sequences

S(0)1:N+1 and S
(1)
1:N+1 induced by Agent A and Agent B are more

statistically different, and therefore the adversarial hypothesis
testing on the agent identity can be more precise, i.e., there is
a higher privacy risk.

Remark 1. Agent identity privacy problem exists in many
CPS. Here we take a smart meter privacy scenario as an
example, where the smart meter reading of energy data
(environment state) can be generated due to user activity
(Agent A) or without user activity (Agent B). An eavesdropper
intercepts the energy data, infers on if the user is at home, and
decides the next adversarial behaviors.

IV. PRIVACY-PRESERVING MARKOV DECISION PROCESS
We assume that Agent A is privacy-unaware while Agent B is
privacy-aware. This assumption is reasonable in practice. In
the smart meter privacy example, the user activity (Agent A)
does not need to change while the energy data generated
without user activity (Agent B) can be reconfigured such that
the eavesdropper cannot precisely determine if the user is at
home based on the intercepted energy data.

Let φ
(0)
i : S × A → R denote the random policy of

Agent A at Step i. Agent A optimizes policies φ
(0)
1:N :=(

φ
(0)
1 , φ

(0)
2 , . . . , φ

(0)
N

)
with the aim to maximize cumulative

control reward as

φ
(0)∗
1:N = argmax

φ
(0)
1:N

E

[
N∑
i=1

γ i−1r0
(
S(0)i ,A(0)i , S(0)i+1

)]
.

The optimal policies φ
(0)∗
1:N can be efficiently solved by using

the established DRL algorithms. When Agent A employs the
optimal policies, we denote the induced random environment
states by S(0)∗1:N+1.
Let φ(1)

i : S×A → R denote the random policy of Agent B
at Step i. Due to the privacy-aware assumption, Agent B
optimizes policies φ

(1)
1:N :=

(
φ
(1)
1 , φ

(1)
2 , . . . , φ

(1)
N

)
with

two objectives: maximizing cumulative control reward and
minimizing privacy risk. We formulate a privacy-preserving
MDP for Agent B, which can be represented by the tuple
⟨S,A,PT, r1, γ, λ⟩ with an additional privacy-preserving
weight λ ≥ 0. Specifically, Agent B optimizes policies φ

(1)
1:N

to maximize the following weighted-sum objective as

φ
(1)∗
1:N = argmax

φ
(1)
1:N

E

[
N∑
i=1

γ i−1r1
(
S(1)i ,A(1)i , S(1)i+1

)]
− λD

(
PS(1)1:N+1

∣∣∣∣∣∣PS(0)∗1:N+1

)
. (2)
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As the privacy-preserving weight λ increases, Agent B
concerns more about reducing the privacy risk, and vice
versa. In the special case of λ = 0, the design of
policies φ

(1)∗
1:N only aims to maximize the cumulative control

reward of Agent B. The other special case with λ →

∞ means that the design of policies φ
(1)∗
1:N only aims to

minimize the privacy risk. Actually, φ
(1)∗
1:N = φ

(0)∗
1:N is an

optimal solution of Agent B in the second special case since
both agents adopting the same policies leads to identical
probability distributions as PS(1)∗1:N+1

= PS(0)∗1:N+1
and achieves

the minimum value of the non-negative KL divergence term
as D

(
PS(1)∗1:N+1

∣∣∣∣∣∣PS(0)∗1:N+1

)
= 0.

V. ADVERSARIAL REINFORCEMENT LEARNING
In the following, we focus on developing an adversarial RL
algorithm for the privacy-preserving MDP of Agent B with
non-discounted instantaneous control rewards, i.e., γ = 1,
a finite discrete action set, i.e., ||A|| < ∞, and deterministic
policy, i.e., φ

(H )
i : S → A. The idea and algorithm in this

work can be extended to more general cases.

A. MODIFIED PRIVACY-PRESERVING MARKOV DECISION
PROCESS
To solve the optimal privacy-preserving policies by adversar-
ial RL, the weighted-sum objective (2) of Agent B should
be expressed as a cumulative formulation of instantaneous
privacy-preserving rewards. Based on the chain rule of KL
divergence [52, Theorem 2.5.3], the privacy risk term can be
equivalently decomposed as

D
(
PS(1)1:N+1

∣∣∣∣∣∣PS(0)∗1:N+1

)
= D

(
PS(1)1

∣∣∣∣∣∣PS(0)1

)
+

N∑
i=1

D
(
PS(1)i+1|S

(1)
i

∣∣∣∣∣∣PS(0)∗i+1 |S(0)∗i

)
=

N∑
i=1

D
(
PS(1)i+1|S

(1)
i

∣∣∣∣∣∣PS(0)∗i+1 |S(0)∗i

)

=

N∑
i=1

E

log
PS(1)i+1|S

(1)
i

(
S(1)i+1|S

(1)
i

)
PS(0)∗i+1 |S(0)∗i

(
S(1)i+1|S

(1)
i

)
 , (3)

where the second equality holds by assuming that the random
initial state is independent of the agent identity, i.e., pS(0)1

=

pS(1)1
and D

(
PS(1)1

∣∣∣∣∣∣PS(0)1

)
= 0. Then the weighted-sum

objective in (2) with γ = 1 can be rewritten as the cumulative
privacy-preserving reward:

E

[
N∑
i=1

r1
(
S(1)i ,A(1)i , S(1)i+1

)]
− λD

(
PS(1)1:N+1

∣∣∣∣∣∣PS(0)∗1:N+1

)
= E

[
N∑
i=1

r1,λ
(
S(1)i ,A(1)i , S(1)i+1

)]
,

where the instantaneous privacy-preserving reward of
Agent B at Step i is defined as

r1,λ
(
s(1)i , a(1)i , s(1)i+1

)
= r1

(
s(1)i , a(1)i , s(1)i+1

)
− λ log

PS(1)i+1|S
(1)
i

(
s(1)i+1|s

(1)
i

)
PS(0)∗i+1 |S(0)∗i

(
s(1)i+1|s

(1)
i

) .

(4)

Therefore, the privacy-preserving MDP can be equivalently
represented by the tuple ⟨S,A,PT, r1,λ, γ = 1⟩. Since r1,λ
is a function of the conditional probability densities/masses
PS(1)i+1|S

(1)
i

and PS(0)∗i+1 |S(0)∗i
, it is impossible to evaluate the

instantaneous privacy-preserving reward in the adversarial
RL, where the knowledge of the statistical models is
not available. A modified instantaneous privacy-preserving
reward, which can be evaluated without the knowledge of
probability models, is needed.

In [53], the authors studied estimation of f -divergence as
solving an equivalent Bayes decision problem by variational
methods. Note that KL divergence is a special case of f -
divergence with regard to the convex function f (u) := u log u.
Based on [53], we give a lower bound on the conditional
KL divergence D

(
PS(1)i+1|S

(1)
i

∣∣∣∣∣∣PS(0)∗i+1 |S(0)∗i

)
in terms of random

environment states.

Theorem 1. A lower bound on the conditional KL divergence
term can be

D
(
PS(1)i+1|S

(1)
i

∣∣∣∣∣∣PS(0)∗i+1 |S(0)∗i

)
≥ sup

θi

E∼P
S(1)i

[
E∼P

S(1)i+1|S(1)i

[
θi

(
S(1)i+1

)]]
− E∼P

S(1)i

[
E∼P

S(0)∗i+1 |S(0)∗i

[
exp

(
θi

(
S(0)∗i+1

)
− 1

)]]
,

(5)

where θi : S → R is a discriminator function at Step i.

Proof: Given s ∈ S, it follows from [53] that

D
(
PS(1)i+1|S

(1)
i =s

∣∣∣∣∣∣PS(0)∗i+1 |S(0)∗i =s

)
= E∼P

S(1)i+1|S(1)i =s

log
PS(1)i+1|S

(1)
i =s

(
S(1)i+1

)
PS(0)∗i+1 |S(0)∗i =s

(
S(1)i+1

)


≥ sup
θi,s

E∼P
S(1)i+1|S(1)i =s

[
θi,s

(
S(1)i+1

)]
− E∼P

S(0)∗i+1 |S(0)∗i =s

[
exp

(
θi,s

(
S(0)∗i+1

)
− 1

)]
, (6)

where θi,s : S → R is a discriminator function at Step i
and by assuming the environment states of agents S(1)i =

S(0)∗i = s. From the definition of conditional KL divergence
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and the inequality (6), we have

D
(
PS(1)i+1|S

(1)
i

∣∣∣∣∣∣PS(0)∗i+1 |S(0)∗i

)
=

∫
S
PS(1)i

(s)D
(
PS(1)i+1|S

(1)
i =s

∣∣∣∣∣∣PS(0)∗i+1 |S(0)∗i =s

)
ds

≥

∫
S
PS(1)i

(s)
[
sup
θi,s

E∼P
S(1)i+1|S(1)i =s

[
θi,s

(
S(1)i+1

)]

− E∼P
S(0)∗i+1 |S(0)∗i =s

[
exp

(
θi,s

(
S(0)∗i+1

)
− 1

)] ]
ds

≥ sup
θi

∫
S
PS(1)i

(s)
[
E∼P

S(1)i+1|S(1)i =s

[
θi

(
S(1)i+1

)]

−E∼P
S(0)∗i+1 |S(0)∗i =s

[
exp

(
θi

(
S(0)∗i+1

)
− 1

)]]
ds

= sup
θi

E∼P
S(1)i

[
E∼P

S(1)i+1|S(1)i

[
θi

(
S(1)i+1

)]]

− E∼P
S(1)i

[
E∼P

S(0)∗i+1 |S(0)∗i

[
exp

(
θi

(
S(0)∗i+1

)
− 1

)]]
.

(7)

Note that the proposed lower bound on the conditional KL
divergence D

(
PS(1)i+1|S

(1)
i =s

∣∣∣∣∣∣PS(0)∗i+1 |S(0)∗i =s

)
does not depend

on the conditional probability densities/masses PS(1)i+1|S
(1)
i

and PS(0)∗i+1 |S(0)∗i
, and can be evaluated by the observations

of environment states through the Monte Carlo (MC)
method or temporal difference (TD) method. On the other
hand, the proposed lower bound needs optimization of the
discriminator θi, which can be approximately represented by
a DNN and optimized through gradient ascent. Therefore,
we employ the proposed lower bound as an estimation of
the conditional KL divergence term and formulate a modified
privacy-preserving MDP, where Agent B optimizes policies
to maximize the following modified cumulative objective:

φ
(1)∗
1:N = argmax

φ
(1)
1:N

inf
θ1:N

N∑
i=1

E∼P
S(1)i

[
− λE∼P

S(1)i+1|S(1)i

[
θi

(
S(1)i+1

)]
+ λE∼P

S(0)∗i+1 |S(0)∗i

[
exp

(
θi

(
S(0)∗i+1

)
− 1

)]
+ E∼P

A(1)i ,S(1)i+1|S(1)i

[
r1

(
S(1)i ,A(1)i , S(1)i+1

)] ]
. (8)

Focusing on the modified privacy-preserving MDP, we pro-
pose a novel adversarial reinforcement learning algorithm
in the next sub-section. Note that the modified cumulative
objective depends on the optimal discriminators. The adver-
sarial reinforcement learning algorithm should efficiently
solve the optimal privacy-preserving policies of Agent B as

well as the optimal discriminators, which are players in a
dynamic max-min game as shown in (8).

B. PRIVACY-PRESERVING DEEP Q NETWORK
Regarding the dynamic max-min game (8), it cannot be
solved by directly implementingDRL algorithms for standard
MDP problems. The max-min or min-max games have
been considered in many generative models, e.g., generative
adversarial network (GAN) [54], and the common idea
of those works is to obtain an approximate solution of a
max-min or min-max game through iterative maximization
and minimization of the design objective. It is worth noting
that the iterative optimization scheme does not necessarily
lead to the solution of the originalmax-min ormin-max game.
Here, we employ the iterative optimization idea and exploit
the sequential decision optimization method of DQN to pro-
pose a novel privacy-preserving DQN (PPDQN) algorithm
and efficiently solve the modified privacy-preserving MDP
problem.

The PPDQN model consists of three DNNs: the discrim-
inator network θ (·; ϑ) with parameters ϑ , the action-value
network of Agent B Q(1)(·, ·; ϕ) with parameters ϕ, and
the target action-value network Q̂(·, ·; ϕ̂) with parameters
ϕ̂, where Q(1)(·, ·; ϕ) and Q̂(·, ·; ϕ̂) have the same network
structures. The diagram of the PPDQN algorithm is shown
in Figure 2 and the pesudocode is presented in Algorithm 1.
Based on the iterative optimization idea, the PPDQN
algorithm consists of two key steps: update of discriminator
network and update of action-value network of Agent B.
To aid the update of networks, data sampling is carried out.

1) UPDATE OF DISCRIMINATOR NETWORK
Given the policies of Agent B φ

(1)
1:N , the discriminator func-

tions are updated with respect to the following minimization
objective:

inf
θ1:N

N∑
i=1

E∼P
S(1)i

[
− E∼P

S(1)i+1|S(1)i

[
θi

(
S(1)i+1

)]
+ E∼P

S(0)∗i+1 |S(0)∗i

[
exp

(
θi

(
S(0)∗i+1

)
− 1

)] ]
. (9)

In PPDQN, the discriminator network θ (·; ϑ) represents
the discriminator functions. Given a mini-batch of K

randomly-sampled transitions
{(
s(1)j , a(1)j , r (1)j , s(1)j+1, s

(0)∗
j+1

)}
j∈Bi

,

similar to GAN, the discriminator network is then updated
by performing gradient descents for T times on the following
loss function of the network parameters ϑ :

J (ϑ) = −
1
K

∑
j∈Bi

(
θ

(
s(1)j+1; ϑ

)
− exp

(
θ

(
s(0)∗j+1 ; ϑ

)
− 1

))
.

(10)

Note that the loss function J (ϑ) in the PPDQN algorithm
approximates the objective of (9) through MC method.
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FIGURE 2. Diagram of the PPDQN algorithm.

2) UPDATE OF ACTION-VALUE NETWORK OF AGENT B
Given the discriminator functions θ1:N , the privacy-
preserving policies of Agent B are updated with respect to
the following maximization objective:

max
φ
(1)
1:N

N∑
i=1

E∼P
S(1)i

[
− λE∼P

S(1)i+1|S(1)i

[
θi

(
S(1)i+1

)]
+ λE∼P

S(0)∗i+1 |S(0)∗i

[
exp

(
θi

(
S(0)∗i+1

)
− 1

)]
+ E∼P

A(1)i ,S(1)i+1|S(1)i

[
r1

(
S(1)i ,A(1)i , S(1)i+1

)] ]
. (11)

The optimization problem (11) corresponds to a standard
MDP represented by the tuple ⟨S,A,PT, r ′

1,λ, γ = 1⟩, and
the instantaneous reward r ′

1,λ can be identified in (11) as

r ′

1,λ

(
s(1)i , a(1)i , s(1)i+1, s

(0)∗
i+1

)
= r1

(
s(1)i , a(1)i , s(1)i+1

)
−λθi

(
s(1)i+1

)
+λ exp

(
θi

(
s(0)∗i+1

)
−1

)
,

(12)

where the next environment states s(0)∗i+1 and s(1)i+1 are respec-
tively obtained by feeding the optimal action of Agent A
a(0)∗i = φ

(0)∗
i (s(0)∗i ) and action of Agent B a(1)i = φ

(1)
i (s(1)i )

back to the environment given the current environment states
s(0)∗i = s(1)i .

The DQN algorithm is applicable for solving the opti-
mization problem (11) and therefore is implemented in the
PPDQN algorithm to update the privacy-preserving policy of
Agent B when the discriminator network is fixed. Regarding
the problem (11), the main idea of DQN is briefly introduced
as follows. In the asymptotic regime, given an initial state s ∈

S and an initial action a ∈ A, define the optimal action-value
function Q(1)∗(s, a) as the maximum cumulative objective
of Agent B by employing the optimal privacy-preserving
policies from the second step. It follows from the Bellman

equation [6] that

Q(1)∗ (s, a)

=

∫
S×S

PT
(
s′|s, a

)
PT

(
s′′

∣∣∣s, φ(0)∗
i (s)

)
[
r ′

1,λ
(
s, a, s′, s′′

)
+ max

a′∈A
Q(1)∗ (

s′, a′
)]
ds′ds′′.

(13)

Note that the optimal privacy-preserving policy of Agent B
can be implemented as φ

(1)∗
i (s) = argmaxa∈A Q(1)∗ (s, a).

Therefore, the DQN algorithm aims to obtain the optimal
action-value function instead of solving the optimal policy
directly.

In the PPDQN algorithm, the action-value network
Q(1)(·, ·; ϕ) represents the action-value function of Agent B,
and the target action-value network Q̂(·, ·; ϕ̂) represents the
target action-value function. Given amini-batch of randomly-
sampled transitions

{(
s(1)j , a(1)j , r (1)j , s(1)j+1, s

(0)∗
j+1

)}
j∈Bi

and

the discriminator network, the instantaneous rewards are
estimated based on (12) as: For j ∈ Bi,

r ′
j = r (1)j − λθ

(
s(1)j+1; ϑ

)
+ λ exp

(
θ

(
s(0)∗j+1 ; ϑ

)
− 1

)
. (14)

Similar to DQN, the action-value network of Agent B is then
updated by performing gradient descent on the following loss
function of the network parameters ϕ:

L(ϕ)

=

∑
j∈Bi

(
r ′
j + max

a∈A
Q̂

(
s(1)j+1, a; ϕ̂

)
− Q(1)

(
s(1)j , a(1)j ; ϕ

))2

.

(15)

Intuitively, r ′
j + maxa∈A Q̂

(
s(1)j+1, a; ϕ̂

)
can be seen as the

label of Q(1)
(
s(1)j , a(1)j ; ϕ

)
.
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3) UPDATE OF TARGET ACTION-VALUE NETWORK
After everyC updates of the action-value network ofAgent B,
the updated action-value network parameters are assigned to
the target action-value network parameters, i.e., ϕ̂ = ϕ.

4) DATA SAMPLING
The update of discriminator network and action-value
network of Agent B needs sampling of environment states,
actions, and instantaneous control rewards. The data sam-
pling of the PPDQN algorithm is carried out as follows.
At Step i, Agent B observes the environment state s(1)i
and selects an action a(1)i based on the current action-value
network Q(1)(·, ·; ϕ) using the ε-greedy algorithm. Agent B
then executes the selected action a(1)i in emulator, observes
the next environment state s(1)i+1, and receives the instan-
taneous control reward r (1)i . Agent A also observes the
same environment state s(1)i and selects an action a(0)∗i
based on the optimal action-value function Q(0)∗ using
the greedy algorithm. Agent A then executes the selected
action a(0)∗i in emulator and observes the next environment
state s(0)∗i+1 . The observations at this step form a transition(
s(1)i , a(1)i , r (1)i , s(1)i+1, s

(0)∗
i+1

)
, which is stored in a replay

memory.

5) TIME COMPLEXITY ANALYSIS
We make an analysis on the time complexity of the proposed
PPDQN algorithm. Assume that the discriminator network
consists of Kd fully-connected layers and the i-th layer
contains Nd,i neurons; the action-value network of Agent B
consists of Kb fully-connected layers and the j-th layer
contains Nb,j neurons. In the training phase of the PPDQN
algorithm, the time complexity is dominated by the updates
of the discriminator network and the action-value network of
Agent B. As shown in Algorithm 1, at every training step,
the discriminator network is updated for T times while the
action-value network of Agent B is updated for one time.
In the inference phase of the PPDQN algorithm, only the
action-value network of Agent B is operated to determine the
optimal actions of Agent B. Following from [55], the time
complexity of the training phase is

Ctraining = O

T ∑
2≤i≤Kd−1

Nd,i−1Nd,i + Nd,iNd,i+1

+

∑
2≤j≤Kb−1

Nb,j−1Nb,j + Nb,jNb,j+1

 , (16)

and the time complexity of the inference phase is

Cinference = O

 ∑
2≤j≤Kb−1

Nb,j−1Nb,j + Nb,jNb,j+1

 . (17)

We take the DQN algorithm as a benchmark method.
Note that the DQN model consists of two DNNs with
identical network structures: the action-value network and the

FIGURE 3. The modified ‘‘Mountain Car’’ game environment.

target action-value network. We assume that the action-value
network of the DQN model has the same network structure
as the action-value network of the PPDQN model. In the
training phase of the DQN algorithm, the time complexity
is dominated by the updates of the action-value network.
In the inference phase of the DQN algorithm, only the
action-value network is operated to determine the optimal
actions. Following from [55], the training and inference
phases of the DQN algorithm have the same level of time
complexity as

C ′

training=C ′

inference=O

 ∑
2≤j≤Kb−1

Nb,j−1Nb,j + Nb,jNb,j+1

 .

(18)

In the training phase, the PPDQN algorithm has a higher
time complexity than that of the DQN algorithm, which is due
to the updates of the discriminator network in the PPDQN
algorithm. In the inference phase, the PPDQN and DQN
algorithms have the same level of time complexity because
only the action-value network is operated for each algorithm.
The comparison reveals the cost of time complexity to train
privacy-preserving policy.

VI. EXPERIMENTS
We implement the proposed PPDQNalgorithm in theOpenAI
Gym environment [56] and justify its effectiveness to improve
the cumulative control reward while preventing agent identity
privacy leakage.

A. EXPERIMENT SETTINGS
As shown in Figure 3, the experiments are done in a modified
‘‘Mountain Car’’ game environment, where a car is moving
in a sinusoidal valley. The symmetric valley spans the range
[− 10π

3 − 2, − 10π
3 + 2] in the x-axis, i.e., coordinates of the

center (bottom), the left boundary, and the right boundary are
−

10π
3 ,− 10π

3 −2, and−
10π
3 +2 in the x-axis, respectively. At

each step, the environment state is a two-dimensional vector
s(H )
i :=

(
x(H )
i , v(H )

i

)
, which consists of the coordinate of the

car in the x-axis, i.e., − 10π
3 − 2 ≤ x(H )

i ≤ −
10π
3 + 2, and the

car velocity with respect to the x-axis −0.7 ≤ v(H )
i ≤ 0.7.

At the initial step, the car is randomly placed on the left
slope of the sinusoidal valley with the coordinate −

10π
3 −

1 ≤ x(H )
1 ≤ −

10π
3 −

3
4 and has a zero initial velocity

VOLUME 12, 2024 70311



Y. Tian et al.: Adversarial RL Against Statistic Inference on Agent Identity

Algorithm 1 Privacy-Preserving Deep Q Network
1: Initialize replay memory D
2: Initialize discriminator network θ (·; ϑ) with random

network parameters ϑ

3: Initialize action-value network of Agent B Q(1)(·, ·; ϕ)
with random network parameters ϕ

4: Initialize target action-value network Q̂(·, ·; ϕ̂) with
network parameters ϕ̂ = ϕ

5: Optimize action-value function of Agent A Q(0)∗ using
the DQN algorithm

6: for episode = 1, 2, . . . ,M do
7: Randomly initialize s(1)1 ∈ S
8: for step i = 1, 2, . . . ,N do
9: With probability ε, Agent B selects an action a(1)i

uniformly and randomly from A
10: Otherwise, Agent B selects the action a(1)i =

argmaxa∈A Q(1)
(
s(1)i , a; ϕ

)
11: Given s(1)i , Agent B executes the action a(1)i in

emulator, observes the next state s(1)i+1, and receives
the instantaneous control reward r (1)i

12: Agent A selects the action a(0)∗i =

argmaxa∈A Q(0)∗
(
s(1)i , a

)
13: Given s(1)i , Agent A executes the action a(0)∗i in

emulator and observes the next state s(0)∗i+1

14: Store transition
(
s(1)i , a(1)i , r (1)i , s(1)i+1, s

(0)∗
i+1

)
in D

15: Randomly sample a mini-batch Bi of K transitions{(
s(1)j , a(1)j , r (1)j , s(1)j+1, s

(0)∗
j+1

)}
j∈Bi

from D
16: For j ∈ Bi, evaluate the instantaneous reward r ′

j
17: Update the discriminator network parameters ϑ by

performing gradient descents on the loss function
J (ϑ) for T times

18: Update the action-value network parameters ϕ by
performing gradient descent on the loss function
L(ϕ)

19: Set ϕ̂ = ϕ every C steps
20: end for
21: end for

v(H )
1 = 0. At each step, there are three action options
for the car: acceleration to the left denoted by a(H )

i = 0,
no acceleration denoted by a(H )

i = 1, and acceleration to the
right denoted by a(H )

i = 2. The environment dynamics are
described as follows.

v̌(H )
i+1 = v(H )

i +

(
a(H )
i − 1

)
f − cos

(
0.15x(H )

i

)
g+ zi,

ṽ(H )
i+1 = max

{
min

{
v̌(H )
i+1, 0.7

}
, −0.7

}
,

x̃(H )
i+1 = x(H )

i + ṽ(H )
i+1,

where zi is randomly and independently generated following
a Gaussian distribution N (0, 0.0003) to guarantee the
validity of the KL divergence terms, f = 0.6 denotes the

force, and g = 0.75 denotes the gravity. It can be observed
that the gravity does not affect the car velocity at the bottom
of the valley. When x̃(H )

i+1 ≤ −
10π
3 −2 or x̃(H )

i+1 ≥ −
10π
3 +2, the

car crashes into the left or right boundary and then rebounds,
i.e., the velocity direction changes. Taking into account the
crash events, the state transition is set as

v(H )
i+1 = ṽ(H )

i+1

(
2I

(
−
10π
3

− 2 < x̃(H )
i+1 < −

10π
3

+ 2
)

− 1
)

,

x(H )
i+1 = max

{
min

{
x̃(H )
i+1, −

10π
3

+ 2
}

, −
10π
3

− 2
}

,

where I(·) denotes an indicator function. More specifically,
when x̃(H )

i+1 ≤ −
10π
3 − 2 or x̃(H )

i+1 ≥ −
10π
3 + 2, the coordinate

of the car is truncated as x(H )
i+1 = −

10π
3 −2 or x(H )

i+1 = −
10π
3 +2,

and the velocity direction (sign) is inversed as v(H )
i+1 = −ṽ(H )

i+1;
otherwise, x(H )

i+1 = x̃(H )
i+1 and v(H )

i+1 = ṽ(H )
i+1. In the experiment,

one modified ‘‘Mountain Car’’ game consists of 500 steps.
We consider three typical agents in the experiments. For

Agent A, the instantaneous control reward is set as

r (0)i = r0
(
s(0)i , a(0)i , s(0)i+1

)
=

∣∣∣v(0)i+1

∣∣∣
− 102I

(
x(0)i+1 = −

10π
3

− 2 or x(0)i+1 = −
10π
3

+ 2
)

,

i.e., Agent A aims tomaximize the speed of the car and reduce
the number of crashes. With respect to Agent A, we study
privacy-preserving policies of Agent B and Agent B′ by the
proposed PPDQN algorithm, respectively. For Agent B, the
instantaneous control reward is set as

r (1)i = r1
(
s(1)i , a(1)i , s(1)i+1

)
=

∣∣∣v(1)i+1

∣∣∣ ,
i.e., Agent B aims to maximize the speed of the car. For
Agent B′, the instantaneous control reward is set as

r (1
′)

i = r1′

(
s(1

′)
i , a(1

′)
i , s(1

′)
i+1

)
= −

∣∣∣v(1′)
i+1

∣∣∣ ,
i.e., Agent B′ aims to minimize the speed of the car.
Regarding the PPDQN model, the action-value and target

action-value networks have the same structure, which in the
experiment consists of two fully connected hidden layers
(each hidden layer has 60 neurons) and uses the rectified
linear unit (ReLU) activation function. The discriminator
network in the experiment consists of three fully connected
hidden layers, which respectively have 60, 32, 32 neurons,
and also uses the ReLU activation function. The learning rates
of the action-value network and the discriminator network
are 0.02 and 0.0003. The probability ε is initially set to be
0.9 and decays with an exponential rate 0.9851 until the lower
bound 0.01. The target action-value network is updated every
200 training steps.

B. EXPERIMENT RESULTS
Wefirstly train the optimal action-value networks of Agent A,
Agent B, and Agent B′ by using the DQN algorithm. Note
that DQN training of Agent B and Agent B′ is equivalent to
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FIGURE 4. Training processes of Agent A, Agent B, and Agent B′ without
privacy-preserving concerns by using the DQN algorithm.

PPDQN training of Agent B and Agent B′ without privacy-
preserving concerns, i.e., the privacy-preserving weight is set
to λ = 0. As shown in Figure 4, the DQN training processes
of Agent A, Agent B, and Agent B′ can converge within
500 episodes.

For λ = 0.01, 10, and 10000, we then train the optimal
action-value networks of Agent B and Agent B′ by using the
PPDQN algorithm and the optimal action-value network of
Agent A trained by theDQN algorithm. As shown in Figure 5,
the PPDQN training processes of Agent B and Agent B′ can
converge within 600 episodes.

Compared with the DQN training process of Agent B in
Figure 4(b), the PPDQN training processes of Agent B in

FIGURE 5. Training processes of Agent B and Agent B′ by using the
PPDQN algorithm for λ = 0.01, 10, and 10000.

Figure 5(a) are notably unstable. It is mainly because of the
conflicting design objectives of the privacy-preserving policy
and the discriminator in the PPDQN algorithm. We have
a similar observation in the comparison between the DQN
training process of Agent B′ in Figure 4(c) and the PPDQN
training processes of Agent B′ in Figure 5(b).
When λ = 0.01 and 10, the PPDQN training processes

of Agent B and Agent B′ in Figure 5 have similar patterns
as the DQN training processes of Agent B and Agent B′

in Figure 4. This observation makes sense because the
privacy risk term does not take much effect when the value
of privacy-preserving weight λ is small, i.e., the objective
of PPDQN in these cases is dominated by maximizing
cumulative control reward and therefore is similar to the
objective of DQN.

When λ = 10000, the PPDQN training processes of
Agent B andAgent B′ in Figure 5 have quite different patterns
from the DQN training processes of Agent B and Agent B′

in Figure 4. Especially, when λ = 10000, the PPDQN
training process of Agent B′ in Figure 5(b) shows significant
instability in the first 500 episodes and then starts to converge.
This distinct training process pattern mainly results from the
intense dynamic max-min game given a large value for the
privacy-preserving weight λ.
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FIGURE 6. Comparison of average numbers of crashes between Agent A
and Agent B for different values of λ.

FIGURE 7. Comparison of average speeds between Agent A, Agent B, and
Agent B′ for different values of λ.

We next test the trained policies of Agent A, Agent B, and
Agent B′. Each policy is implemented to play the modified
‘‘Mountain Car’’ game for 1000 times. In Figure 6 and

FIGURE 8. Comparison of estimated KL divergence rates for Agent B with
respect to Agent A and for Agent B′ with respect to Agent A given
different values of λ.

Figure 7, different policies are compared in terms of the
average number of crashes and the average speed in one
game, respectively. It is worth noting that no crashes happen
in the tests of Agent A policy and Agent B′ policies for
different values of λ. The test performances of benchmark
policies are listed as follows: The average number of crashes
and the average speed for Agent A policy are 0 and 0.5223;
the average number of crashes and the average speed for
Agent B policy with λ = 0 (trained by the DQN algorithm)
are 83.83 and 0.699; and the average number of crashes and
the average speed for Agent B′ policy with λ = 0 (trained by
the DQN algorithm) are 0 and 0.0694.

As shown in Figure 6 and Figure 7(a), both the average
number of crashes and average speed for Agent B decrease
as the value of privacy-preserving weight λ increases. These
observations are reasonable because a larger value of the
privacy-preserving weight λ makes the environment state
sequence induced by Agent B more statistically similar to
that induced by Agent A, while a smaller value of λ means
Agent B optimizes the policy with more concerns about
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increasing the cumulative control reward, i.e., increasing
the speed. Similar arguments can be employed to justify
the following observations regarding Agent B′: No crashes
happen in the tests of Agent A policy and Agent B′ policies
for different values of λ; and the average speed for Agent B′

increases as the value of λ increases in Figure 7(b).
To explicitly show the impact of privacy-preserving weight

λ on agent identity privacy risk, the KL divergence rate for
Agent B with respect to Agent A 1

ND
(
PS(1)∗1:N+1

∣∣∣∣∣∣PS(0)∗1:N+1

)
and

the KL divergence rate for Agent B′ with respect to Agent A
1
ND

(
P
S(1

′)∗
1:N+1

∣∣∣∣∣∣PS(0)∗1:N+1

)
are estimated by using the environ-

ment states obtained in the tests of policies of Agent A,
Agent B, and Agent B′. More specifically, the continuous
coordinate space and velocity space are discretized equally
into 20 coordinate states and 25 velocity states, which form a
discrete state space with 500 environment states; discretize
environment states of Agent A, Agent B, and Agent B′

obtained in the tests; estimate the joint probability mass
functions P̂S(1)∗i+1 ,S(1)∗i

, P̂
S(1

′)∗
i+1 ,S(1

′)∗
i

and conditional probability

mass functions P̂S(1)∗i+1 |S(1)∗i
, P̂

S(1
′)∗

i+1 |S(1
′)∗

i
, P̂S(0)∗i+1 |S(0)∗i

by counting

the corresponding joint and conditional frequencies based on
the discretized environment states; under the assumption of
stationary MDP, estimate the KL divergence rate for Agent B
with respect to Agent A by D

(
P̂S(1)∗i+1 |S(1)∗i

∣∣∣∣∣∣P̂S(0)∗i+1 |S(0)∗i

)
and

the KL divergence rate for Agent B′ with respect to Agent A

by D
(
P̂
S(1

′)∗
i+1 |S(1

′)∗
i

∣∣∣∣∣∣P̂S(0)∗i+1 |S(0)∗i

)
.

In Figure 8, the estimated KL divergence rates for Agent B
with respect to Agent A and for Agent B′ with respect
to Agent A are compared given different values of the
privacy-preserving weight λ. As the value of λ becomes
larger, the overall trend of the estimated KL divergence rate
is to decrease, i.e., the agent identity privacy risk becomes
smaller, since the policy designs of Agent B and Agent B′

concern more about preventing privacy leakage.
From Figure 7 and Figure 8, we can also observe the

trade-off between control reward and privacy-preserving
performance. As the value of λ increases, Figure 7(a) shows
a decrease of average speed of Agent B, i.e., a degradation
of the control reward of Agent B, while Figure 8(a) shows
a decrease of KL divergence rate, i.e., an improvement of
privacy-preserving performance. Similarly, as the value of λ

increases, Figure 7(b) shows an increase of average speed of
Agent B′, i.e., a degradation of the control reward of Agent B′,
while Figure 8(b) shows a decrease of KL divergence rate,
i.e., an improvement of privacy-preserving performance. The
trade-off can be justified as follows. A larger value of λ

means the policy design of Agent B or Agent B′ focuses more
on improving privacy-preserving performance such that the
induced environment states are more statistically similar to
those induced by Agent A. Since the instantaneous control
reward of Agent A is different from that of Agent B or
Agent B′, the control reward of Agent B or Agent B′ degrades

as the induced environment states are more statistically
similar to those induced by Agent A.

VII. CONCLUSION
We consider the agent identity privacy problem in MDP
and formulate it as a privacy-preserving MDP. By jointly
exploiting the ideas of DRL and variational method,
we further propose a novel PPDQN algorithm to efficiently
solve the optimal privacy-preserving policy, which tradeoffs
the objectives of improving cumulative control reward and
preventing agent identity privacy leakage. We implement
the PPDQN algorithm in a modified ‘‘Mountain Car’’
game by considering three typical agents with different
control rewards. In the experiment, we can identify different
training process patterns of the PPDQN algorithm. When
the value of privacy-preserving weight is small, the training
process of PPDQN is similar to that of DQN. When the
value of privacy-preserving weight is large, the training
process of PPDQN suffers from strong instability in the
beginning due to the intense dynamic max-min game. The
test results show the effectiveness of the PPDQN algorithm
to tradeoff two objectives in the agent policy design. The
proposed adversarial RL framework can be extended to more
complex scenarios, e.g., applications with continuous actions
or discrete-continuous hybrid actions, which can be our future
work.

ACKNOWLEDGMENT
The authors thank the Sino-German Center of Intelligent
Systems, Tongji University, for their support.

REFERENCES
[1] P. H. J. Nardelli, Cyber-Physical Systems: Theory, Methodology, and

Applications. Hoboken, NJ, USA: Wiley, 2022.
[2] A. Keyhani and A. Chatterjee, ‘‘Automatic generation control structure for

smart power grids,’’ IEEE Trans. Smart Grid, vol. 3, no. 3, pp. 1310–1316,
Sep. 2012.

[3] F. Yang, S. Wang, J. Li, Z. Liu, and Q. Sun, ‘‘An overview of Internet of
Vehicles,’’ China Commun., vol. 11, no. 10, pp. 1–15, Oct. 2014.

[4] B. Ji, X. Zhang, S. Mumtaz, C. Han, C. Li, H. Wen, and D. Wang, ‘‘Survey
on the Internet of Vehicles: Network architectures and applications,’’ IEEE
Commun. Standards Mag., vol. 4, no. 1, pp. 34–41, Mar. 2020.

[5] D. P. Bertsekas and S. E. Shreve, Stochastic Optimal Control: TheDiscrete-
Time Case. New York, NY, USA: Academic, 1978.

[6] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[7] V. Mnih et al., ‘‘Human-level control through deep reinforcement
learning,’’ Nature, vol. 518, pp. 529–533, Feb. 2015.

[8] T. P. Lillicrap et al., ‘‘Continuous control with deep reinforcement
learning,’’ in Proc. ICLR, 2016, pp. 1–10.

[9] S. Fujimoto, H. V. Hoof, and D. Meger, ‘‘Addressing function approxima-
tion error in actor-critic methods,’’ in Proc. ICML, 2018., pp. 1587–1596.

[10] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
‘‘Proximal policy optimization algorithms,’’ 2017, arXiv:1707.06347.

[11] H. L. Van Trees, K. L. Bell, and Z. Tian, Detection, Estimation, and
Modulation Theory—Part I: Detection, Estimation, and Filtering Theory.
Hoboken, NJ, USA: Wiley, 2013.

[12] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[13] M. R. Asghar, G. Dán, D. Miorandi, and I. Chlamtac, ‘‘Smart meter
data privacy: A survey,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 4,
pp. 2820–2835, 4th Quart., 2017.

VOLUME 12, 2024 70315



Y. Tian et al.: Adversarial RL Against Statistic Inference on Agent Identity

[14] L. Sankar, S. R. Rajagopalan, S. Mohajer, and H. V. Poor, ‘‘Smart meter
privacy: A theoretical framework,’’ IEEE Trans. Smart Grid, vol. 4, no. 2,
pp. 837–846, Jun. 2013.

[15] G. Giaconi, D. Gündüz, and H. V. Poor, ‘‘Smart meter privacy with
renewable energy and an energy storage device,’’ IEEE Trans. Inf.
Forensics Security, vol. 13, no. 1, pp. 129–142, Jan. 2018.

[16] S. Li, A. Khisti, and A. Mahajan, ‘‘Information-theoretic privacy for smart
metering systems with a rechargeable battery,’’ IEEE Trans. Inf. Theory,
vol. 64, no. 5, pp. 3679–3695, May 2018.

[17] M. Shateri, F. Messina, P. Piantanida, and F. Labeau, ‘‘Real-time privacy-
preserving data release for smart meters,’’ IEEE Trans. Smart Grid, vol. 11,
no. 6, pp. 5174–5183, Nov. 2020.

[18] Y. You, Z. Li, and T. J. Oechtering, ‘‘Energy management strategy for
smart meter privacy and cost saving,’’ IEEE Trans. Inf. Forensics Security,
vol. 16, pp. 1522–1537, 2021.

[19] P. Gope and B. Sikdar, ‘‘Privacy-Aware authenticated key agreement
scheme for secure smart grid communication,’’ IEEE Trans. Smart Grid,
vol. 10, no. 4, pp. 3953–3962, Jul. 2019.

[20] S. A. Chaudhry, K. Yahya, S. Garg, G. Kaddoum, M. M. Hassan, and
Y. B. Zikria, ‘‘LAS-SG: An elliptic curve-based lightweight authentication
scheme for smart grid environments,’’ IEEE Trans. Ind. Informat., vol. 19,
no. 2, pp. 1504–1511, Feb. 2023.

[21] C. Gentry, ‘‘Fully homomorphic encryption using ideal lattices,’’ in Proc.
41st Annu. ACM Symp. Theory Comput., May 2009, pp. 169–178.

[22] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, ‘‘(Leveled) fully
homomorphic encryption without bootstrapping,’’ in Proc. 3rd Innov.
Theor. Comput. Sci. Conf., Jan. 2012, pp. 309–325.

[23] A. Abdallah and X. S. Shen, ‘‘A lightweight lattice-based homomorphic
privacy-preserving data aggregation scheme for smart grid,’’ IEEE Trans.
Smart Grid, vol. 9, no. 1, pp. 396–405, Jan. 2018.

[24] A. Mohammadali and M. S. Haghighi, ‘‘A privacy-preserving homomor-
phic scheme with multiple dimensions and fault tolerance for metering
data aggregation in smart grid,’’ IEEE Trans. Smart Grid, vol. 12, no. 6,
pp. 5212–5220, Nov. 2021.

[25] C. Dwork, ‘‘Differential privacy,’’ in Proc. Int. Colloq. Autom. Lang.
Program., 2006, pp. 1–12.

[26] M. U. Hassan, M. H. Rehmani, and J. Chen, ‘‘Differential privacy
techniques for cyber physical systems: A survey,’’ IEEE Commun. Surveys
Tuts., vol. 22, no. 1, pp. 746–789, 1st Quart., 2020.

[27] F. Kserawi, S. Al-Marri, and Q. Malluhi, ‘‘Privacy-preserving fog
aggregation of smart grid data using dynamic differentially-private data
perturbation,’’ IEEE Access, vol. 10, pp. 43159–43174, 2022.

[28] M. B. Hossain, I. Natgunanathan, Y. Xiang, and Y. Zhang, ‘‘Cost-friendly
differential privacy of smart meters using energy storage and harvesting
devices,’’ IEEE Trans. Services Comput., vol. 15, no. 5, pp. 2648–2657,
Sep. 2022.

[29] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Arcas,
‘‘Communication-efficient learning of deep networks from decentralized
data,’’ in Proc. AISTATS, 2017, pp. 1273–1282.

[30] Y. Li, X.Wang, R. Zeng, P. K. Donta, I. Murturi, M. Huang, and S. Dustdar,
‘‘Federated domain generalization: A survey,’’ 2023, arXiv:2306.01334.

[31] M. M. Badr, M. M. E. A. Mahmoud, Y. Fang, M. Abdulaal, A. J. Aljohani,
W. Alasmary, andM. I. Ibrahem, ‘‘Privacy-preserving and communication-
efficient energy prediction scheme based on federated learning for smart
grids,’’ IEEE Internet Things J., vol. 10, no. 9, pp. 7719–7736, May 2023.

[32] M. A. Husnoo, A. Anwar, N. Hosseinzadeh, S. N. Islam, A. N. Mahmood,
and R. Doss, ‘‘A secure federated learning framework for residential
short term load forecasting,’’ IEEE Trans. Smart Grid, vol. 15, no. 2,
pp. 2044–2055, Mar. 2024.

[33] T. Qian, C. Shao, X. Wang, and M. Shahidehpour, ‘‘Deep reinforcement
learning for EV charging navigation by coordinating smart grid and
intelligent transportation system,’’ IEEE Trans. Smart Grid, vol. 11, no. 2,
pp. 1714–1723, Mar. 2020.

[34] F. Sangoleye, J. Jao, K. Faris, E. E. Tsiropoulou, and S. Papavassiliou,
‘‘Reinforcement learning-based demand response management in smart
grid systems with prosumers,’’ IEEE Syst. J., vol. 17, no. 2, pp. 1797–1807,
Oct. 2023.

[35] A. Jarwan and M. Ibnkahla, ‘‘Edge-based federated deep reinforcement
learning for IoT traffic management,’’ IEEE Internet Things J., vol. 10,
no. 5, pp. 3799–3813, Mar. 2023.

[36] N. Qu, C. Wang, Z. Li, and F. Liu, ‘‘A transmission design in dynamic
heterogeneous V2V networks through multi-agent deep reinforcement
learning,’’ China Commun., vol. 20, no. 7, pp. 273–289, Jul. 2023.

[37] M. Bansal, I. Chana, and S. Clarke, ‘‘UrbanEnQoSPlace: A deep
reinforcement learning model for service placement of real-time smart
city IoT applications,’’ IEEE Trans. Services Comput., vol. 16, no. 4,
pp. 3043–3060, Oct. 2023.

[38] P. Venkitasubramaniam, ‘‘Privacy in stochastic control: AMarkov decision
process perspective,’’ in Proc. 51st Annu. Allerton Conf. Commun.,
Control, Comput. (Allerton), Oct. 2013, pp. 381–388.

[39] X. Pan, W. Wang, X. Zhang, B. Li, J. Yi, and D. Song, ‘‘How you act tells
a loT: Privacy-leakage attack on deep reinforcement learning,’’ in Proc.
AAMAS, 2019, pp. 368–376.

[40] L. Wang, I. R. Manchester, J. Trumpf, and G. Shi, ‘‘Initial-value privacy
of linear dynamical systems,’’ in Proc. 59th IEEE Conf. Decis. Control
(CDC), Dec. 2020, pp. 3108–3113.

[41] A. Y. Ng and S. Russell, ‘‘Algorithms for inverse reinforcement learning,’’
in Proc. Int. Conf. Mach. Learn. (ICML), 2000, pp. 663–670.

[42] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, ‘‘Maximum
entropy inverse reinforcement learning,’’ in Proc. 23rd AAAI Conf. Artif.
Intell., vol. 8, Chicago, IL, USA, Jul. 2008, pp. 1433–1438.

[43] A. B. Alexandru and G. J. Pappas, ‘‘Encrypted LQG using labeled
homomorphic encryption,’’ in Proc. 10th ACM/IEEE Int. Conf. Cyber-
Phys. Syst., Apr. 2019, pp. 129–140.

[44] J. Suh and T. Tanaka, ‘‘Encrypted value iteration and temporal difference
learning over leveled homomorphic encryption,’’ in Proc. Amer. Control
Conf. (ACC), May 2021, pp. 2555–2561.

[45] J. Le Ny and G. J. Pappas, ‘‘Differentially private filtering,’’ IEEE Trans.
Autom. Control, vol. 59, no. 2, pp. 341–354, Feb. 2014.

[46] M. T. Hale and M. Egerstedt, ‘‘Cloud-enabled differentially private
multiagent optimization with constraints,’’ IEEE Trans. Control Netw.
Syst., vol. 5, no. 4, pp. 1693–1706, Dec. 2018.

[47] M. Hale, A. Jones, and K. Leahy, ‘‘Privacy in feedback: The differentially
private LQG,’’ in Proc. Annu. Amer. Control Conf. (ACC), Jun. 2018,
pp. 3386–3391.

[48] C. Hawkins and M. Hale, ‘‘Differentially private formation control,’’ in
Proc. 59th IEEE Conf. Decis. Control (CDC), Dec. 2020, pp. 6260–6265.

[49] B. Wang and N. Hegde, ‘‘Privacy-preserving Q-learning with functional
noise in continuous spaces,’’ in Proc. NeurIPS, 2019, pp. 11327–11337.

[50] (2022). General Data Protection Regulation (GDPR). Accessed:
Dec. 6, 2023. [Online]. Available: https://gdpr-info.eu/

[51] E. Ferrari, Y. Tian, C. Sun, Z. Li, and C.Wang, ‘‘Privacy-Preserving design
of scalar LQG control,’’ Entropy, vol. 24, no. 7, p. 856, Jun. 2022.

[52] T. M. Cover and J. A. Thomas, Elements of Information Theory. Hoboken,
NJ, USA: Wiley, 2006.

[53] X. Nguyen, M. J. Wainwright, and M. I. Jordan, ‘‘Estimating divergence
functionals and the likelihood ratio by convex risk minimization,’’ IEEE
Trans. Inf. Theory, vol. 56, no. 11, pp. 5847–5861, Nov. 2010.

[54] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial nets,’’ in
Proc. NeurIPS, 2014, pp. 2672–2680.

[55] J. Tian, Q. Liu, H. Zhang, and D. Wu, ‘‘Multiagent deep-reinforcement-
learning-based resource allocation for heterogeneous QoS guarantees for
vehicular networks,’’ IEEE Internet Things J., vol. 9, no. 3, pp. 1683–1695,
Feb. 2022.

[56] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba, ‘‘OpenAI gym,’’ 2016, arXiv:1606.01540.

YUE TIAN received the B.Eng. degree from
Xidian University, Xi’an, China, in 2021. She
is currently pursuing the M.Sc. degree with the
School of Electronics and Information Engineer-
ing, Tongji University, Shanghai, China. Her
research interests include information security and
adversarial learning.

70316 VOLUME 12, 2024



Y. Tian et al.: Adversarial RL Against Statistic Inference on Agent Identity

QI JIANG received the B.Eng. degree in com-
munication engineering from Tongji University,
Shanghai, China, in 2022, where he is currently
pursuing the M.Sc. degree with the School of
Electronics and Information Engineering. His
research interests include information security and
semantic communication.

ZUXING LI (Member, IEEE) received the B.Eng.
degree in information security from Shanghai
Jiao Tong University, Shanghai, China, in 2009,
the M.Sc. degree in electrical engineering from
the Technical University of Catalonia, Barcelona,
Spain, and the KTHRoyal Institute of Technology,
Stockholm, Sweden, in 2013, and the Ph.D. degree
in electrical engineering from the KTH Royal
Institute of Technology, in 2017. He was a Post-
doctoral Researcher with CentraleSupelec, Paris,

France, from 2018 to 2019, and the KTH Royal Institute of Technology,
from 2019 to 2020. He has been an Assistant Professor with the School of
Electronics and Information Engineering, Tongji University, Shanghai, since
June 2020. His research interests include statistical inference, information
theory, reinforcement learning, information security, and privacy.

CHAO WANG (Member, IEEE) received the
B.Eng. degree from the University of Science and
Technology of China, Hefei, China, in 2003, and
the M.Sc. and Ph.D. degrees from The University
of Edinburgh, Edinburgh, U.K., in 2005 and
2009, respectively. In 2008, he was a Visiting
Student Research Collaborator with Princeton
University, Princeton, USA. From 2009 to 2012,
he was a Postdoctoral Research Associate with the
KTH Royal Institute of Technology, Stockholm,

Sweden. From 2018 to 2020, hewas aMarie Curie Fellowwith theUniversity
of Exeter, Exeter, U.K. He is currently a Professor with Tongji University,
Shanghai, China. His research interests include information theory and signal
processing for wireless communication networks, and data-driven research
and applications for smart city and intelligent transportation systems.

VOLUME 12, 2024 70317


