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ABSTRACT The exponential growth of Internet of Things (IoT) systems inspires new research directions
on developing artificial intelligence (AI) techniques for detecting anomalies in these IoT systems. One
important goal in this context is to accurately detect and anticipate anomalies (or failures) in IoT devices and
identify main characteristics for such anomalies to reduce maintenance cost and minimize downtime. In this
paper, we propose an explainable AI (XAI) framework for enhancing anomaly detection in IoT systems. Our
framework has two main components. First, we propose AI-based anomaly detection of IoT systems where
we adapt two classes of AI methods (single AI methods, and ensemble methods) for anomaly detection
in smart IoT systems. Such anomaly detection aims at detecting anomaly data (from deployed sensors or
network traffic between IoT devices). Second, we conduct feature importance analysis to identify the main
features that can help AI models identify anomalies in IoT systems. For this feature analysis, we use seven
different XAI methods for extracting important features for different AI methods and different attack types.
We test our XAI framework for anomaly detection through two real-world IoT datasets. The first dataset is
collected from IoT-based manufacturing sensors and the second dataset is collected from IoT botnet attacks.
For the IoT-based manufacturing dataset, we detect the level of defect for data from IoT sensors. For the
IoT botnet attack dataset, we detect different attack classes from different kinds of botnet attacks on the IoT
network. For both datasets, we provide extensive feature importance analysis using different XAI methods
for our different AI models to extract the top features. We release our codes for the community to access it
for anomaly detection and feature analysis for IoT systems and to build on it with new datasets and models.
Taken together, we show that accurate anomaly detection can be achieved along with understanding top
features that identify anomalies, paving the way for enhancing anomaly detection in IoT systems.

INDEX TERMS Internet of Things, anomaly detection, explainable AI, SHAP, LIME, Mirai, IoT security,
black-box AI, MEMS, and N-BaIoT.

I. INTRODUCTION
The Internet of Things (IoT) represents a network of
interconnected objects with internet capabilities, equipped
with embedded sensors for data collection and exchange [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Kashif Sharif .

Any standalone device connected to the internet, capable
of remote monitoring and control, is considered an IoT
device. Therefore, IoT systems become more complex and
are rapidly deployed in different applications [2]. IoT systems
pose certain salient technical challenges for the use of
AI-based models for anomaly detection. Firstly, in IoT
systems, various types of sensors concurrently generate data
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related to the same (or overlapping) events, each possessing
distinct capabilities and costs. Secondly, the characteristics of
sensor data undergo changes based on the sensors’ operating
points, such as the Revolutions Per Minute (RPM) of the
motor in IoT-inspired smart manufacturing systems [3],
which is a measure of the number of complete revolutions the
motor makes in one minute. Consequently, both the inference
and anomaly detection processes necessitate calibration
according to the specific operating point. To address these
requirements, case studies on anomaly detection deployments
in such systems become imperative. The importance of
these deployments and the subsequent analyses has been
emphasized in prior works, including those focused on digital
agriculture [4], smart manufacturing [5], IoT-based health
monitoring systems [6], and other IoT systems [7], [8].

While there is a considerable body of literature on anomaly
detection within various IoT-based systems that focused on
traditional AI models for anomaly detection and failure
detection in different IoT systems [9], [10], [11], [12], [13],
[14], there is a notable gap in the documentation of the use
of explainable AI (XAI) methods specifically for anomaly
detection in smart IoT systems [15], [16]. In particular, these
previous AI-based studies focused more on the classification
accuracy of various AI algorithms, for detecting anomalies in
IoT systems, without providing insights about their behavior
and reasoning about main features. Moreover, they did not
explore the model-specific feature importance, combining
global and local explanations, and exploring different diverse
set of AI models. These limitations motivate the pressing
need to leverage the relatively recent XAI field for enhancing
anomaly detection for IoT systems [17]. This usage of XAI
can also help in the ultimate goal of building predictive
maintenance frameworks for these IoT systems.

In this paper, we study the anomaly detection problem of
IoT systems by detecting failures and anomalies that would
have an impact on the reliability and safety of these systems.
In such systems, the data are collected from different sensors
via intermediate data collection points and finally aggregated
to a server to further store, process, and perform useful
data-analytics on the sensor readings [18], [19]. We propose
an XAI framework (that we call XAI-IoT) for enhancing
anomaly detection in IoT systems. Our XAI framework
includes loading the IoT dataset, pre-processing the data,
training black-box AI models, generating global and local
feature importance graphs, and extracting top features based
on different XAI methods. The low-level structure of our
proposed framework is shown in Figure 1.
In particular, our framework has two main components:

(i) AI-based anomaly detection of the IoT system under
consideration, and (ii) feature importance analysis of themain
features that help AI models identify anomalies in these IoT
systems. For the first component, we consider two classes
of anomaly detection models which are single AI models
(including decision tree (DT) [20], deep neural network
(DNN) [21], AdaBoost (ADA) [22], support vector machine
(SVM) [23], and multi-layer perceptron (MLP) [24]), and

ensemble methods (including random forest (RF) [25],
bagging [26], blending [27], stacking [28], and voting [29]).
These models are used to predict the anomalies from data
collected in these IoT systems.

For the second component, we perform feature impor-
tance analysis using different XAI methods (SHAP [30],
LOCO [31], CEM [32], ALE [33], PFI [34], and
ProfWeight [35], and LIME [36]). These XAI methods have
different methodologies for generating feature importance.

A. SHAP [30]
This popular XAI method facilitates the generation of feature
explanations for AI models. It uses the game theory concept
of Shapely values to explain an AI model. It generates
Shapley values for each feature, and it does that by
considering the prediction using all the other features except
the one under evaluation. This way SHAP can understand the
impact of the contribution from each feature.

B. LEAVE-ONE-COVARIATE-OUT (LOCO) [31]
This XAI strategy is used to estimate the importance of
features in an AI model. When a feature is removed from
the model, the LOCO technique measures the change in
prediction error to assess how important the feature is.
In particular, the model is retrained several times, omitting
a distinct feature each time, and the effect on the model’s
performance is tracked. Thus, a feature is meaningful for the
model’s predictions if omitting it results in a notable change
in model’s accuracy.

C. CONTRASTIVE EXPLANATIONS METHOD (CEM) [32]
This XAI method shows which features may be altered to
get a different prediction output, which sheds light on how
an AI method makes decisions. This method can assist in
the understanding of not just which features are significant
but also how these features could be changed to affect the
predictions.

D. ACCUMULATED LOCAL EFFECT (ALE) [33]
The XAI ALE plots are used to illustrate how features, taking
into consideration their interactions with other features,
impact on AI model’s average prediction. They provide
insight into the correlation between input features and
anticipated prediction.

E. LIME [36]
This widely used XAI tool enables the creation of a surrogate
model approximating the original AI model’s behavior when
assessed with local samples. In this study, we utilized LIME
to generate local feature importance.

F. PERMUTATION FEATURE IMPORTANCE (PFI) [34]
this XAI method is another technique used to assess the
importance of features. In PFI, a feature’s importance is
determined by permuting its values and tracking how the
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model’s performance indicators change as a result. Each
feature goes through this procedure several times, and the
average performance change indicates how important the
feature is.

G. PROFILED WEIGHTING (PROFWEIGHT) [35]
This XAI approach assesses the significance of a feature
by considering many criteria, such as the feature’s weight
within the model and its relationship with other features. This
approach offers an indicator of the relative contribution of
each attribute to model’s predictions.

We apply our framework to study two real-world IoT
datasets with different characteristics. The first dataset (that
we call MEMS dataset) is a smart manufacturing dataset
collected from deployed manufacturing sensors to detect
anomalous data readings. The second dataset (that we call
N-BaIoT) is an open source IoT dataset where the goal
of this dataset is to detect IoT botnet attacks [37]. The
N-BaIoT data was gathered from nine commercial IoT
devices that were actually infected by two well-known
botnets, Mirai [38] and Gafgyt [39]. In our evaluation,
we first analyze the performance of our different AImodels in
detecting anomalies in these two datasets where we measure
different standard performance metrics (including accuracy,
precision, recall, and F-1). We observe that the best anomaly
detection model is dataset-dependent with ensemble methods
giving better performance in the anomaly detection task.

One challenge in the MEMS anomaly detection problem
is the prediction from AI models using sparse data, which
is often the case because of limitations of the sensors or the
cost of collecting data. The choice of sensors with lower
sampling rates, despite potential drawbacks, is driven by
significant cost differences. For instance, MEMS sensors are
much more economical ($8) compared to advanced sensors
like piezoelectric sensors ($1305) [40], [41]. To tackle this
challenge, we leveraged all available data collected under
various operating conditions, specifically different RPMs.
On the other hand, the challenge in the anomaly detection in
N-BaIoT dataset is detecting the different attack classes from
different kinds of botnet attacks on the IoT network. To tackle
this challenge, we evaluated the performances of different AI
models under different combinations of features to identify
which setup is more efficient in detecting anomalies in the
traffic data collected from this IoT network.

We have also provided extensive feature importance anal-
ysis using different XAI methods for our different AI models.
For the MEMS dataset, we also provided feature importance
for different RPMs considered in collecting MEMS data for
more in-depth understanding. In our assessment of feature
importance, we validate the notion that vibration data along
certain axes may not convey distinct information in normal
and failure scenarios. The circular motion around the motor’s
center occurs along the X and Z axes, resulting in vibration
values that vary with the motor’s condition. Conversely, the
Y-axis, representing the direction of the shaft, exhibits smaller

vibrations. To investigate this, we compare the model’s
performance with features derived from all three data axes in
the default setup against a proposed approach where features
are extracted exclusively from the X-axis and Z-axis data
vectors. For the feature importance analysis on the N-BaIoT
dataset, our results show that the features that give precise
statistics summarizing the recent traffic from the host to the
destination in this IoT network can help in identifying the
botnet attack class on the IoT network.

We emphasize that our paper focuses on offering a
thorough analysis, and comparative viewpoint of different AI
models and Explainable AI (XAI) techniques. It is critical
to comprehend the functionality and interpretability of these
models in an era where artificial intelligence (AI) systems are
becomingmore andmore complicated. Bymeans of thorough
experimentation and comparative analysis, our objective is
to highlight the performance of various artificial intelligence
methodologies and XAI approaches. Our research aims to
provide practitioners and researchers in IoT security domain
with essential insights for responsible AI deployment and
decision-making by examining their effectiveness in a variety
of datasets and use scenarios in two IoT systems.
Summary of Contributions: Based on our analysis and

evaluation, we have the following contributions:

1) XAI Framework: Our contribution consists in the
creation of an XAI framework specifically designed
for anomaly identification in IoT systems. We offer a
complete toolset for doing feature importance analysis
by combining seven distinct XAI techniques, including
SHAP, LIME, CEM, ALE, PFI, Profweight, and LOCO.
This approach provides feature importance on both
global and local scopes, which is important for com-
prehending how complicated AI models for anomaly
detection in IoT applications make decisions. In our
feature importance analysis, we extract the model-
specific features (i.e., top important features for each AI
model) and anomaly-specific features (i.e., top features
for each attack type) for different classes of AI models
that we have and different types of anomalies.

2) Anomaly Detection: We expand the use of anomaly
detection to IoT systems by modifying two categories
of models: individual AI techniques (including DT,
DNN, SVM, ADA, and MLP) and ensemble techniques
(including bagging, blending, stacking, and voting).
These models are made to detect abnormal data from
network traffic or deployed sensors in an efficient
manner, protecting IoT infrastructure security.

3) Testing: We rigorously evaluate our system on two
real-world datasets from IoT botnet attacks and
IoT-based manufacturing sensors. We demonstrate our
approach’s efficacy in identifying anomalies in various
IoT scenarios through comprehensive evaluation,
underscoring its potential for practical use.

4) Defect TypeClassification:We further contribute to the
field by offering a way to classify the degree of fault
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in IoT-based smart manufacturing data, in addition to
anomaly detection. The ability to classify fault degree
improves the IoT systems’ diagnostic capabilities,
allowing for proactive maintenance and quality control
procedures.

5) Benchmark Data and Codes: In order to support
future work in this area, we make our database
corpus available, which consists of two different
datasets and all developed code scripts. We hope
that releasing these tools to the community will
help to accelerate progress in anomaly detection and
classification for IoT systems by facilitating bench-
marking, replication, and extension of our work.
https://github.com/agummadi1/XAI_for_IoT_Systems.

Paper Organization: The rest of the paper is organized
as follows. We first present the related works in Section II.
We then explain our framework, including anomaly detection
and feature importance models in Section III. In Section IV,
we present our evaluation results of anomaly detection
models and XAI feature importance on our two IoT datasets.
We present main limitations of our work and related
discussions in Section VII. We conclude the paper in
Section VIII.

II. RELATED WORK
A. ANOMALY AND FAILURE DETECTION MODELS IN IoT
Anomaly detection methods have been used for identifying
energy consumption anomalies in IoT systems viamonitoring
and identifying abnormal energy consumption patterns in
IoT-connected devices to detect malfunctioning or compro-
mised devices [42]. Furthermore, anomaly detection has
been explored for health monitoring IoT systems through
detecting anomalies in health-related data collected by IoT
devices such as wearables to identify potential health issues
or irregularities [6]. Machine learning methods have been
used for detecting anomalies in smart agriculture applications
with the focus of detecting anomalies in environmental data
collected by IoT devices in agriculture to identify potential
crop diseases, irrigation issues, or pest infestations [43].
However, these work did not explore XAI feature importance
and analysis, and considered different application domains
from those in our current work.

Various studies have explored the detection of failures in
IoT systems using either single or multiple sensors [44], [45],
[46]. The main application in this context is monitoring the
behavior of machinery and equipment in industrial settings to
detect anomalies, potential faults, or performance deviations.
Notably, a recent work [44] proposed a kernel principal
component analysis-based anomaly detection system to
identify cutting tool failures in a machining process in
smart manufacturing system. Although this study utilized
multi-sensor signals to assess the cutting tool’s condition,
it did not address transfer learning between different sensor
types. Another recent study [46] introduced a fault detection

monitoring system for detecting various failures in a DC
motor, including gear defects, misalignment, and looseness.
However, this study relied on a single sensor (accelerometer)
to collect machine condition data, and it employed several
convolutional neural network architectures for targeted fail-
ure detection without considering different rotational speeds
and sensors. Consequently, these techniques would need
reapplication for each new sensor type. In contrast, our
approach involves considering learning main features using
diverse XAI methods and sensor types, and we conduct a
comparative analysis of single and ensemble learning-based
models for our anomaly detection task.

B. EXPLAINABLE AI AND FEATURE IMPORTANCE IN IoT
Many studies have been conducted in the field of Explainable
Artificial Intelligence (XAI) with the goal of improving
machine learning models’ interpretability and transparency
for different applications [47]. Numerous strategies have
been investigated, from decision trees and rule-based systems
to more complex methods like SHAP (SHapley Additive
exPlanations) and LIME (Local InterpretableModel-agnostic
Explanations). By demystifying complex models’ decision-
making processes, these techniques aim to increase end users’
understanding and confidence.
Feature Selection in IoT: It becomes especially important

to integrate feature importance analysis when it comes to IoT
systems [48], [49], [50]. In particular, the work [48] provides
an extensive overview of feature selection methods in the
context of IoT-based healthcare applications. The work [49]
proposes a feature selection method for intrusion detection
systems (IDSs) for IoT systems but with only focusing on two
feature selection methods which are Information Gain (IG)
and Gain Ratio (GR). It also focused mainly on the detection
of denial of service (DoS) attacks. The work [50] proposes
a feature selection algorithm that is based on the concepts of
the Cellular Automata (CA) engine and Tabu Search (TS)-
based aspiration criteria with main focus on Random Forest
(RF) ensemble learning classifier to evaluate the fitness of the
selected features. That work also focused on the TON_IoT
dataset (created by UNSW in Australia).

The challenges in IoT systems include large volumes
of data that are produced by IoT devices. Thus, it is
essential to comprehend the fundamental characteristics
that influence model predictions in order to maximize
system efficiency [51], spot abnormalities, and guarantee the
accuracy of decision results. In addition to improving model
interpretability for anomaly detection for IoT systems, feature
importance analysis makes it easier to identify important
variables [52], [53], which helps with the development and
implementation of reliable and effective IoT applications.
In order to enable accountable and trustworthy AI deploy-
ment in a variety of applications, researchers are working to
build approaches that strike a compromise between model
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FIGURE 1. The proposed XAI-IoT framework. It has the following steps: loading IoT database, preprocessing data, black-box AI training,
black-box AI evaluation, XAI feature importance (including global and local scopes), and retraining AI models.

precision and transparency as the convergence of XAI and
IoT expands.

C. DATASETS AND BENCHMARKS FOR ANOMALY
DETECTION IN IoT SYSTEMS
Several papers have concentrated on providing datasets for
anomaly detection in IoT systems, particularly emphasizing
the unsupervised anomaly detection process [54], [55]. For
instance, the study byKoizumi et al. [54] presents benchmark
results from the DCASE 2020 Challenge Task, focusing on
unsupervised detection of anomalous sounds for machine
condition monitoring in smart manufacturing. This work
specifically aims to determine whether the sound emitted
from a target machine is normal or anomalous, addressing the
challenge of anomalous sound detection (ASD). Additionally,
another work by Hsieh et al. [55] introduces an unsupervised
real-time anomaly detection algorithm tailored for smart
manufacturing. In contrast, the study by Fathy et al. [56]
delves into learning techniques for failure prediction using
imbalanced smart manufacturing datasets. However, none of
theseworks addresses the crucial aspect of feature importance
via different XAI methods, which is a focal point in our
investigation. The work [57] proposed an open-source IoT
framework for sensor networks management in smart cities,
which is a different application domain from the two IoT
domains considered in our current work.

III. MATERIALS AND METHODS
We now describe our proposed framework. This framework
mainly consists of algorithms for the anomaly detection,

defect type (or attack) classification, and feature importance.
We now explain the low-level components of our XAI
pipeline. The different components of our framework (shown
in Figure 1) are explained below.
Loading IoTDatabase:The first component in our pipeline

is loading the IoT data from the database as a starting point.
In our work, we use two IoT datasets which are MEMS [43],
and N-BaIoT [37] datasets.
Pre-Processing: The second component in our framework

is preprocessing in which we prepare the dataset for the
anomaly classification task. In particular, such preprocessing
is essential for building AI models for the anomaly detection
task. We followed the prior works [43] for extracting the
basic set of features for MEMS and N-BaIoT datasets,
respectively. We also emphasize that we take advantage of
our XAI-based feature selection to identify top features that
affect the decisions of different AI models.
Feature Normalization: In order to prevent variations in

scales among different features, we apply a standard feature
normalization step (min-max feature scaling) for all columns
in our datasets (where we apply feature scaling for each
column; one column at a time to address inconsistencies
across different features’ scales). This process ensures that all
features are brought to a consistent numerical scale, thereby
avoiding any discrepancies in magnitude across the dataset.
Such a process has been applied in several prior works [58],
[59], [60], [61].
Black-Box AI Models: Once the preprocessing of the

database is complete, we train the AI model where we
perform splitting of the data with a split of 70% for the
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training while leaving the unseen 30% for testing purposes.
For this part, we have built ten popular AI classification
models. They can be classified into the following two classes:

• Single AI Models: In this category, we included deci-
sion tree (DT) [20], deep neural network (DNN) [21],
AdaBoost (ADA) [22], support vector machine
(SVM) [23], and multi-layer perceptron (MLP) [24]).

• Ensemble Models: We selected five popular ensemble
methods where we included RF [25], bagging [26],
blending [27], stacking [28], and voting [29].

These models are used to predict the anomalies from
sensors’ readings in IoT systems, along with the attack (or
defect) type. These models were also used for predictive
maintenance for the MEMS IoT dataset, i.e., predicting
the level of defect with the MEMS sensor and whether
the machine is in normal operation, near-failure (and needs
maintenance), or failure (and needs replacement). On the
other hand, the models were used to detect anomaly classes in
N-BaIoT dataset, i.e., predicting whether the traffic is benign,
or is related to one of the 10 attack classes that represent
different attack tactics employed by the Gafgyt [39] and
Mirai [38] botnets to infect IoT devices.
For each model, we generated multiple variants by

changing the values of hyperparameters. We then chose the
model variant with the best performance for each dataset.
We describe the hyper-parameters and the libraries used for
all forecasting models in Appendix B.
Black-Box AI Evaluation: The next step in our framework

is to study the performance of each model on unseen test
data. For such performance analysis, we first create the
confusion matrix for each model and use it to derive the
following different metrics for each AI model: accuracy
(Acc), precision (Prec), recall (Rec), F1-score (F1),Matthews
correlation coefficient (Mcc) [62], balanced accuracy (Bacc),
and the area under ROC curve (AucRoc). We selected these
metrics for two primary reasons. Firstly, they are commonly
used in numerous comparable works that emphasize IoT
systems, such as [37] and [43] for our two datasets.
Secondly, our choice enables an examination of the impact
of XAI-based feature selection on the performance of AI
models in IoT datasets. This allows for direct comparisons
with previous studies conducted on the two IoT datasets under
consideration.
XAI Global Explanations: The aforementioned AI models

operate as black-box models. Consequently, it becomes
imperative to provide explanations for thesemodels, elucidat-
ing their accompanied features (primary IoT sensors or IoT
network traffic) and labels (attack types). In the subsequent
phase of our framework, we incorporate Explainable AI
(XAI). In the initial segment of this step, we generate global
importance values for each feature, creating various graphs
to analyze the influence of each feature on the AI model’s
decisions. This analysis aids in forming expectations about
the model’s behavior. For global explanations, we employ

TABLE 1. Summary and statistics of the two IoT datasets used in this
work, including the size of the dataset, the number of attack types
(labels), and the number of intrusion features).

various XAI methods, including SHAP, LOCO, CEM, PFI,
and ProfWeight.
XAI Local Explanations: Our framework consists of two

local XAI blocks. First, we use the recent well-known local
interpretable model-agnostic explanations (LIME) [36] for
giving insights of what happens inside an AI algorithm by
capturing feature interactions. We first generate a model that
approximates the original model locally (LIME surrogate
model) and then generate the LIME local explanations.
Second, we leverage ALE [33] via generating ALE local
graphs (named as ALE plots).
Feature Explanation: The final component in our

framework is extracting detailed metrics from the global
explanations. In particular, we extract the model-specific
features (i.e., top important features for each AI model)
and anomaly-specific features (i.e., top features for each
anomaly (or attack type) for different classes of AI models
that we have and different types of anomalies. This additional
feature analysis can help in providing human-understandable
explanations of the decision-making of the AI model and
accompanied top features.
Feature Explanation Importance: One of the important

outcomes of our framework is generating the list of top
features for each IoT dataset. This can help the security
analyst managing the IoT network in detecting attacks and
anomalies (either from IoT sensors (MEMS) readings or
network traffic between IoT devices (N-BaIoT)). In our
current work, we are focusing on understanding inmore depth
the feature importance for each model for the two considered
datasets (MEMS, and N-BaIoT).
Summary and Statistics of the Datasets: Table 1 shows

the number of samples for the two datasets and the
distribution of samples per attack type. Note that MEMS
dataset contains only three classes (near failure, failure,
and normal). On the contrary, N-BaIoT has ten attack
classes (five Gafgyt botnet attacks, and five Mirai botnet
attacks).

Having introduced the background and the low-level
details for the proposed framework, we next provide our
main evaluation results for anomaly detection and feature
importance tasks on our two IoT datasets.

IV. EXPERIMENTAL SETUP EXPLANATION
In our evaluation, we seek to answer the following five
research questions:

• What is the performance of black-box AI models on the
two considered IoT datasets?

• How can we detect the operational state of IoT dataset
effectively (i.e., with high accuracy)?
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FIGURE 2. Motor testbed and sensors for smart manufacturing dataset. In (a), we show the testbed. In (b), we show piezoelectric and
MEMS sensors when mounted on motor testbed. In (c), we show the balancing disk to make different levels of imbalance.

• What are the main features that affect the performance
of different AI models in our IoT datasets?

• What are the main features for each attack (anomaly)
type in the two IoT datasets?

• How does XAI help in understanding the performance
of different AI models for single data instance?

A. DEPLOYMENT DETAILS AND DATASETS EXPLANATION
1) MEMS DATASET
a: MAIN GOAL OF USING THIS IoT DATASET
Anomalous data generally needs to be separated from
machine failure as abnormal patterns of data do not necessar-
ily implymachine or process failure [5].We perform anomaly
detection using vibration data to identify anomalous events
and then attempt to label/link these events with machine
failure information. This way, we aim to identify abnormal
data and correlate the abnormal data to machine failure
coming from IoT manufacturing sensors. To achieve such a
goal, we build anomaly detection models to detect anomalies
and failures in the IoT sensors.

b: DATASET CONSTRUCTION AND FEATURES
To construct this dataset, an experiment was carried out in
the motor testbed, as depicted in Figure 2a, to gather machine
condition data, specifically acceleration, under various health
conditions. During the experiment, acceleration signals were
acquired from MEMS sensors (Figure 2b) simultaneously,
with a sampling rate of 10 Hz for the X, Y, and Z axes.
Different levels ofmachine health conditionswere induced by
affixing amass to the balancing disk (i.e., mounting amass on
the balancing disk, thus different levels of mechanical imbal-
ance are used to trigger failures), as illustrated in Figure 2c,
thereby generating varying degrees of mechanical imbalance
to initiate failures. Failure conditions were categorized into
one of three states: normal, near-failure, and failure.

c: OPERATIONAL SPEEDS
Acceleration data were captured at ten rotational speeds (100,
200, 300, 320, 340, 360, 380, 400, 500, and 600 RPM)
for each condition while the motor was operational. Fifty
samples were collected at 10-second intervals for each of
the ten rotational speeds. This same dataset was utilized for

both defect-type classification and feature importance tasks,
as elaborated in Section V.

d: ANOMALY (DEFECT) CLASSES
The data contains different levels of defects (i.e., different
labels for indicating normal operation, near-failure, and
failure for MEMs dataset). These labels would be used in our
evaluation.

2) N-BaIoT DATASET
The goal of this dataset is to detect IoT botnet attacks [37].
This dataset is a useful resource for researching cybersecurity
issues in the context of the Internet of Things (IoT). This data
was gathered from nine commercial IoT devices that were
actually infected by two well-known botnets, Mirai [38] and
Gafgyt [39].

(i) Details of Nine Devices:We first describe briefly each
device of the nine devices used for data collection.

Device 1 - Danmini Doorbell: A smart doorbell that
integrates intercom and camera systems for maintaining
home security and communications systems.

Device 2 - Ecobee Thermostat: An intelligent thermostat
that learns the user’s preferences and modifies the heating or
cooling to maximize energy savings.

Device 3 - Ennio Doorbell: A doorbell system with video
features, giving visual identification of guests for better home
security.

Device 4 - Philips B120N10 Baby Monitor: A baby
monitor that has audio and video features so that parents can
closely monitor their newborns.

Device 5 - Provision PT 737E Security Camera: A
security camera with remotemonitoring andmotion detection
capabilities that is intended for surveillance.

Device 6 - Provision PT 838 Security Camera: Another
kind of security camera, with expanded functions for
monitoring and surveillance purposes.

Device 7 - Samsung SNH 1011 N Webcam: A Samsung
webcam utilized for video conferences or basic video
recording.

Device 8 - SimpleHome XCS7 1002 WHT Security
Camera: A security camera from SimpleHome, ideal for
effortless home surveillance and monitoring.
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Device 9 - SimpleHome XCS7 1003 WHT Security
Camera: Another security camera for home surveillance with
a few advanced features.

(ii) Main Features: Every data instance in the dataset
is represented by a variety of features. These attributes are
divided into multiple groups, which are detailed as follows:

(A) Stream Aggregation: These functions offer data that
summarizes the traffic of the past few days. This group’s
categories comprise the following features:

H: Statistics providing an overview of the packet’s host’s
(IP) recent traffic.

HH: Statistics providing a summary of recent traffic from
the host (IP) of the packet to the host of the packet’s
destination.

HpHp: Statistics providing a summary of recent IP traffic
from the packet’s source host and port to its destination host
and port.

HH-jit: Statistics that summarize the jitter of the traffic
traveling from the IP host of the packet to the host of its
destination.

(B) Time-frame (Lambda): This characteristic indicates
how much of the stream’s recent history is represented in the
statistics. They bear the designations L1, L3, L5, and so forth.

(C) Features Taken Out of the Packet Stream Statistics:
Among these characteristics are the following features:

Weight: The total number of objects noticed in recent
history, or the weight of the stream.

Mean: The statistical mean is called the mean.
Std: The standard deviation in statistics.
Radius: The square root of the variations of the two

streams.
Magnitude: The square root of the means of the two

streams.
Cov: A covariance between two streams that is roughly

estimated.
Pcc: An approximate covariance between two

streams.
(iii) Classes: The dataset consists of the following

11 classes: benign traffic which is defined as network activity
that is benign and does not have malicious intent, and 10 of
these classes represent different attack tactics employed by
the Gafgyt and Mirai botnets to infect IoT devices. The
classes are summarized as follows:

1. benign:There are no indications of botnet activity in this
class, which reflects typical benign network traffic. It acts as
the starting point for safe network operations.

2. gafgyt.combo: This class is equivalent to the ‘‘combo’’
assault of the Gafgyt botnet, which combines different attack
techniques, like brute-force login attempts and vulnerability-
exploiting, to compromise IoT devices.

3. gafgyt.junk: The ‘‘junk’’ attack from Gafgyt entails
flooding a target device or network with too many garbage
data packets, which can impair operations and even result in
a denial of service.

4. gafgyt.scan: Gafgyt uses the ‘‘scan’’ attack to search
for IoT devices that are susceptible to penetration. The botnet

then enumerates and probes these devices in an effort to locate
and compromise them.

5. gafgyt.tcp: This class embodies the TCP-based attack
of the Gafgyt botnet, which targets devices using TCP-based
exploits and attacks.

6. gafgyt.udp: The User Datagram Protocol (UDP) is
used in Gafgyt’s ‘‘udp’’ assault to initiate attacks, such as
bombarding targets with UDP packets to stop them from
operating.

7.mirai.ack:To take advantage of holes in IoT devices and
enlist them in the Mirai botnet, Mirai’s ‘‘ack’’ attack uses the
Acknowledgment (ACK) packet.

8. mirai.scan: By methodically scanning IP addresses and
looking for vulnerabilities, Mirai’s ‘‘scan’’ assault seeks to
identify susceptible IoT devices.

9.mirai.syn:TheMirai ‘‘syn’’ attack leverages vulnerabil-
ities in IoT devices to add them to the Mirai botnet by using
the SYN packet, which is a component of the TCP handshake
procedure.

10. mirai.udp: Based on the UDP protocol, Mirai’s
‘‘udp’’ attack includes bombarding targeted devices with
UDP packets in an attempt to interfere with their ability to
function properly.

11. mirai.udpplain: This class represents plain UDP
assaults that aim to overload IoT devices with UDP traffic,
causing service disruption.

Having explained the main features and classes of the two
IoT datasets, we next explain our main experimental setup
used for generating our evaluation results.

B. EXPERIMENTAL SETUP
The goal is to measure the performance of our anomaly
detection models to detect anomalies (and their types) for the
two datasets considered in this work (MEMS, and N-BaIoT).
We show the performance of our models in terms of the
accuracy of detecting the anomaly correctly (measured by
precision, recall, and F-1 score). For each proposed model,
the training size was 70% of the total collected data while
the testing size was 30%. We emphasize that our anomaly
detection problem here is a multi-class classification problem
in which we try to predict the class for each sample for each
IoT dataset.

1) AI MODELS
By pairing ten popular AI classification algorithms (which
are decision tree (DT) [20], deep neural network (DNN) [21],
random forest (RF) [25], AdaBoost (ADA) [22], support vec-
tor machine (SVM) [23], multi-layer perceptron (MLP) [24],
bagging [26], blending [27], stacking [28], and voting [29]),
we evaluate black-box AI methods and different components
of our proposed XAI framework for our two IoT datasets.
We emphasize that these ten AI algorithms can be categorized
into two categories: (1) single AI models (DT, DNN, ADA,
SVM, and MLP), and (2) ensemble models (RF, bagging,
blending, stacking, and voting).
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2) CODING TOOLS
We built upon the Keras library [63] which is Python-based
for creating the variants of our models.

3) EXPLAINABLE AI (XAI) TOOLS
In addition, we employed the following XAI toolkits:

a: SHAP [30]
This toolkit facilitates the generation of feature explanations
for our intrusion detection AI models. We utilized SHAP to
produce both local and global explanations for our AImodels.

b: LIME [36]
Another widely used XAI tool, LIME enables the creation
of a surrogate model approximating the original AI model’s
behavior when assessed with local samples. In this study,
we also utilized LIME to generate global explanations
by aggregating its local explanations and averaging the
importance of each feature.

c: OTHER XAI TOOLKITS
We also used pandas, sklearn (permutation importance), and
statistics libraries for the other XAI methods (LOCO, PFI,
Profweight, ALE, and CEM).

4) COMPUTING RESOURCES
We conducted anomaly detection experiments using a
workstation equipped with an Intel i7 @2.60 GHz processor,
16 GB RAM, and 8 cores. The feature extraction experiments
were carried out on the BigRed Workstation at IUPUI,
a high-performance computer (HPC) boasting four NVIDIA
A100GPUs, 64GPU-accelerated nodes (eachwith 256GBof
memory), and a single 64-core AMD EPYC 7713 processor
(2.0 GHz and 225-watt), achieving a peak performance
of approximately 7 petaFLOPs. This supercomputer is
specifically designed to support researchers in advanced AI
and ML tasks [64].

5) PERFORMANCE METRICS
We first do benchmarking of the ten AI models for each of
the two datasets (described above in Section IV-A). We show
such a comparison of performances of the ten models in
terms of the performance metrics (represented by the typical
metrics: Precision, Recall, and F-1 Score [65]). We then show
the feature importance for main features given different XAI
methods considered in this work.

V. MEMS RESULTS EVALUATION
In this section, we start the evaluation of the models’
performances using a real dataset sourced from MEMS
vibration sensors, our production-grade sensors. Through
data analytics applied to the vibration sensor data, we discern
one of the motor’s three operational modes. The model’s
performance is presented in terms of defect level detection
accuracy, gauged by the classification accuracy of the AI

predictionmodels on the test dataset. This accuracy is defined
as the ratio of correctly classified samples to the total number
of samples. We also explore various performance metrics,
as detailed earlier in Section IV-A.

A. PERFORMANCE METRICS UNDER ALL FEATURES
Table 2 shows the performance metrics for each AI model
for our MEMS dataset. We observe that DNN and MLP give
the first and second best anomaly detection performances,
respectively, (i..e., highest accuracy, precision, and recall).
Furthermore, stacking and voting ensemble methods give
the third best performance. On the other hand, SVM gives
the worst performance for MEMS under all features. This
experiment suggests using neural network-based AI models
(MLP, or DNN) for classifying the data from the MEMS
vibration-based IoT dataset. These neural network-based
prediction models perform better than the traditional models
due to the fact that the deployments generate enough data for
accurate training and due to the complex dependencies among
the features of the MEMS dataset.

B. PERFORMANCE METRICS OF FEATURE COMBINATIONS
We next explore the effect of each of the three features (X,Y,
and Z) via comparing the performance metrics of different AI
models under different combinations of these features where
we eliminate one feature for each setup. Thus, we have the
following setups: XY, XZ, and YZ, representing different
feature combinations for rotation directions. Tables 3-5 show
the main results for this experiment.

In Table 3, under the feature combination XY (excluding
the most important feature ‘z’), the models generally perform
poorly. The accuracy, precision, recall, and F1-score are lower
across all models compared to Table 2, which incorporates all
features including ‘z’. This decline suggests that excluding
‘z’ significantly impacts the models’ ability to correctly
identify anomalies, underlining the importance of feature
z. Table 4 shows results for the feature combination YZ.
The inclusion of ‘z’ leads to a notable improvement in
performance metrics compared to Table 3. The Decision
Tree, Random Forest, and DNN models all show increased
accuracy, precision, recall, and F1-scores. This is consistent
with the stated importance of feature ‘z’, as its presence
alongside ‘y’ provides enough information for models to
more accurately predict outcomes. However, they still have
lower performance compared to having all features. Finally,
in Table 5, the XZ combination is analyzed. Again, the
metrics demonstrate better model performance than in
Table 3, further supporting the significant role of ‘z’ in
the model’s prediction capability. All models experience an
increase in accuracy and F1-score when ‘z’ is present, even
when paired with ‘x’ instead of ‘y’.

We summarize below the main findings of such an
experiment: (i) Accuracy: In terms of accuracy, the com-
bination XZ gives the highest accuracy with the AdaBoost
model with a value of 0.655. (ii) Precision: In terms of
precision, combination XZ gives the highest precision with
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TABLE 2. Anomaly detection results (the higher the better) for each AI model. DNN gives the best performance metrics.

TABLE 3. Performance metrics under combination XY.

TABLE 4. Performance metrics under combination YZ.

the AdaBoost model with a value of 0.664. (iii) Recall: In
terms of recall, the combination YZ gives the highest recall
with the Deep Neural Network model with a value of 0.648.
(iv) F1 Score: In terms of F-1 score, the combination XZ
gives the highest F1 score with the AdaBoost model with a
value of 0.614.

In total, the combination XZ gives the best overall
performance across all combination. Across all tables, the
consistency of ‘z’ in contributing to higher performance
metrics suggests that it is indeed a critical feature for anomaly
detection in the MEMS dataset.

C. OVERALL FEATURE IMPORTANCE (SHAP GLOBAL
SUMMARY PLOT)
We next show the overall feature importance under SHAP
(SHapley Additive exPlanations) values, which measure
each feature’s contribution to a machine learning model’s
prediction. Figure 3 shows such overall feature importance
using KNN model. Every horizontal bar is a unique
feature, and its length signifies the mean absolute SHAP
value, which reflects the average effect of the feature on
the output magnitude of the model. Each bar’s color—
magenta for ‘‘Failure,’’ green for ‘‘Normal,’’ and blue for
‘‘Near-failure’’—represents the percentage of each feature’s

TABLE 5. Performance metrics under combination XZ.

FIGURE 3. SHAP global summary plot example for MEMS using KNN AI
model. It shows both top features per anomaly class and overall top
feature for the MEMs dataset.

influence on the various prediction classifications. For
example, feature ‘z’ significantly affects the three‘classes, but
features ‘x’ and ‘y’ appear to have varying effects on both
the ‘‘Normal’’ and ‘‘Failure’’ predictions. Overall, feature ‘z’
appears to be most influential feature in predicting all the
3 labels (anomaly states), suggesting it helps in recognizing
normal operational states, detecting situations that are close
to failure but not yet critical, and also identifying potential
failures.

D. FEATURE IMPORTANCE USING SHAP WITH DIFFERENT
AI MODELS
Having explained the global summary plot by SHAP, we next
provide the overall feature importance by SHAP for the
different AI models in our work. The average effect of
each feature (x, y, and z) on the model’s output magnitude,
as determined by the mean absolute SHAP values in Figure 4.
Main Insights: By giving each feature a value that

corresponds to its importance for a certain prediction, SHAP
values provide a broad overview of feature relevance for
different AI models. Figure 4a shows that the most significant
feature in the AdaBoost model is z, which is followed by
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FIGURE 4. Overall feature importance for all three features (x,y, and z) using SHAP for different AI models for MEMS dataset.

FIGURE 5. Feature importance (using SHAP global summary plots) for different RPMs used in collecting data for MEMS.

x and y. As before, Figure 4b shows that feature z is the
most significant feature for Deep Neural Network model,
having a significantly larger SHAP value than features x
and y. Figure 4c shows that the most significant feature in
the Decision Tree model is z, however y has less influence
compared to x for this Decision Tree model. In this case,
x has nearly as much influence as y. According to the
Random Forest model summary in Figure 4d, feature z has
also the biggest average influence on model predictions,

closely followed by x, and y as the least significant. We have
noticed similar insights for SVM and MLP models (omitted
here).

E. FEATURE IMPORTANCE FOR EACH RPM
We next show the feature importance for each RPM where
we built a separate AI model for each RPM for the six RPM
values used for collecting the data for MEMS. The length of
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each bar in the charts, which corresponds to a feature (labeled
x, y, and z), indicates the mean absolute SHAP value for that
feature over a large number of cases. The manner in which
the bars are colored—blue for ‘‘Near-failure,’’ magenta for
‘‘Failure,’’ and green for ‘‘Normal’’—indicates how well the
feature predicts the various classes or possible outcomes.
A factor that has a greater impact on the model’s prediction
for a given class is shown by a longer bar in that color.

The charts suggest that, for all RPMs, feature ‘z’ usually
has a significant influence on the prediction of ‘‘Normal’’
and ‘‘Failure’’ classes prediction. Throughout the classes and
models/scenarios, the effects of characteristics ‘x’ and ‘y’
differ more noticeably. In particular, the feature ‘x’ ranked
the second in four RPMs while feature ‘y’ has the second
rank only in two RPMs. Furthermore, the various charts’
varying bar lengths and colors indicate that the importance
of each feature to the model’s prediction varies based on the
model and situation under study. This can provide important
insights into the predictive dynamics of the AI model and
possibly direct feature selection ormodelmodification. It also
shows different behaviors of features within each setting (e.g.,
feature ‘x’ affects the decisionmore in high and low rotational
speeds of the motor compared to medium rotational speeds).

F. LOCAL FEATURE IMPORTANCE USING LIME
We next show local feature importance for MEMS dataset.
In particular, we provide three examples (one example for
each class of the three anomaly classes in MEMS) to show
how LIME, which is a well-known local XAI model, that
uses features to explain decisions of the AI model on local
(single) instance. In these examples (shown in Figure 6),
the prediction probabilities for the three classes (designated
as 0 (normal), 1 (near-failure), and 2 (failure)) using a
RF classifier are displayed with the feature contributions
that went into the forecast for each class, with each row
representing a distinct case (or example).

The anticipated probabilities for each case are shown for
all of the three classes which are displayed in the bar chart on
the left. Sets of rules related to features ‘x’, ‘y’, and ‘z’ that
influence the model’s classification of the instance as ‘‘NOT
0’’, ‘‘NOT 1’’, or ‘‘NOT 2’’ are located next to the bar charts.
As shown by the colored boxes and matching values, these
rules represent the criteria based on which feature’s values
that either raise or decrease the likelihood that the instance
belongs to a particular anomaly class.
Actual Feature Values and LIME Rules: The actual feature

values for each instance are displayed in the rightmost
column. For instance, with a chance of 0.92, the instance in
the top row is largely anticipated to be normal (class 0). The
properties ‘y > 0.10’ and ‘z ≤ 0.12’ are crucial requirements
that support this classification, according to the standards.
In a similar vein, the bottom and middle rows present the
influential conditions and forecasts for additional cases that
are primarily categorized as classes 1 (near failure) and 2
(failure), respectively in this example.

Understanding the AI model’s reasoning behind certain
predictions of the IoT instance is made easier with the help
of this LIME explanation. This is particularly helpful for
high-stakes applications like IoT or smart manufacturing,
where decision-making must be transparent and comprehen-
sible to ensure safety in these systems.

G. FEATURE IMPORTANCE USING LEAVE ONE COVARIATE
OUT (LOCO)
We next show the feature importance with an interpretability
technique called LOCO [31]. The main idea of this method
is to evaluate the effect of each feature individually on the
prediction. It entails retraining the AI model several times,
omitting a distinct characteristic each time, and tracking how
the predictions of the AI model alter. We used LOCO while
using RF AI model for MEMS dataset and it shows that
the prediction difference for feature ‘x’ is 1 which means
that when we set the feature ‘x’ to its mean value while
keeping other features unchanged, the RF model’s prediction
increased by 1, while the prediction difference for features y
and z are 0. This means that when we set the feature y (or z)
to its mean value while keeping other features unchanged, the
RF model’s prediction remained the same (no change).

We can also show the feature importance bar chart using
LOCO for each feature. We show an example for MEMS
dataset using MLP model in Figure 7. In this figure, three
features (x, y, and z) are displayed in a bar chart that
illustrates their relative importance according to the LOCO
approach. The change in accuracy of predictions or some
other performance parameter when each feature is removed
is used to determine how important a feature is. With the
highest relevance, feature z signifies that the MLP model’s
predictions are significantly affected by its value. On the other
hand, the least important characteristic is feature y, while
feature x is of intermediate value.

H. FEATURE IMPORTANCE USING CONTRASTIVE
EXPLANATIONS METHOD (CEM)
We next explore the feature importance for MEMS datset’s
features using CEM method [32]. CEM is a method for
deciphering machine learning models by examining how the
model’s predictions alter in response to perturbations in the
input features. This technique looks at how changing a feature
might affect the forecast in order to assist determine which
features have the biggest influence on the model’s output.
The unique property of CEM is that it sheds light on why
an AI model made a specific decision by contrasting it with
alternative decisions.

We show two examples for using CEM for the MEMS
dataset in Figures 8-9. The figures are bar charts that show
the feature importance for two different models as evaluated
by the Counterfactual Explanation Method (CEM). In these
figures, the three features (x, y, z) of the MEMS dataset
are displayed together with their corresponding importance
scores. For the RF model, CEM shows that feature z is the
most significant feature in contrast to LOCO that shows that
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FIGURE 6. Local feature importance using LIME XAI method for three data instances from the MEMS dataset.

FIGURE 7. Feature importance using LOCO for the main features (x,y, and
z) of MEMS dataset using MLP AI model.

FIGURE 8. Feature importance using CEM for the main features (x,y, and
z) of MEMS dataset using RF AI model.

x is the top one. For CEM, x is the second top feature for RF
model. For the MLP model, both LOCO and CEM lead to
same finding that feature z is the top feature.

FIGURE 9. Feature importance using CEM for the main features (x,y, and
z) of MEMS dataset using MLP AI model.

Main Insights: Since feature z is constantly the most
significant in both AI models using CEM, it is likely a
major factor in the decisions made by the anomaly detection
model for the MEMS dataset. Although still significant,
characteristic x is not as significant as feature z. Finally,
feature y has almost no influence for MLP model in contrast
to RF model using CEM XAI method.

I. FEATURE IMPORTANCE USING ACCUMULATED LOCAL
EFFECT (ALE)
We next show another local feature importance illustration
using accumulated local effect (ALE) method. In this
experiment, our three distinct features (x, y, and z) are
represented by Accumulated Local Effects (ALE) plots in
Figures 10-12. The machine learning model (RF model in
this experiment) predicts three classes: ‘‘normal,’’ ‘‘near-
failure,’’ and ‘‘failure.’’ ALE plots are used to illustrate how
characteristics, taking into consideration their interactions
with other features, impact a machine learning model’s
average prediction. They provide insight into the connection
between the input features and the anticipated prediction
(result). In contrast to LIME, it shows the relationship
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FIGURE 10. ALE plot for MEMS dataset (Feature x) for all anomaly classes
(1: normal, 2: near-failure, and 3: failure).

FIGURE 11. ALE plot for MEMS dataset (Feature y) for all anomaly classes
(1: normal, 2: near-failure, and 3: failure).

between each feature individually (in each single ALE plot)
and different anomaly classes.

With theALE value on the y-axis plotted against the feature
value on the x-axis, each figure represents a single feature
(Figure 10 for x, Figure 11 for y, and Figure 12 for z).
The influence of the feature on each of the three classes
is represented by the lines in various colors. A steep slope
or peak in the line, for example, suggests that the feature
value has a significant impact on the model’s prediction for
that class. On the other hand, flat sections imply that the
prediction remains constant when the feature value varies,
which means that the feature is less important. The ALE
plots (Figures 10-12) show that feature x is most important
for predicting ‘Failure’ class, feature y is most important for
predicting ‘Normal’ class, and feature z is most important for
predicting ‘Near-failure’.
Main Insights: For feature x, after a certain value of x,

the effect on the prediction for class 1 (‘normal’) increases
noticeably, whereas for class 3 (‘failure’), there is a noticeable
drop. Class 2 (‘near-failure’) has an impact that varies but
is less noticeable. Regarding feature y, all classes exhibit
dramatic swings, suggesting that even minor y changes

FIGURE 12. ALE plot for MEMS dataset (Feature z) for all anomaly classes
(1: normal, 2: near-failure, and 3: failure).

can have a big influence on the prediction. This implies a
complex and non-linear relationship between the variable
and the expected prediction. With regard to feature z, the
plot illustrates notable peaks and troughs for all classes,
suggesting intricate relationships where specific z ranges
have an enormous effect on each class’s prediction.

J. FEATURE IMPORTANCE USING PERMUTATION FEATURE
IMPORTANCE (PFI) WITH DIFFERENT AI MODELS
The Permutation Feature Importance (PFI) approach was
used in our evaluation experiments to determine the feature
importance for several AI models. By randomly shuffling the
feature values and so disrupting the correlation between the
feature and the target, this method evaluates the significance
of each feature by monitoring the shift in the AI model’s
performance, typically accuracy. We show the feature impor-
tance for all of our three features (x, y, and z) for all of the
six AI models considered in our work (i.e., AdaBoost, Deep
Neural Network, Multi Layer Perceptron, Random Forest,
Support Vector Machine, and Decision Tree). The feature
importance of these different models are compared in the bar
charts in Figure 13. The x-axis represents the features (x, y,
z), and the y-axis quantifies the feature importance score,
inferred as the drop in model accuracy when each feature’s
values are permuted.
Main Insights: Figure 13 shows that feature z is likely

a crucial predictor, as indicated by the consistent pattern
in which feature z is the most important feature under PFI
throughout the six AI models for MEMS dataset. Thus, the
model building and evaluation process should give close
consideration to such a feature. For the other two features,
feature x was the second top feature in four of the six AI
models (which are ADA, DT, RF, and SVM), while feature
y was the second top feature in only two AI models (DNN,
and MLP). Given that feature y is the least significant,
the main explanation for such behaviour for feature y is
that the Y-axis is representing the direction of the shaft
which exhibits smaller vibrations compared to Z-axis and
X-axis.
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FIGURE 13. The feature importance for three main features (x,y, and z) in MEMS dataset using Permutation Feature Importance (PFI) for all AI models
(AdaBoost, Decision Tree, Deep Neural Network, Random Forest, Support Vector Machine, and MLP).

FIGURE 14. The feature importance for three main features (x,y, and z) in MEMS dataset using Profweight for different AI models for anomaly detection
(AdaBoost, Decision Tree, Deep Neural Network, Random Forest, and Support Vector Machine).
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TABLE 6. The feature importance (given by top three features) for each
anomaly type for the MEMS dataset. The feature z is the top feature
across all different attack types.

K. FEATURE IMPORTANCE USING PROFWEIGHT WITH AI
MODELS
We next explore the ProfWeight-inspired method to evaluate
and display feature relevance for MEMS dataset. The
ProfWeight approach assesses the significance of a feature
by considering many criteria, such as the feature’s weight
within the model and its relationship with other features.
This approach appears to offer an indicator of the relative
contribution of each attribute to the model’s predictions.

We evaluated Profweight for a variety of machine learning
models (considered in our work), including AdaBoost,
Decision Tree, Random Forest, Deep Neural Network, and
Support Vector Machine. Figure 14 shows the Profweight
feature importance for MEMS dataset. Again, three features
are displayed on x-axis of each graph, with the y-axis
representing each feature’s relevance ranking.
Main Insights: Similar to PFI, Figure 14 shows that the

feature ‘z’ clearly outweighs the others in each graph in
terms of relevance (importance) score across all models for
Profweight XAI method. The relevance scores of the other
two variables are noticeably lower, indicating that they have
less of an effect on the model’s functionality. Regardless of
the model type, this constant ranking across models indicates
that z is the most significant feature and that it has a strong
and consistent influence on the model’s predictions. These
insights can be critical for activities like feature selection,
model interpretation, and enhancing model performance
by concentrating on the most informative properties. They
can also be useful for determining which aspects influence
anomaly detection model decisions which can also help in
preventing adversarial attacks on such AI methods.

L. FEATURE IMPORTANCE FOR EACH ANOMALY TYPE
Wenext show the anomaly-specific feature importance (given
by the top three features based on each anomaly type). This
is calculated using averaging SHAP feature importance for
different AI models. Table 6 shows such a list for MEMS
dataset. We observe that for different anomaly types, feature
‘z’ is the top feature. For ‘near-failure’ anomaly class, feature
‘y’ has the second rank. For ‘near-failure’ anomaly class,
feature ‘y’ has the second rank. For ‘failure’ anomaly class,
feature ‘x’ has the second rank. This anomaly-specific feature
importance can help in tuning AI models for detecting
different conditions of the IoT device (here, the condition of
the motor) given such feature importance knowledge.

M. SUMMARY OF FEATURE ANALYSIS FOR MEMS
We have provided overall feature importance analysis
using six XAI methods (SHAP, LOCO, CEM, PFI, and
ProfWeight). We have also provided local feature importance
analysis using the popular LIME method and ALE method.
Furthermore, we provided feature importance for different
RPMs considered in collecting MEMS data for more in-
depth understanding. All things considered, feature z (motor
acceleration in Z direction) seems to have the most impact
on the predictions across all models from SHAP feature
importance results. Despite differing by model in terms of
its significance in relation to z, feature x also exhibits a
significant impact.

Generally speaking, feature y has the least effect. As illus-
trated in the experimental setup (Figure 2a), the motor’s rota-
tion, coupled with the imbalanced disk due to the mounted
mass (eccentric weight), leads to unbalanced centripetal
forces, causing repeated vibrations in multiple directions.
Given the circular movement around the motor’s center, the
primary vibrations occur along the X and Z axes, while
the Y-axis (aligned with the shaft) shows relatively minor
vibrations. These variations in data patterns might not be
distinctly discernible with changes in machine health. Such
feature selection necessitates domain knowledge, specifically
an understanding of how the motor vibrates and the relative
sensor placement. The rationale is that the selection of
discriminative features, informed by this domain knowl-
edge, can significantly influence the AI model’s learning
process.

The link between features and predictions appears to
be extremely model-dependent, based on the diversity in
feature impact across different models. Thus, we have used
several XAI methods for confirming which features appear
frequently as top important features for different AI models.
By highlighting the features that are most useful for making
predictions, our analysis can help direct feature engineering
and model selection.

Having provided different results for MEMS dataset,
we next provide the main evaluation results for N-BaIoT
dataset.

VI. N-BaIoT RESULTS EVALUATION
A. PERFORMANCE METRICS WITH ALL 115 FEATURES
We first show the main performance metrics (accuracy,
precision, recall, and F-1 score) for the different 10 AI
models (both single AI models and ensemble methods).
Table 7 shows such results. Using aforementioned variety of
machine learningmodels, the table gives a thorough summary
of the anomaly detection outcomes for the 9 IoT devices
that were discussed in Section IV-A. The performance
measures (accuracy, precision, recall, and F-1 score) are
displayed in the columns, with each row representing a
distinct AI model. Notably, the different ensemble methods
(Random Forest, Bagging, Blending, Stacking, and Voting)
show consistently high scores for all measures, with recall,
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TABLE 7. N-BaIoT - anomaly detection results for the nine devices (the higher the better) for each model.
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F-1 Score, and accuracy and precision all approaching
0.99. These algorithms demonstrate remarkable efficacy in
precisely detecting data anomalies. From single AI models,
Decision Tree, provides the best results with performance
similar to ensemble methods. The MLP and DNN models
show also promising performances for seven of the nine
devices. On the other hand, the ADA model has the
worst performance scores, suggesting that it would be less
robust for anomaly detection for this dataset. Finally, the
performance of the SVMmodel varies for different devicesm
but generally has much lower performance compared to DT,
and MLP.
Main Insights: The main insight from such performance

evaluation using all features for all nine devices of N-BaIoT
is that ensemble methods work best for predicting different
anomaly classes since combining different AI methods in
these ensemble methods harness the strengths of diverse
models andmitigate theweaknesses of lower performed ones.

We next provide feature importance analysis for one of
the nine devices (Samsung webcam IoT device which is
‘‘device 7’’).We chose this device since it has the best average
performance across different devices, thus the generated
feature analysis would be more trustworthy compared to
other devices. We also emphasize that we also generated
the feature importance for other 8 IoT devices (not shown
here in the interest of space). Again, we perform different
feature importance analysis using our different XAI methods
(LOCO, CEM, SHAP, PFI, Profweight, ALE, and LIME),
as detailed next.

B. OVERALL FEATURE IMPORTANCE (SHAP GLOBAL
SUMMARY PLOT)
We next show the overall feature importance under SHAP
(SHapley Additive exPlanations) values, which measure
each feature’s contribution to a machine learning model’s
prediction. Figure 15b shows such overall feature importance
using Random Forest model. Every horizontal bar is a unique
feature, and its length signifies the mean absolute SHAP
value, which reflects the average effect of the feature on the
output magnitude of the model. Each bar’s color—red for
‘‘benign,’’ green for ‘‘gafgyt.udp,’’ blue for ‘‘gagfyt.scan,’’
purple for ‘‘gagfyt.junk,’’ orange for ‘‘gagfyt.combo,’’ and
yellow for gagfyt.tcp —represents the percentage of each
feature’s influence on the various prediction classifications
for different botnet attack classes. For example, feature
‘HH_L1_magnitude’ significantly affects the ‘‘benign’’,
‘‘gagfyt.tcp’’, and ‘‘gagfyt.combo’’ classes, but features
‘HH_L1_weight’ have more effect for ‘‘gagfyt.junk’’ and
‘‘gagfyt.udp’ attack classes. One other class of features
have moderate effects for specific attack classes (e.g.,
‘HH_L5_mean’ for ‘‘gagfyt.scan’’ and ‘HH_L5_weight’ for
‘‘gagfyt.udp’’). On the other hand, some features have almost
no effect for most classes under ranodm forest model (e.g.,
‘HH_L5_pcc’, and ‘HH_L5_covariance’).

C. FEATURE IMPORTANCE USING SHAP WITH DIFFERENT
MODELS
We next provide the overall feature importance by SHAP for
the different AI models for N-BaIoT dataset. The average
effect of top-20 features on the model’s output magnitude
determined by the mean absolute SHAP value is displayed
in Figure 15.
Main Insights: By giving each feature a value that

corresponds to its importance for a certain prediction, SHAP
values provide a broad overview of feature relevance for dif-
ferent AI models. Figure 15a shows that the most significant
feature in the AdaBoost model is ‘‘HH_L1_weight’’, which
is followed by ‘‘HH_L1_magnitude’’ and ‘‘HH_L5_weight’’.
Figure 15b shows that feature ‘‘HH_L1_magnitude’ is the
most significant feature for Random Forest model, which is
followed by ‘‘HH_L3_weight’’ and ‘‘HH_L3_magnitude’’.
The feature importance pattern of Decision Tree has similar
pattern to that of Random Forest. According to the MLP
model summary in Figure 15c, feature ‘‘HH_L1_magnitude’’
has also the biggest average influence on model pre-
dictions, closely followed by ‘‘HH_L5_magnitude’’, and
‘‘HH_L5_mean’’ has the third rank. We have noticed similar
insights for SVM and DNN models (omitted in interest of
space).

D. FEATURE IMPORTANCE WITH CONTRASTIVE
EXPLANATIONS METHOD (CEM)
Recall that contrastive explanations method (CEM) shows
what may be altered in the input features to get a different
prediction output, which sheds light on how a machine
learning model makes decisions. They give complicated
models like MLPs some interpretability. Figure 16 shows
the feature importance using CEM for the top features
of N-BaIoT dataset using different AI models. Each bar
represents a different feature as explained in Section IV-A.
The y-axis, which has values between 0 and 0.4, measures
the relevance. When it comes to the model’s performance
or predictions, the features with the tallest bars are the most
significant. For CEM, the top important features are ‘‘HH-
L1-weight’’ with Adaboost and Random Forest and ‘‘HH-L1-
magnitude’’ with Decision Tree and MLP models.

E. FEATURE IMPORTANCE WITH LOCO
Recall that Leave-One-Covariate-Out (LOCO) is a strategy
used in machine learning models to estimate the importance
of features. When a feature is removed from the model, the
LOCO technique measures the change in prediction error to
assess how important the feature is. To be more precise, the
model is retrained several times, omitting a distinct feature
each time, and the effect on model’s performance is tracked.

Figure 17 shows the main outcomes of using the LOCO
approach on different AI models such as AdaBoost, Decision
Tree, Random Forest, and MLP. The x-axis lists the features
by name, and the y-axis, which is scaled on logarithmic
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FIGURE 15. Overall feature importance for all top-20 features using SHAP for different AI models for N-BaIoT dataset.

FIGURE 16. Feature importance using CEM XAI method for the top features of N-BaIoT dataset using different AI models.
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FIGURE 17. Feature importance using LOCO XAI method for the top features of N-BaIoT dataset using different AI models.

scale (notice the ‘‘1e-5’’ that shows the scale factor), shows
the feature importance scores. Every bar illustrates how
the prediction performance of the model is affected by
eliminating a single feature. Higher bars denote features that
are crucial for producing accurate predictions of different
anomaly classes because their absence dramatically reduces
the model’s accuracy. From the figures we can infer that
feature ‘‘HH-L1-magnitude’’ is most important with the
Adaboost and Decision Tree Ai models, followed by ‘‘HH-
L1-std’’, while feature ‘‘HH-L1-std’’ ranks most important
with the RF model followed by ‘‘HH-L3-pcc’’ which in-turn
ranks the highest with the MLP model.

F. FEATURE IMPORTANCE WITH PERMUTATION FEATURE
IMPORTANCE (PFI)
Recall that the Permutation Feature Importance (PFI) method
is another technique used in machine learning models
to assess the importance of features. In PFI, a feature’s
importance is determined by permuting its values and
tracking how the model’s performance indicators (accuracy
in our experiments) change as a result. More specifically,

the values of a given feature are randomly permuted or
shuffled between instances once the model is trained on the
original dataset. Each feature goes through this procedure
several times, and the average performance change indicates
how important the feature is. Permuting the values of a
feature that is critical to the model’s predictions would
probably result in a notable decline in performance. Thus, the
PFI technique provides information about how each feature
affects the overall performance of the model. This motivates
our usage of PFI for feature importance for N-BaIoT
dataset.

Figure 18 shows the outcomes of different models under
Permutation Feature Importance (PFI) for N-BaIoT dataset
where one feature at a time is changed and all other features
remain unaltered, and this is done for all features. The
significance scores are displayed on the y-axis; higher values
signal that the feature is more important because permuting it
has a bigger detrimental effect on the model’s performance.
The features are listed on the x-axis and reflect various
statistical attributes of different AI models. Comparing the
figures of all the models, we can observe that features
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TABLE 8. N-BaIoT - anomaly detection results for the nine devices only using the top-20 features.
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‘‘HH-L1-weight’’ and ‘‘HH-L1-magnitude’’ visibly rank as
the top two important features in all models except with
Adaboost, where ‘‘HH-L1-std’’ is the second highest ranked
feature, making ‘‘HH-L1-magnitude’’ the third one.

G. FEATURE IMPORTANCE USING PROFWEIGHT
ProfWeight, which stands for Profiled Weighting, is a
technique designed to explain how various features affect
an AI model’s predictions. It entails systematically changing
the weights given to various features and tracking how
this affects the predictions made by the model. Through
profiling the model with different weight configurations,
IoT developers can learn which features have a major
impact on the model’s output. Evaluating the model’s
sensitivity to various features and their individual con-
tributions is the fundamental concept. ProfWeight offers
a sophisticated understanding of feature importance,
which is very helpful when working with complex AI
models.

Figure 19 shows the outcomes of different models under
Profweight for N-BaIoT dataset. The significance scores
of different top features in N-BaIoT are displayed on the
y-axis; higher values signal that the feature is more important
because permuting it has a bigger detrimental effect on the
model’s performance. The features are listed on the x-axis and
reflect various statistical attributes of the dataset. Comparing
all the AI models, the feature ‘HH-L1-Magnitude’ has the
highest importance except with the MLP model, where ‘HH-
L3-mean’ has the first rank (i.e., with the highest importance).
Another interesting finding here is that RF model only
depends on three main features (‘HH-L1-magnitude’, ‘HH-
L1-weight’, and ‘HH-L1-std’) for making its classification
decisions.

H. FEATURE IMPORTANCE USING LOCAL INTERPRETABLE
MODEL-AGNOSTIC EXPLANATIONS (LIME)
We next provide local feature importance using LIME.
Designed to enable local interpretability for any machine
learning model (i.e., LIME is model agnostic XAI method).
By fitting a straightforward, interpretable model (such
as a linear model) to roughly represent the behavior of
the complex black-box model around a particular data
point, LIME produces locally faithful explanations. This
localized approximation improves the interpretability of the
model at the local level by providing insights into how
it functions for a specific instance. When working with
complicated models for predicting anomalies for IoT net-
works or needing transparency in certain predictions without
having to describe the entire model, LIME is especially
helpful.

The feature importance scores as calculated by LIME
for different AI models for N-BaIoT dataset are displayed
in Figure 20. For any AI model, each bar on the graph
represents a feature, and its length and direction show how
much the feature contributed to themodel’s prediction for that
particular instance. Positive values show a positive influence

on the prediction, while negative values show a negative
impact. The graph provides a clear image of how each
element affects a specific prediction by. This is especially
helpful for comprehending the behavior of the model on
a local basis. Overall, the features ‘‘H1_L1_magnitude’’
and ‘‘H1_L3_std’’ are the top two features for LIME for
most AI models except MLP that has ‘‘H1_L1_mean’’
as the top feature that affects its anomaly detection
decisions.

I. PERFORMANCE METRICS WITH TOP-20 FEATURES
We next show the performance metrics under top-20 features
for different AI methods to test the effect of generating
top features for the N-BaIoT dataset. Table 8 shows such
performance metrics under top-20 features for all nine IoT
devices in the N-BaIoT dataset. Overall, the top-20 features
have worse performance for all ensemble methods compared
to using the full list of features. On the other hand, some
of the models with worst performance under all features
has improvements in some performance metrics in several
devices under top-20 features. The main insight from this
experiment is that feature selection can be more helpful
for single AI models with lower performance, compared to
ensemble methods. Moreover, the anomaly detection models
seem to benefit from the majority of features when detecting
anomalies for N-BaIoT dataset. Furthermore, such feature
selection would depend on the nature of the IoT dataset.

J. FEATURE IMPORTANCE FOR EACH ATTACK TYPE
We next show the attack-specific feature importance (given
by the top five features based on each attack type). Table 9
show such a list for N-BaIoT dataset. This is extracted from
SHAP average scores for each attack using different AI
models. We observe that the feature ‘HH_L1_magnitude’
is the common top feature across the different attack types.
Furthermore, the feature ‘HH_L1_weight’ is the top feature
for ‘gagfyt.junk’ and ‘gagfyt.udp’ botnet attacks. There
are also other features that are common across different
attack types (e.g., ‘HH_L3_weight’, ‘HH_L3_magnitude’,
‘HH_L5_magnitude’, ‘HH_L1_mean’, and ‘HH_L3_mean’).
Overall, these results show the main features that we should
look for when investigating specific network botnet attack
for IoT devices in the N-BaIoT dataset. This attack-specific
feature importance can help in tuning AI models for detecting
different conditions of the IoT network (here, the network
traffic between host and destination IoT devices) given such
feature importance knowledge.

K. SUMMARY OF RESULTS FOR N-BaIoT
We have provided overall feature importance analysis
using five XAI methods (SHAP, LOCO, CEM, PFI, and
ProfWeight). We have also provided local feature impor-
tance analysis using the popular LIME method. Further-
more, we provided performance metrics under different
AI methods and different combinations of features (top-20
features, and all features). All things considered, features
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FIGURE 18. Feature importance using PFI XAI method for the top features of N-BaIoT dataset using different AI models.

TABLE 9. The feature importance (given by top five features) for each
attack type for N-BaIoT dataset. The feature HH_L1_magnitude is the
common top feature across the different attack types.

‘‘H1_L1_magnitude’’, and ‘‘H1_L1_mean’’ have the most
impact on the predictions across all models from feature
importance results for different XAI methods considered
in our evaluation for N-BaIoT dataset. Similar to MEMS,
the link between features and predictions appears to be
model-dependent, based on the diversity in feature impact

across different models. Furthermore, the feature importance
problem is more challenging in this dataset since it has
115 features compared to 3 features in MEMS dataset. Thus,
different AI models seem to have different features that affect
their decision-making.

Having provided our extensive evaluation for both MEMS
and N-BaIoT datasets, we next provide a discussion of the
main findings and main limitations of our work.

VII. DISCUSSION
A. OVERALL DISCUSSION OF RESULTS
We first observe that each dataset has a different best
model (e.g., DNN gave the best performance for MEMS
dataset while ensemble methods were the best for N-BaIoT
dataset). We also observe that each XAI method can help in
understanding one aspect of our anomaly detection problem.
In particular, SHAP can give top features for each anomaly
class, LIME can explain anomaly detection decisions on
local samples of the IoT dataset, LOCO and Profweight
can explain more the importance of each single feature, and
ALE can provide correlation between each single feature and
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FIGURE 19. Feature importance using Profweight XAI method for top features of N-BaIoT dataset using different AI models.

predictions. Our analysis provides main insights about the
top features for each of the two datasets (MEMS and N-
BaIoT), along with the performance of anomaly detection
(represented by multi-class classification) for our two IoT
datasets. Recall that we focused on sensors’ readings for
MEMS dataset and network traffic between IoT devices for
N-BaIoT dataset, giving different angles of IoT systems.

B. DISCREPANCY IN MODELS’ PERFORMANCES ON THE
TWO DATASETS
There are several factors that explain the discrepancy in
classifiers’ performance between the N-BaIoT and MEMS
datasets, which are detailed below.

1) DATASET SIZE AND BALANCE
One important note is that bigger datasets typically result in
greater model performance since they have more examples
for the AI model to train from. This intuition is consistent
with our analysis in which performances on N-BaIoT dataset

is better than that of MEMS. This is due to the fact that
the MEMS sensor dataset has only thousands samples, due
to very low sampling rate (10 Hz) and thus its AI models’
performances are much lower compared to N-BaIoT dataset
(which has more than million and half samples).

2) CLASS OVERLAP AND DATA DISTRIBUTION
Compared to the N-BaIoT dataset, which have more distinct
class separations, the MEMS dataset may have classes that
are intrinsically closer together in feature space (such as
‘‘Near Failure’’ and ‘‘Failure’’), making it more difficult
for models to distinguish between them. Thus, better
performance may also result from the fact that N-BaIoT
dataset is having a more balanced distribution of classes than
the MEMS dataset.

3) FEATURE IMPORTANCE
The ‘z’ feature was found to be the most important, and it had
a major impact on model projections inMEMS dataset. Thus,
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FIGURE 20. Feature importance using LIME XAI method for the top features of N-BaIoT dataset using different AI models.

the MEMS dataset might be more vulnerable to changes in
this crucial characteristic, resulting in notable performance
variations, because it only has three features, one of which
is ‘z’. On the other hand, the N-BaIoT dataset might be less
impacted by changes in a single feature because it has a larger
feature set, leading to more consistent performance.

4) DATA QUALITY
The N-BaIoT dataset may have characteristics that are less
noisy or more discriminative for the anomaly detection task,
which could explain why the classifiers performed better on
it than on MEMS dataset.

C. FAIRNESS AND BIAS OF AI MODELS
We discuss here several metrics to measure the fairness and
bias on the data collection technique and the accountability
issues of AImodels. Thesemetrics include Demographic Par-
ity Score, Predictive Parity Score, and Calibration Disparity
Score [66]. We explain and measure such scores for both

MEMS and N-BaIoT datasets considered in our work. These
metrics and their related results are detailed below.

1) DEMOGRAPHIC PARITY SCORE
Demographic Parity, also known as statistical parity, eval-
uates whether outcomes are independent of protected
attributes. It compares the proportion of positive outcomes
across different labels from the dataset.

2) PREDICTIVE PARITY SCORE
Predictive parity examines whether the predictions made
by the model are equally accurate across different labels.
It assesses whether the model’s performance is consistent
regardless of the label.

3) CALIBRATION DISPARITY SCORE
Calibration metric assesses whether the predicted prob-
abilities align with the true probabilities of outcomes.
miscalibration across different groups can indicate bias in the
AI model.
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4) METRICS PERFORMANCES ON MEMS
We start by explaining the results of these metrics for our first
dataset, MEMS dataset.
(a) Confusion Matrix: There are 4316 instances in the test

set where the model’s predictions match the true labels.
(b) Demographic Parity Score: 1.0
The Demographic Parity Score is 1.0, which indicates

perfect demographic parity. This means that the proportion
of positive predictions is the same across different groups.
(c) Predictive Parity Score: 0.0
The Predictive Parity Score is 0.0, which means that the

positive predictive value (PPV) is equal between the groups of
interest (‘Near-failure’ class) and the other group (‘Normal’
and ‘Failure’ classes). In other words, the model’s predictions
are equally accurate for both groups.
(d) Calibration Disparity Score: 1.0
The Calibration Disparity Score is 1.0, indicating per-

fect calibration disparity. This means that the calibration
curves, which show the relationship between predicted
probabilities and the true probabilities of positive out-
comes, are the same for the group of interest (‘Near-
failure’ class) and the other group (‘Normal’ and ‘Failure’
classes).

5) METRICS PERFORMANCES ON N-BaIoT
We finally explain the results of these metrics for our second
dataset, N-BaIoT dataset.
(a) Confusion Matrix: There are 24,000 instances in the

test set where the model’s predictions match the true labels.
(b) Demographic Parity Score: 1.0
A Demographic Parity Score of 1.0 indicates perfect

demographic parity. This means that the proportion of
positive predictions is the same across different demographic
groups. In this case, it suggests that the model’s predictions
are balanced across different groups.
(c) Predictive Parity Score: 0.0
The Predictive Parity Score of 0.0 suggests that there

is no difference in the positive predictive value (PPV)
between the group of interest (the ‘gafgyt.scan’ class) and
the other group (remaining anomaly classes). It means
that the model’s predictions are equally accurate for both
groups.
(d) Calibration Disparity Score: 1.0
A Calibration Disparity Score of 1.0 indicates perfect

calibration disparity. This means that the calibration curves,
which show the relationship between predicted probabilities
and the true probabilities of positive outcomes, are the same
for the group of interest (‘gafgyt.scan class’) and the other
group (remaining classes). Essentially, it suggests that the
model’s predicted probabilities are well-calibrated for both
groups.
Main Insight: Overall, these results suggest that the

anomaly detection models are performing well in terms of
fairness and bias according to the specified metrics for both
datasets considered in our work.

D. CONFUSION OF AI MODELS BETWEEN ANOMALY
CLASSES (CONFUSION MATRICES)
1) CONFUSION MATRICES COMPARISON
Here, we show the Random Forest AI model’s performance
confusion matrices for both IoT datasets in Figure 21. For the
MEMS dataset, the confusion matrix (shown in Figure 21a)
shows its three classes. Although it still tends to make
accurate predictions, there is clear confusion between Class 1
(normal) and Class 2 (near failure), as seen by the lighter
shades off the diagonal. Figure 21b shows RF model with six
classes for the N-BaIoT datset, which shows high accuracy
in some classes with most predictions focused along the
diagonal, indicating accurate classifications. Interestingly,
a higher percentage of true positives is suggested by the
darker shades for classes like 1, 2, 3, and 5. Under such
comparison of confusion matrices with the Random Forest
algorithm as the anomaly classification algorithm, we show
the differences in performances on the two datasets where
N-BaIoT dataset have better prediction power compared to
MEMS dataset (with lower number of samples).

2) MAIN EXPLANATIONS OF CONFUSION MATRIX OF MEMS
DATASET
In the confusion matrix for the MEMS dataset (Figure 21a),
there are three classes. Lighter hues in the off-diagonal
cells show some misclassification across the classes, but
substantially fewer than in the N-BaIoT dataset. The darker
blue square in the upper left indicates a high number of true
positives for class 1 (Normal). The lighter blue squares in
these cells indicate that there is some uncertainty between
class 2 (Near Failure) and class 3 (Failure), but this matrix still
demonstrates a high degree of accuracy for class 1 (Normal)
predictions.

3) MAIN EXPLANATIONS OF CONFUSION MATRIX OF
N-BaIoT DATASET
Six class are displayed in the confusion matrix for the
N-BaIoT dataset as seen in Figure 21b. The true positives for
each class are shown by the darker hues along the diagonal,
which show that the model correctly predicted each case.
Class 1 (benign), for example, has 4077 true positives. Lighter
hues in non-diagonal cells indicate misclassifications—
erroneous predictions made by the model when it mistaken
one class for another. The concentration of darker hues along
the diagonal and fewer light spots elsewhere indicate that the
RF model has a relatively low misclassification rate and high
accuracy for both the benign class and the other attack classes
for N-BaIoT dataset.

4) COMPARISON BETWEEN MEMS AND N-BaIoT MATRICES
The different shades of blue show the frequency of predic-
tions where lighter cells indicate fewer occurrences, whereas
darker cells indicate a high frequency of predictions for
that combination of true and projected classes. Off-diagonal
cells should be brighter, indicating fewer misclassifications,
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FIGURE 21. Confusion matrices for the top classes of N-BaIoT and MEMS datasets using RF AI model.

whereas diagonal cells should ideally be the darkest,
indicating accurate classifications. While the MEMS matrix
(Figure 21a) demonstrates high performance primarily on
one class with some misunderstanding between the other two
classes, the other matrix of N-BaIoT (Figure 21b) reveals a
model that is doing well across many classes.

E. DISCUSSION ABOUT PERFORMANCE AFTER FEATURE
SELECTION
In our evaluation, we notice that most of the AI models work
better under all features. However, we emphasize that the
main goal of our feature importance analysis is understanding
the top features that affect the decisions of AI models, even
under the usage of most features in building these AI models.
Eventually, this can lead to better explainable frameworks
explaining decision-making of AI models.

F. NEED FOR XAI AND FEATURE IMPORTANCE FOR IoT
We emphasize that random forests and KNN, which are
frequently thought to be interpretable in machine learning
applications, also have interpretability issues. First, Random
forests’ ensemble nature leads to complicated decision
processes that go beyond single tree clarity [67]. In low-
dimensional spaces, KNN’s simplicity contrasts with the
interpretability concerns in high-dimensional spaces, where
defining the ‘nearest’ neighbour becomes not clear [68].
Moreover, simple decision trees that have lower depth and
containing a few leaves can be used as an explainability
tool as shown in prior works for intrusion detection [69],
[70], [71]. Since each level of the tree has a clear rule
for each node until it reaches a leaf, it shows exactly the
model decision process behind every decision which has
improved explainability when compared to black-box AI
models. However, this comes with much lower performance
in terms of accuracy, recall, and precision. On the other

hand, decision trees with higher depths and more leaves
usually enhance performance metrics but do not have the
explainability power of simpler decision trees. This sheds the
light on the importance of having XAI methods to extract
the main features for anomaly detection in IoT applications,
which we tackle in our current work. For developers and users
of these IoT devices, knowing the ‘‘why’’ behind a decision
of an AI model is just as important as the decision itself.

There is also compelling economic rationale for the
deployment and analysis of such XAI-based systems. In IoT-
based smart manufacturing, a variety of sensors (e.g.,
vibration, ultrasonic, pressure sensors) are utilized for tasks
like process control, automation, production planning, and
equipment maintenance. For instance, in equipment mainte-
nance, continuous monitoring of the operating equipment’s
condition using proxy measures (e.g., vibration and sound)
is implemented to avert unplanned downtime and reduce
maintenance costs [72]. Real-time analysis of data from these
sensors and building XAI models for this data plays a pivotal
role in predictive maintenance tasks, employing the anomaly
detection process [73], [74].
In other IoT domains with IoT networks (such as N-

BaIoT application), the manual intervention in data collection
(e.g., replacing a failing sensor) or mitigation actions (e.g.,
adjusting the position of many IoT security cameras) is a
costly endeavor. Consequently, precise anomaly detection
can significantly alleviate these labor costs. Therefore, our
proposed XAI-based anomaly detection technique finds
applicability in different IoT applications.

G. COMPARATIVE ANALYSIS WITH PRIOR RELATED WORK
We now provide a comparative analysis between our current
work and developed techniques with similar solutions by
other scientists in anomaly detection and feature importance
for IoT domain. Table 10 shows such a comparison where
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TABLE 10. A comparative analysis of the available features between the prior related works in IoT systems and our framework. Our work provides an
anomaly detection framework that incorporates detecting different attack types. Our framework also considers XAI-based feature importance analysis for
both global and local scopes for different AI models.

it shows the main differences between the main features of
our work and those of prior related works. Our work provides
an anomaly detection framework that incorporates detecting
different attack types. Our framework also considers XAI-
based feature importance analysis for both global and local
scopes for different AI models.

H. REPRODUCIBILITY
We have made our source codes and benchmark data
publicly available, facilitating the replication of our research.
We are releasing our IoT database corpus consisting
of two datasets, aiming to encourage standardization in
benchmarking anomaly detection and feature importance
within this crucial domain. We invite the community
to contribute to and expand this resource by sharing
their new datasets and models. The website contain-
ing our database and source codes can be accessed
at: https://github.com/agummadi1/XAI_for_IoT_Systems.
Recall that detailed information about our framework and
various model categories has been provided in Section IV-A.
Additionally, the descritions of the two datasets is available
in Appendix A, and details about hyper-parameter selections
and libraries used are presented in Appendix B.

VIII. CONCLUSION
This paper explored several interesting challenges to an
important application area, internet of things (IoT). We pro-
posed an explainable AI framework for studying anomaly
detection and failure classification for securing IoT systems.
We proposed a multi-class anomaly detection technique
and an efficient defect-type classification technique for IoT
applications. We then performed feature importance analysis
using seven XAI methods (SHAP, LIME, CEM, LOCO, PFI,
and Profweight, ALE). We tested our framework on two
real-world data-sets (MEMS, and N-BaIoT). We compared
single AI and ensemble-based models for anomaly detection
using different performance metrics. Our evaluation showed
that the single AI models lead to better anomaly detection
prediction for MEMS dataset while ensemble-based models
were better for N-BaIoT dataset. We also identified the top
features that affect the decision of different AI models for
both datasets using our different XAI methods.

We release our database corpus and codes for the commu-
nity to build on it with new datasets and models. We believe

that the XAI framework is useful in IoT domain, especially
when large anomaly detection datasets can be costly to collect
and are normally thought to be very specific to a single
application. Future avenues of research include leveraging the
data from multiple IoT sensors, exploring ensemble learning
on XAI methods to enhance feature analysis, and detecting
the device health by merging information from multiple,
potentially different, IoT sensors.

APPENDIX A
MEMS DATASET COLLECTION
Raw data was collected from the real-world sensors from
August 2021–May 2022. Hardware (sensors mounted on
motor testbeds) and software (code to collect the data from
the sensors and save them to a desktop machine).

A. MOTIVATION FOR DATA RELEASE OF MEMS DATASET
Themain motivation for releasing our datasets is for perform-
ing ML-based anomaly detection and feature importance for
IoT-based smart manufacturing systems. The manufacturing
of discrete products typically involves the use of equipment
termed machine tools. The health of a machine is often
directly related to the health of the motors being used to
drive the process. Given this dependence, health studies of
manufacturing equipment may work directly with equipment
in a production environment or in a more controlled
environment on a ‘‘motor testbed’’.

APPENDIX B
BENCHMARKS: MODELS, AND HYPER-PARAMETER
SELECTION
A. MODELS AND HYPER-PARAMETER SELECTION
We now provide details on the models used to study the
anomaly detection problem in our work. We explain the
anomaly detection (prediction) algorithms and the hyper-
parameters used for each classification model. This can
help reproducing our results for the future related works.
Following standard tuning of the model, we created different
variants of the models to choose the best parameters (by
comparing the performance of the multi-class classification
problem). The details for eachmodel can are explained below.

(1) Deep Neural Network (DNN): The initial classifier
is a Deep Neural Network (DNN) with an architecture
comprising an input layer, where the count of neurons
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corresponds to the number of features used, employing the
Rectified Linear Unit (ReLU) activation function. This is
succeeded by a dropout layer with a dropout rate of 0.01,
a hidden layer featuring 16 neurons and ReLU activation,
and concludes with a ‘‘softmax’’ layer. The loss function
is set to ‘‘categorical_crossentropy,’’ utilizing the adaptive
momentum (ADAM) optimization algorithm. Training the
model requires eleven epochs with a batch size of 1024, and
default values are retained for the remaining parameters.

(2) Random Forest (RF): The subsequent classifier
for detecting malicious samples in IoT datasets (network
traffic in N-BaIoT and sensor samples in MEMS) is the
RandomForest (RF). Hyperparameters include setting the
number of estimators (trees) to 100, maximum tree depth to
10, and the minimum number of samples required to split an
internal node to 2. Default values are maintained for the rest
of the parameters.

(3) AdaBoost (ADA): AdaBoost is employed as the
next classifier with the maximum number of estimators
set at 50, the weight applied to each classifier during
boosting iterations set to 1, and the base estimator being the
Decision_Tree_Classifier.

(4) Decision Tree (DT): The subsequent classifier for
detecting malicious samples in IoT datasets is the Decision
Tree (DT). Hyperparameters include setting the maximum
tree depth to 10, and the minimum number of samples
required to split an internal node to 2. Default values are
maintained for the rest of the parameters.

(5) Support Vector Machine (SVM): SVM is utilized
with a kernel set to ‘linear’, gamma to 0.5, probability set
to ‘True’, and regularization set to 0.5.

(6) Multi-layer Perceptron (MLP): The MLP classifier
adopts the same setup as DNN.

(7) Bagging: Bagging ensemble method was used with
base_estimator as decision tree classifier, and n_estimators
with 100, and random_state = 42. The remaining parameters
were set to default.

(8) Voting: Voting ensemble method was used with
three estimators which are bagging classifier, Adaboost
classifier, and random forest classifier. The voting method
was set to ‘‘hard’’, and the remaining parameters were set to
default.

(9) Blending: Blending ensemble method was used with
three base learners which are bagging classifier, Adaboost
classifier, and random forest classifier. The blending method
was choosing the base learner with the maximum prediction
probability for each sample. The remaining parameters were
set to default.

(10) Stacking: Stacking ensemble method was used with
three base learners which are bagging classifier, Adaboost
classifier, and random forest classifier. The meta_classifier
method was set to LogisticRegression, and use_probas was
set to ‘True’. The remaining parameters were set to default.

(11) K-nearest Neighbour (KNN): The KNN classifier
is used in one experiment (SHAP explanation for MEMS)
with default hyperparameters: the number of neighbors is set

to five, uniform weights, and the search algorithm is set to
‘auto’.
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