
IEEE VEHICULAR TECHNOLOGY SOCIETY SECTION

Received 22 April 2024, accepted 4 May 2024, date of publication 17 May 2024, date of current version 24 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3402544

DEDUCT: A Secure Deduplication of Textual Data
in Cloud Environments
KIANA GHASSABI AND PEYMAN PAHLEVANI
Department of Computer Science, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 4515768315, Iran

Corresponding author: Kiana Ghassabi (Kianaghassabi@iasbs.ac.ir)

ABSTRACT The exponential growth of textual data in Vision-and-Language Navigation tasks poses
significant challenges for data management in large-scale storage systems. Data deduplication has emerged
as a practical strategy for data reduction in large-scale storage systems; however, it has also raised security
concerns. This paper introduces DEDUCT, an innovative data deduplication method for textual data.
DEDUCT employs a hybrid approach that combines cloud-side and client-side deduplication mechanisms
to achieve high compression rates while maintaining data security. DEDUCT’s lightweight preprocessing
and client-side deduplication make it suitable for resource-constrained devices like IoT devices. It has
also been designed to resist side-channel attacks. Experimental evaluations on the Touchdown dataset,
consisting of human-written navigation instructions for routes, demonstrate the effectiveness of DEDUCT.
It achieves compression rates of nearly 66%, significantly reducing storage requirements while preserving
the confidentiality of textual data. This substantial reduction in storage demands can lead to significant cost
savings and improved efficiency in large-scale data management systems.

INDEX TERMS Cloud service provider, compression, secure data deduplication, textual data deduplication.

I. INTRODUCTION
Vision-and-Language Navigation (VLN) [1] tasks are
becoming increasingly important due to their significant
impact on advancing autonomous vehicles and intelligent
systems. VLN technology empowers agents to navigate real-
world environments, enhancing human-robot interactions
and safeguarding safety in autonomous vehicle operations.
Beyond navigation, VLN applications extend to diverse
domains, including robotics, virtual assistants, and smart
homes, making human-machine interactions more intuitive
and user-friendly. The significance of textual data in VLN
cannot be overstated, as it is the foundation for commu-
nication between humans and autonomous agents. Users
convey detailed navigational commands through natural-
language instructions, and autonomous systems rely heavily
on the accurate interpretation and execution of these textual
directives. Efficient data management has become critical
to meet the increasing demands of VLN and its associated
applications.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jie Gao .

Data deduplication [2] is a highly effective technique for
reducing storage space consumption by eliminating the need
for storing identical files or data blocks multiple times.
Instead, only one copy of each unique data is stored, and
references are used to point to the original copy. This
method is particularly beneficial in cloud environments
where vast amounts of data are typically stored. In backup
applications, deduplication can reduce storage needs by up
to 90− 95% [5], while in standard file systems, it can lead to
a reduction of up to 68% [4].

There are three main categories of data deduplication
techniques based on granularity [53]: file level, fixed-size
block, and variable-sized block. File-level deduplication finds
and removes entire duplicate files. Fixed-size block dedu-
plication divides a file into fixed-size blocks and eliminates
duplicate blocks. Variable-sized block deduplication utilizes
various sizes of chunks to identify redundant data, but it
may create more metadata and lead to hash collisions. Block-
level deduplication is typically more efficient as it can detect
duplicates even if they are stored across different files or
portions of the storage system. Deduplication techniques
can also be categorized based on place: server-based and

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 70743

https://orcid.org/0000-0002-8759-650X
https://orcid.org/0000-0001-5918-7250
https://orcid.org/0000-0001-6095-2968

K. Ghassabi, P. Pahlevani: DEDUCT: A Secure Deduplication of Textual Data in Cloud Environments

client-based. Server-based deduplication identifies and elimi-
nates duplicate data on the server. Server-based deduplication
eliminates the need for users to perform deduplication
tasks locally. However, server-side deduplication may only
partially mitigate communication overhead. On the other
hand, client-side deduplication takes place on the user’s
device before uploading data to the cloud. It involves collab-
oration between the client and server to find redundant data.
This can significantly reduce bandwidth consumption by
sending only unique data. However, client-side deduplication
raises concerns regarding side-channel attacks [37] and
data leakage. Finally, deduplication can be classified based
on time: inline and offline. Inline deduplication eliminates
duplicate data before or as it is being stored. Offline
deduplication deals with deduplication after data is stored on
a storage device.

Classic Deduplication (CD) methods [9] primarily focus
on identifying and removing duplicate files, which can lead to
inefficient storage when files share similar content but are not
identical. Generalized Deduplication (GD) [20] has emerged
as a more comprehensive approach to address this limitation.
GD expands the scope of traditional methods by recognizing
and eliminating nearly identical or similar data chunks. This
reduces storage requirements significantly, eliminates data
redundancy, and improves data management efficiency.

Textual data deduplication, while receiving less attention
than other data types, has become increasingly crucial due
to the exponential growth in textual information genera-
tion. There may be more efficient approaches than cloud-
based solutions, and clients can significantly contribute by
performing initial data preprocessing. Nevertheless, existing
client-side deduplication methods face security challenges,
particularly in cross-user deduplication scenarios. The risk
of side-channel attacks, where unauthorized access to files
uploaded by other users is possible, underscores the need for
an enhanced systemmodel for textual data deduplication. Our
motivation stems from addressing the limitations of current
client-side deduplication approaches.

A. CONTRIBUTION
We propose DEDUCT (DEDUplication for Cloud Text),
a deduplication method explicitly designed for textual data.
DEDUCT builds upon the framework presented in [8],
emphasizing data security and optimization of storage effi-
ciency. It employs a hybrid approach integrating cloud-based
deduplication with lightweight preprocessing tasks on
resource-constrained clients. This hybrid approach optimizes
data storage, enhances performance, and safeguards data
confidentiality in various applications, including VLN tasks
and other domains. Our contributions can be summarized as
follows:

• Novel Client-Side Deduplication: DEDUCT elimi-
nates the need to signal between the client and the cloud,
minimizes communication overhead, prevents data leak-
age, and mitigates side-channel attacks. Additionally,

it minimizes duplicate transmissions in the channel
without requiring cloud involvement.

• Data Confidentiality Preservation: DEDUCT ensures
data confidentiality through client-side preprocessing,
where data remains encrypted and secure throughout
deduplication. This client-based approach is adaptable
to resource-constrained devices, such as IoT, mobile,
embedded systems, and edge computing devices, mak-
ing it applicable in various scenarios.

• Enhanced Load Balancing: DEDUCT distributes
deduplication tasks between the cloud and the client,
mitigating the processing load on the cloud server and
improving overall storage system performance.

Our experimental results illustrate that, in the best-case
scenario, DEDUCT achieves a lossless compression ratio of
nearly 66% on the Touchdown [13] dataset, highlighting its
effectiveness in reducing storage costs.

The rest of the paper is organized as follows: Section II
covers preliminaries and fundamental concepts. Section III
defines the system and adversary models that form the
foundation for our deduplication framework. Our proposed
scheme is detailed in Section IV, and performance metrics
are discussed in Section V. In Section VI, we assess the
security of our proposed method. Section VII summarizes
the strategies used to prevent the information loss in the
context of textual data deduplication. Section VIII presents
the evaluation results and Section IX reviews related works
on generalized deduplication and privacy in deduplication
systems. Finally, Section X concludes the paper by summa-
rizing the key contributions of DEDUCT and outlining future
research directions.

II. PRELIMINARIES
This section introduces the fundamental definitions, nota-
tions, and methodologies for data deduplication and the
proposed method.

A. FINGERPRINTS
In data deduplication, fingerprints serve as unique identifiers
for specific chunks or blocks of data. The fingerprints are
generated using various hash algorithms like MD5 [21],
SHA-1 [22], and SHA-256 [23]. Alternatively, the Cyclic
Redundancy Check (CRC) [24] algorithm can also generate
fingerprints for data blocks. While algorithms like SHA-1
are generally considered more robust for encryption and
authentication purposes compared to CRC, the choice of
fingerprinting algorithm depends on the application’s specific
requirements. Factors like collision probability, strength,
performance, and length must be considered when selecting
an appropriate algorithm.

More recent works explore verifiable array authenti-
cated data structures (VADS) [52]. VADS play a crucial
role in ensuring the integrity and authenticity of data.
These structures, exemplified by the verifiable Shrubs array
(VSA), offer advantages over traditional Merkle tree-based

70744 VOLUME 12, 2024

K. Ghassabi, P. Pahlevani: DEDUCT: A Secure Deduplication of Textual Data in Cloud Environments

structures. Unlike Merkle trees, VSAs facilitate append-only
writes of digests, eliminating redundant hash computations
and random I/O operations. Furthermore, authenticated data
within VSAs can be efficiently stored and verified from a file,
simplifying the storage and retrieval process. Incorporating
such VADS enhances the robustness and reliability of
systems, making them more resilient to data tampering and
ensuring higher levels of trust in data integrity.

B. TOKENIZATION
Tokenization [27] is a common technique used in Natural
Language Processing (NLP) to split textual data into smaller
units called ‘‘tokens’’. Tokens can bewords, numbers, or even
individual symbols. The primary aim of tokenization is to
divide the text into smaller, meaningful units that can be
further analyzed and processed.

Tokenization can be performed using different methods,
such as whitespace-based tokenization, rule-based tok-
enization, and statistical tokenization [28]. Whitespace or
punctuation is often used as delimiters to separate words
in whitespace-based tokenization. This approach assumes
that spaces or specific characters separate words. Rule-based
tokenization, on the other hand, relies on predefined rules or
patterns to identify and extract tokens from the text. These
rules can be based on language-specific grammatical struc-
tures or syntactic patterns. Statistical tokenization utilizes
probabilistic models to determine token boundaries based on
statistical properties of the text, such as word frequencies
or sequence patterns. The choice of tokenization method
depends on the textual data’s characteristics and the system’s
specific requirements.

C. LEMMATIZATION
Lemmatization [42] is a commonly used technique in
NLP to identify a word’s dictionary or base form. Unlike
stemming [42], which removes suffixes to reduce words
to their root form, lemmatization considers the word’s
context and morphological analysis to derive its base form
accurately. By converting words to their lemmas, which are
canonical representations, lemmatization helps improve the
accuracy and effectiveness of text analysis and information
retrieval tasks. Lemmatization is particularly useful when
word meaning and context are crucial, such as in language
understanding, information extraction, and text classification.

D. LEVENSHTEIN DISTANCE AND WAGNER-FISCHER
ALGORITHM
The Levenshtein distance [29], also known as edit distance,
is a metric that measures the difference between two strings
based on the minimum number of single-character edits
required to transform one string into the other. The edits
include insertions, deletions, or substitutions of characters.
Formally, let A def

= (a1, . . . , an) be a string over alphabet 6.
We define the possible editing operations on A:

1) Delete the i-th position to get (a1, ..., ai−1, ai+1, ..., an).

2) Insert b ∈ 6 at position (i+ 1) to obtain (a1, ..., ai, b,
ai+1, ..., an).

3) Change the position i to b ∈ 6 to obtain (a1, ..., ai−1, b,
ai+1, ..., an).

The Wagner-Fischer algorithm [30] is a dynamic pro-
gramming approach for comparing two sequences. The
algorithm constructs a matrix with several rows and columns
equivalent to the lengths of the two strings being compared.
The rows represent the first sequence, while the columns
represent the second. The algorithm cumulatively computes
all possible alignments between two sequences by finding
the path through the matrix that minimizes the penalties
induced by gaps and mismatching segments. The final edit
distance is obtained by resolving all the edit distances of
the substrings that constitute the final strings. The key idea
is to solve all sub-problems using values obtained from
previous computations. Formally, let A def

= (a1, . . . , an) and
B def
= (b1, . . . , bm) be two strings in 6∗. For i ∈ [n] the set

{1, 2, . . . , n}, denote the sub-stringA(i) def
= (a1, a2 . . . , ai) and

the edit distance between A(i) and B(i) by D(i, j). The goal is
thus to find D(n,m). Algorithm 1 shows the steps.

Algorithm 1Wagner-Fischer Algorithm
input : Two chains A = (a1, . . . , an) and

B = (b1, . . . , bm).
output: An integer value with the edit distance

between the chains A and B.
Let t be an n× m matrix with indexes starting from 1.
for (i, j) ∈ [n]× [m] do

if ai ̸= bj then
t(i, j) = 1

else
t(i, j) = 0

Let D be an (n+ 1)× (m+ 1) zero-initialized matrix,
indexes starting from 0.
for i = 0 to n do

D(i, 0) = i
for j = 0 to m do

D(0, j) = j

for i = 1 to n do
for j = 1 to m do

D(i, j) = min

D(i− 1, j)+ 1
D(i, j− 1)+ 1
D(i− 1, j− 1)+ t(i, j)

return D(n,m)

E. GENERALIZED DEDUPLICATION
Traditional data deduplication methods solely focus on
identifying exact duplicates. However, this approach may not
be optimal for scenarios where data chunks share significant
similarities but are not identical. Generalized Deduplication

VOLUME 12, 2024 70745

K. Ghassabi, P. Pahlevani: DEDUCT: A Secure Deduplication of Textual Data in Cloud Environments

(GD) [20] has emerged as a more comprehensive technique
to address this limitation. This approach includes a trans-
formation step, transforming each data chunk into a base
and a deviation. The objective is to recognize similarities
within the data, such as chunks sharing the same base,
to achieve greater compression potential. The base value is
pivotal in deduplication, while the deviation value captures
the differences between the original data chunk and the
extracted base. GD utilizes transformation functions such
as Hamming [14] or Reed-Solomon codes [20] to optimize
storage costs. The overall processes of CD and GD are
compared in Fig.1 and Fig.2. In this example, the data is
split into 4 chunks ch1, ch2, ch3, and ch4. The chunks ch2
and ch3 are identical, and ch1 and ch4 are similar. The CD
does not distinguish similar data; only the identical duplicate
data will be identified and assigned a pointer. GD, however,
can provide this by using the transformation function. Similar
bases are deduplicated, and deviations are assigned to them.

FIGURE 1. The overall process of classic deduplication.

FIGURE 2. The overall process of generalized deduplication.

III. MODELS
In this section, we describe the system and adversary models
of the proposed method.

FIGURE 3. The system model of DEDUCT.

A. SYSTEM MODEL
As shown in Fig.3, the DEDUCT system model comprises
three components as follows:
• Key Distribution Center (KDC): The KDC serves as a
central authority responsible for distributing encryption
keys to authorized clients. To obtain an encryption

key, a client sends its unique group ID (IDClient) to
the KDC. The KDC verifies the client’s identity and
authenticity using a secure authentication protocol (e.g.,
challenge-response or ticketing schemes). If the client is
authenticated, the KDC generates a unique encryption
key for the client and securely transmits it to the client’s
device. The KDC is no longer required once the system
setup phase is complete.

• Cloud Service Provider (CSP): The CSP stores
encrypted data uploaded by clients. It utilizes a
pointer-based approach to efficiently manage storage
space and mitigate duplicate data.

• Authorized Clients: Clients are users who belong
to specific groups or organizations and have access
to the KDC for key retrieval. Before the initial data
transmission, clients communicate with the KDC to
obtain the key for encrypting specific data segments
(bases). Clients perform a five-step process before
uploading data to the CSP. First, data is divided into
smaller tokens using a tokenization algorithm. Then,
each token is transformed into a base and deviation
pair by employing the Wagner-Fischer algorithm. Next,
the client generates a unique identifier for each base
by calculating its CRC value, which is stored locally
for future reference. The base is then encrypted using
the obtained encryption key and a chosen encryption
algorithm to preserve confidentiality and integrity.
Finally, the client uploads the encrypted base, corre-
sponding CRC value, and deviation to the CSP. Only
the CRC value and deviation are transmitted if the
base’s CRC value already exists locally. We also assume
that clients have limited storage space, so the system
is designed to work within this constraint. Moreover,
integrating advanced cryptographic techniques such
as Verifiable Authenticated Data Structures (VADS)
for enhanced data integrity and audibility is left as
future work. The details of each step are explained
in Section IV.

The core of DEDUCT’s deduplication mechanism lies
in its combination of tokenization, transformation, CRC
computing, and pointer-based storage. Tokenization breaks
down large data blocks into smaller, more manageable
tokens, reducing the computational overhead associated with
deduplication operations. The transformation step converts
tokens into base and deviation pairs using theWagner-Fischer
algorithm, enabling more precise identification of duplicate
data. CRC calculation generates unique identifiers for each
base, facilitating efficient comparison and deduplication.
Local CRC storage allows clients to avoid unnecessary
transmission of CRC values to the cloud for duplicate data.
By performing CRC computations locally, clients minimize
bandwidth consumption and also reduce the burden on the
cloud infrastructure. Finally, pointer-based storage at the
cloud side eliminates the need to store identical encrypted
data blocks by maintaining pointers to existing values,
significantly reducing storage requirements.

70746 VOLUME 12, 2024

K. Ghassabi, P. Pahlevani: DEDUCT: A Secure Deduplication of Textual Data in Cloud Environments

TABLE 1. Notations used in the proposed scheme.

B. ADVERSARY MODEL
We assume that the CSP is honest but curious, i.e.,
it accurately executes system operations but may attempt
to examine data content. Additionally, we do not consider
scenarios involving collusion between users and the CSP.
The KDC is also assumed to be entirely trustworthy and
resistant to compromise by any adversary [39]. The following
summarizes our adversary model:

1) MALICIOUS CSP
The CSP can execute all user interactions following desig-
nated protocols. However, the CSP can launch offline brute-
force attacks. By systematically generating candidate data
chunks and computing their corresponding CRC values, the
CSP could compare them with the received CRCs to identify
potential matches.

2) MALICIOUS CLIENT
We assume the malicious client is a legitimate user accessing
the KDC to obtain authentic encryption keys. In addition, the
CSP is always honest when performing all system protocols.
A malicious client can exploit vulnerabilities to launch
several attacks. One such attack is the Poisoning attack [47],
where the malicious client replaces valid encrypted data with
a tampered version. This modification makes it challenging
for the cloud server to validate the authenticity of the original
data, potentially resulting in users retrieving a corrupted
version instead of their original files. Another potential attack
in client-side deduplication is the online brute-force attack,
which arises in scenarios where the cloud directly provides
feedback regarding the existence of specific data.

IV. PROPOSED SCHEME
This section explores the proposed scheme, DEDUCT,
a novel approach to secure and efficient textual data
deduplication in cloud storage. It outlines the key steps
in the client-side and cloud-side processes, as presented in
Algorithm 2. To ensure clarity, Table 1 explains the notations
utilized throughout this section.

A. CLIENT-SIDE
As mentioned before, the client-side process comprises
five steps: Obtaining the Encryption Key, Data Splitting,

Transformation, Encryption, and CRCComputing. The entire
process is shown in Fig.4. The following sections describe
each part in more detail.

Algorithm 2 DEDUCT
input : D: Raw Data,

τ : Threshold.
// Client-Side: Obtaining Encryption

Key from the KDC
k ← ObtainKey(IDClient);
// Client-Side: Splitting
T ← Tokenize(D);
// Client-Side: Transformation
for each t ∈ T do

// Client-Side: Extract base and
deviation

b, d = Transform(t);
// Client-Side: CRC Computing
c← CRC(b);
if c ∈ localStorage then

SendtoCloud(c, d);
else

// Client-Side: Encryption
e← Encrypt(b, k);
if Size(c) ≤ AvailableStorage(localStorage)
then

localStorage.append(c);
SendtoCloud(c, e, d);

else
// Remove the one with the

least frequency
min← MinFreq(localStorage);
localStorage.remove(min);
localStorage.append(c);
SendtoCloud(c, e, d);

// Cloud-Side
for each Recieved Message do

if Recieved Message == (c, d) then
e′← RetrieveEncryptedData(c);
ptr ← createPointer(e′);
Store(d, ptr);

else if Recieved Message == (c, e, d) then
e′← RetrieveEncryptedData(c);
if e = e′ then

ptr ← createPointer(e′);
Store(d, ptr);

else
cloudStorage.append(c);
Store(d, e);

else
cloudStorage.append(c);
Store(d, e);

VOLUME 12, 2024 70747

K. Ghassabi, P. Pahlevani: DEDUCT: A Secure Deduplication of Textual Data in Cloud Environments

1) OBTAINING THE ENCRYPTION KEY
To initiate the data encryption, clients must first obtain
the encryption key (k) from the KDC. Since clients are
assigned to specific groups or organizations, the KDC must
ensure that all authorized users within the same group
receive the same encryption key. To verify the client’s
authenticity, the KDC employs Kerberos authentication [50],
which is a ticket-based authentication mechanism. During
the authentication process, clients register with the KDC
and provide their unique group ID (IDClient). The KDC then
verifies the client’s credentials and grants a Ticket-Granting
Ticket (TGT), an encrypted ticket containing authentication
information and a session key. The client uses this session key
to decrypt the TGT and extract the encryption key specific
to its group. To further protect the encryption key from
unauthorized access and tampering, the KDC establishes a
secure Transport Layer Security (TLS) connection with the
client before transmitting the key. This secure communication
channel guarantees the confidentiality and integrity of the key
throughout transmission. Algorithm 2 outlines the process of
obtaining k using the ObtainKey(.) function.

2) DATA SPLITTING
During this step, the client uses tokenization to divide the data
into smaller pieces.

Definition 1: Let D be the original data, and T =

t1, t2, . . . , tn be the set of tokens resulting from the tok-
enization algorithm. The tokenization algorithm, denoted as
Tokenize(D), partitionsD into a sequence of non-overlapping
tokens such that T represents the set of all generated tokens.

The algorithm ensures that the resulting tokens cover the
entire data, enabling subsequent processing steps to operate
on manageable units. As illustrated in Fig.4, the data is
divided into multiple tokens denoted as t1, t2, . . . , and tn.

While tokenization itself is not a security measure, it can
be a crucial preprocessing step for enhancing data security.
By breaking down data into smaller tokens, tokenization
reduces the potential impact of a security breach. Even if
an attacker gains access to tokens, they may not be able to
reconstruct the original data without additional information.

3) TRANSFORMATION
The transformation step is a critical phase in DEDUCT,
involving the conversion of each token into a base and
deviation, as defined below:
Definition 2: Let D denote the original data, and T =

t1, t2, . . . , tn represent the set of tokens resulting from
the tokenization algorithm. The Transformation process,
denoted as Transform(ti), converts the input token into a
corresponding base-deviation pair (bi, di). For every token ti
in T , the transformation involves applying a method, such as
the Wagner-Fischer algorithm, to derive a base and deviation.

Algorithm 3 Transformation
input : T : a set of tokens (t1, t2, . . . , tn),

τ : Threshold.
for each t ∈ T do

// Extracting the base of a token
b← Lemmatize(t);
// computing the edit distance
distance← LevenshteinDistance(b, t);
// Computing the deviation
if distance < τ then

d ←WagnerFischer(b, t);
else

// Use token as its own base
b← t;
d ← 0;

return b, d

Algorithm 3 outlines the step-by-step execution of the
transformation function. For each token ti in T , the process
begins by extracting the base of the token using lemmatiza-
tion. Subsequently, the edit distance between the base and the
token is computed using the Levenshtein distance algorithm.

The deviation represents the differences between a token
and its base. To limit the number of allowed operations for
this conversion, a threshold value τ is used. If the computed
distance is less than a specified threshold τ , the deviation
is determined using the WagnerFischer algorithm. However,
if the distance exceeds τ , the token is considered identical to
its base, and both b and d are set accordingly (b← t;d ← 0).

The deviation consists of three components, as illustrated
in Fig.5:

• Operation type (ot) specifies the editing operation
performed on the base to obtain the token. The
possible operation types are insertion (I), deletion (D),
or substitution (S).

• Base index (oi) indicates the position in the base where
the operation ot is applied.

• Value (ov) represents the data inserted, deleted, or sub-
stituted during the operation ot .

We will now provide a formal definition for a deviation.
The transformation of a base (b) to its corresponding token
(t) can be expressed as a set of operations (op). This set can
be denoted as Ob→[t] = [op1, op2, . . . , opn].

Several operations can be used to convert a base to its
corresponding token. These operations are represented by
Pb−→t and are defined as follows:

Pb−→t = [O1
b−→t ,O

2
b−→t , . . . ,O

m
b−→t]. (1)

To determine the deviation between b and t , we need to find
the operation set from Pb−→t that requires the least number of
operations and stays within the defined τ . Therefore, we can

70748 VOLUME 12, 2024

K. Ghassabi, P. Pahlevani: DEDUCT: A Secure Deduplication of Textual Data in Cloud Environments

FIGURE 4. The overall process of DEDUCT on the client side.

FIGURE 5. The structure of an operation (op): the operation type (ot), the
base index to which the operation applies (oi), and the value involved in
the operation (ov).

define the deviation for a pair of b and t as follows:

devb−→t =

(
Ob−→t | ∀(Oib−→t) ∈ Pb−→t ,

|Ob−→t | ≤ |Oib−→t | and |Ob−→t | < τ
)
. (2)

The example in Fig.6 illustrates the lemmatization of the
word ‘‘studies’’ to its base value ‘‘study’’ using a threshold
value of τ = 4. There are two potential sequences of
operations, or operation sets, that can transform the base into
its corresponding token. The first set (O1

b−→t) involves three

operations (op1, op2, and op3), while the second set (O2
b−→t)

comprises only two operations (op1 and op2). For the first set,
in op1, the substitution operation (S) replaces the character
‘‘y’’ with ‘‘i’’ at the fourth index. To determine the deviation,
we select the operation set that meets the transformation
criteria with the minimum number of operations, staying
within the threshold. In this case, the second set (O2

b−→t) is

selected as it satisfies the transformation criteria with the
least number of operations within the threshold. Additionally,
it is important to note that the deviation is kept unchanged
throughout the process.

4) CRC COMPUTING
In this step, the client computes a CRC value for each base
derived from the token.
Definition 3: Let bi be a base derived from a token in

the deduplication process. The CRC Computing process is
mathematically defined as a function CRC : B → C where
B is the set of bases and C is the set of CRC values. for each

FIGURE 6. An example of determining the deviation in DEDUCT.

base (bi), the CRCComputing process computes a CRC value
denoted as c = CRC(bi).
This CRC value serves as a unique identifier for the base,

enabling fast and straightforward comparisons. The client
maintains a local database of these CRC values, keeping
track of the bases it has encountered. As storage capacity
becomes limited, the CRC value with the lowest frequency
of occurrence is replaced with the newly extracted base to
optimize space utilization. Specifically, the CRC value with
the lowest frequency of occurrence is identified using the
MinFreq(.) function in Algorithm 2.

Before processing a new token, the client checks if the
corresponding base’s CRC value already exists locally. If so,
it indicates that the base is a duplicate and has been uploaded
previously. In this case, the client transmits only the CRC
value and deviation to the cloud, eliminating the need to send
the entire base. This process saves bandwidth and reduces
network traffic.

On the other hand, if the base’s CRC value is not found
locally, it implies it is new and has not been uploaded. The
client then stores the CRC value locally and transmits both
the encrypted base and the corresponding CRC value and
deviation to the cloud. This ensures that all data stored on
the cloud is correctly identified and tracked for deduplication
purposes.

VOLUME 12, 2024 70749

K. Ghassabi, P. Pahlevani: DEDUCT: A Secure Deduplication of Textual Data in Cloud Environments

Using CRC values in data deduplication offers several
advantages. It simplifies comparisons between data blocks,
making it easier to identify duplicates and reduce storage
requirements. Additionally, CRC values are lightweight
hashing methods, reducing the computational overhead
associated with deduplication operations. Furthermore, using
CRC values adds an extra layer of confidentiality, as attackers
cannot directly access the raw data stored on the client side.
This protects the sensitive content from unauthorized access
and potential data breaches.

5) ENCRYPTION
The client encrypts the base to enhance data security further
before transmitting it to the cloud. This encryption process
utilizes a derived key from the KDC and a robust encryption
method. The encrypted base, the deviation, and CRC values
are then sent to the cloud.
Definition 4: Let b represent a base derived from the data.

The Encryption process is formally defined as a function
Encrypt : B → E , where B is the set of bases and E is
the set of encrypted data. For each b, the Encryption process
computes an encrypted output denoted as e = Encrypt(b, k).
Encryption adds an extra layer of protection, making it more
difficult for unauthorized parties to obtain the original base
data. This protection extends to both the communication
channel and the cloud storage itself. The choice of encryption
method is crucial, as it can significantly impact bandwidth
consumption. Therefore, it is essential to carefully consider
the trade-off between security and bandwidth usage when
selecting an encryption method. We also note that deviations
do not contain any sensitive information that necessitates
encryption. Therefore, they are transmitted in plain text
to reduce the computational overhead on the client. This
optimization allows the client to focus its resources on
processing and encrypting the base, ensuring that the overall
data management process remains efficient and secure.

B. DUPLICATE MANAGEMENT ON CLOUD SIDE
When a client uploads data, the cloud-side processing
performs the following actions to identify and handle
duplicates efficiently:

1) CRC Value Check: The cloud first checks its storage
for an existing entry with the same CRC value (ci)
received from the client.

2) Duplicate Encrypted Base Check (if CRC match): If
a matching CRC value is found, it indicates a poten-
tial duplicate. The cloud retrieves the corresponding
encrypted base (ej) associated with that CRC value and
compares it with the received encrypted base (ei) There
are two cases:
• Identical Encrypted Bases (ei = ej): This confirms
a true duplicate. The cloud utilizes a pointer-based
approach to reference the existing base (ej) instead
of storing a new copy of the encrypted data (ei).
This pointer points to the location where the identical

encrypted base is stored, minimizing storage over-
head.

• Different Encrypted Bases (ei ̸= ej): This scenario
can occur due to the encryption randomness. The
encryption process itself introduces randomness,
leading to variations in the encrypted outputs (ei and
ej) even for identical plain texts. Moreover, someone
may not honestly use the key and try to produce the
wrong encrypted data to interfere the system. In both
cases, the cloud prioritizes storing the data uploaded
by the current client. In this case, it appends a new
entry to its database for the data with the same CRC
value (ci) but a different encrypted base (ei). This
strategy helps to mitigate Poison attacks, which are
further discussed in Section VI.

3) Classical Deduplication Techniques (if no CRC
match): If the cloud doesn’t find a matching CRC
value, it implies the data is likely unique. We also
note that there is a potential scenario where the
cloud might receive a duplicate encrypted base if the
client’s local storage becomes full and a CRC value is
removed. In both cases, DEDUCT can leverage classical
deduplication techniques and add a new entry.

V. PERFORMANCE METRICS
This section outlines the performance metrics utilized to
evaluate the proposed method.

A. COST MODEL
The cost model considers data storage on both clients and
the cloud. To measure the size of a given dataset, we utilize
the function Size(.), which calculates the total number of
bits required for storage. Additionally, Msize represents the
storage capacity of the client.

1) CLIENT STORAGE COST
The client’s storage cost primarily depends on the size of the
CRC function’s output value, denoted by Csize. This value
represents the number of bits required to represent a single
CRC value. The client’s storage cost is calculated as follows:

Sclient = |LC| × Csize, (3)

where LC is the set of local CRC values stored on the client
side. We also note Sclient ≤ Msize.

2) CLOUD STORAGE COST
The cloud stores various data components, including received
deviations, CRC values, encrypted bases, and pointers for
duplicate received bases. To accurately calculate the storage
cost for deviations, it is essential to consider each component
of op. The Wagner-Fischer algorithm utilizes three operation
types, requiring 2 bits for ot . The second element (oi) can be
represented using log2(|b|) bits. For ov, storage cost depends
on the alphabet set �, demanding log2(|�|) bits per element.
Thus, the storage cost for each deviation is determined

70750 VOLUME 12, 2024

K. Ghassabi, P. Pahlevani: DEDUCT: A Secure Deduplication of Textual Data in Cloud Environments

as follows:

Cdevt−→b = |devb−→t| × (2+ log2(|b|)+ log2(|�|). (4)

The size of encrypted bases, denoted by Esize, is directly
influenced by the encryption method employed by the client.
Additionally, the cloud must store the received CRC values
of each encrypted base. We denote the duplicate received
bases by dp; each duplicate needs a pointer to the encrypted
stored bases. Each pointer, in this case, requires log2(|SEB|
bits where SEB is the set of stored encrypted bases. Thus, the
cloud’s storage cost can be defined as:

Scloud = (|SEB| × Esize)+ (|dp| × log2(|SEB|))

+ (
∑
t∈T

Cdevb−→t)+ |SC| × Csize, (5)

where SC is the set of stored CRC values in the cloud after
cloud-side deduplication, and |dp| is the number of duplicate
bases.

B. ENCRYPTION RATIO
To determine the encryption ratio (Er) of the system,
we compute the portion of storage occupied by all transmitted
encrypted bases (TEB) to the size of the raw data.

Er =
Size(TEB)

Size(Raw Data)
. (6)

C. COMPRESSION RATIO
The compression ratio (Cr) measures the data deduplication
efficiency in the cloud. It represents the proportion of
the cloud’s storage size to the size of the raw data after
deduplication. This can be expressed as follows:

Cr =
Scloud

Size(Raw Data)
. (7)

D. BANDWIDTH RATIO
To effectively evaluate the bandwidth efficiency of our
data deduplication system, we analyze the bandwidth usage
and derive a corresponding ratio. This ratio represents the
proportion of bandwidth consumption for data deduplication
compared to the raw data size.

The bandwidth usage (BWU) quantifies the total amount of
data transmitted over the communication channel. It encom-
passes the size of deviations, encrypted bases, and CRC
values and can be expressed as:

BWU = (|TEB| × Esize)+ (|dp| × Csize)

+ (
∑
t∈T

Cdevb−→t), (8)

where TEB refers to the set of encrypted bases sent through the
channel. It is important to note that the value of |TEB| might
not be equal to the size of the encrypted base set on the cloud
side, represented as SEB. This is because the cloud performs
deduplication internally, reducing the number of encrypted
bases transmitted.

The bandwidth ratio (BWr) is defined as the proportion of
BWU to the size of the raw data:

BWr =
BWU

Size(Raw Data)
. (9)

A lower value of BWr indicates more efficient bandwidth
utilization for the system.

VI. SECURITY ANALYSIS
In this section, we evaluate the security of DEDUCT,
considering two primary adversaries: a malicious CSP and a
malicious user. We assume that data transmission is protected
through a secure communication protocol, such as SSL/TLS.
Further details regarding identification, authentication, and
secure communication are beyond the scope of this work and
will not be discussed here.

Case 1. Assume that the adversary is the malicious CSP.
The confidentiality of data is fundamentally protected by

employing robust encryption algorithms, such as AES, which
resist brute-force attacks. Even with a powerful adversary, the
data remains secure due to the strength of these encryption
mechanisms. However, a potential threat arises from the
CSP attempting an offline brute-force attack on CRC values.
Using tokenization to split data into variable-length tokens
introduces an additional layer of complexity for the CSP. The
CSP is unaware of the exact size of the raw data, requiring it
to consider all possible combinations for different data sizes
to initiate a brute-force attack. Furthermore, the CSP’s lack of
awareness regarding the manipulated data type adds another
layer of protection. The CSP can only attempt brute-force
attacks based on the CRC values, which may not provide
sufficient information to decrypt the data accurately.

To assess the vulnerability to brute-force attacks based
on CRC collisions, we introduce a formula to estimate the
potential collisions for a given data size (n bits) and a fixed
CRC size (k bits, e.g., CRC-8). It considers the total number
of possible unique data values (distinct bit combinations) 2n

and the number of possible unique CRC values 2k :

Col(n, k) =
2n − 2k

2k
. (10)

For instance, with a data size of 16 bits and CRC-8, the
potential number of collisions would be 255.

The occurrences of duplicate CRCs for a specific entry,
denoted by Occ(n,k), is calculated as:

Occ(n, k) = Col(n, k)+ 1. (11)

The probability of a successful brute-force attack by
the CSP, considering occurrences of identical CRCs across
different bit lengths, can be expressed as:

PSuccess =
1∑

n=1Occ(n, k)
. (12)

This probability is exceptionally low. For instance, consid-
ering a threshold of 24 bits, the CSP would need to construct
all combinations from 1 bit to 24 bits and compare the CRCs.

VOLUME 12, 2024 70751

K. Ghassabi, P. Pahlevani: DEDUCT: A Secure Deduplication of Textual Data in Cloud Environments

The resulting probability would be 1
131078 = 0.0000076290,

indicating a highly unlikely scenario.
Case 2. Assume that the adversary is a malicious user.
As previously outlined, the DEDUCT system model

intentionally withholds any explicit response regarding the
existence or non-existence of clients’ information. Therefore,
the malicious user cannot conduct online brute-force attacks
on data.

To mitigate the risk of a Poison attack, the system employs
a strategy that compares the CRCs of uploaded data. The
cloud system handles storage differently if the CRCs match,
but the encrypted values differ. Instead of pointing to an
existing entry with a different encrypted value, it creates a
distinct entry for the new user. This effectively addresses
Poison attacks. However, this strategy introduces a potential
vulnerability known as a Sybil attack [46]. A malicious actor
could create multiple fake identities or entries, exploiting the
system’s tendency to create new entries for varied encrypted
values. This could flood the system with fake entries and
pose a risk to its available resources. To prevent users
with fake entries from overwhelming the system, one viable
strategy is to set a threshold value for each user. This
would limit the number of data uploads with the same
CRC but different encrypted values a user can perform.
Additionally, implementing effective identity management
strategies is recommended to prevent users from creating
multiple accounts.

VII. PREVENTING INFORMATION LOSS
Data deduplication offers significant storage optimization
benefits, but maintaining data integrity throughout the
process is a critical challenge. Inaccurate identification of
duplicates or inadvertent data alteration can lead to significant
information loss. Our proposed method addresses this
challenge through a comprehensive approach that prioritizes
efficient deduplication and information preservation.

A. ACCURATE DUPLICATE IDENTIFICATION AND CONTEXT
PRESERVATION
DEDUCT leverages a multi-step process to ensure accurate
duplicate identification while preserving contextual informa-
tion within textual data. This process involves Tokenization,
Transformation, and CRC Computation. By combining these
techniques, DEDUCT can accurately identify duplicate data
segments, even when subtle variations exist. Additionally,
the approach prioritizes retaining the semantic meaning and
context of the original data. This is achieved by:

• Preserving token order:Maintaining the original order
of tokens within each segment ensures contextual
relationships are not compromised.

• Accounting for deviations: DEDUCT captures any
deviations from the ‘‘normalized’’ form using transfor-
mation techniques. These deviations are stored along-
side the CRC value, allowing for the reconstruction of
the original data when necessary.

B. EFFICIENT DATA TRANSMISSION AND SECURITY
MEASURES
DEDUCT optimizes data transmission to the cloud by
focusing on unique data segments. This approach minimizes
bandwidth usage and reduces the risk of information loss
associated with network issues:

• Selective Transmission: Only unique data segments
and their corresponding CRC values and deviations are
transmitted.

• Data Encryption: Sensitive textual data is encrypted
before transmission, safeguarding its confidentiality and
integrity.

By transmitting only essential data and employing encryp-
tion, DEDUCTminimizes the risk of information loss due to:

• Redundant storage:Duplicates are not stored unneces-
sarily, preserving the richness and originality of the data.

• Network congestion or packet loss: Reduced data
transmission mitigates the potential for data loss during
transmission.

• Data breaches or unauthorized access: Encryption
protects sensitive information from unauthorized access,
preventing information loss due to security breaches.

C. ADAPTABILITY AND SCALABILITY
DEDUCT’s architecture is designed to handle diverse textual
datasets. Its scalability ensures efficient deduplication even
as data volumes increase. This adaptability minimizes the
risk of information loss associated with methods that may
not be well-suited to specific textual data types. Through
these strategies, DEDUCT aims to minimize the risk of
information loss during the deduplication process, preserving
the deduplicated data’s quality, integrity, and context.

VIII. PERFORMANCE EVALUATION
This section presents the experimental evaluation of our pro-
posedmethod using Touchdown [13] dataset. The evaluations
are performed on a system with an Intel(R) Core(TM) i7-
10510U CPU running at a base frequency of 1.80 GHz,
a maximum frequency of 2.30 GHz, and 16GB of RAM. The
evaluation program is implemented using Python 3.10.4.
We first analyze the time complexity of each component

individually. Subsequently, we determine the impact of
threshold values on the defined metrics. This allows us
to identify the optimal threshold value and investigate the
compression ratio the proposedmethod achieves with varying
configurations. Next, we compare the performance of our
method in terms of compression ratio to various deduplication
techniques. We also assess the bandwidth consumption ratio
and present the encryption ratio obtained by the proposed
method.

A. COMPLEXITY ANALYSIS
In this section, we will examine the time complexity of
various components in our proposed methods. We note that
our complexity analysis focuses on the techniques used

70752 VOLUME 12, 2024

K. Ghassabi, P. Pahlevani: DEDUCT: A Secure Deduplication of Textual Data in Cloud Environments

within DEDUCT. The complexity of KDC involves secure
key management and distribution, which are independent
of the encrypted data and introduce additional complexities
beyond the scope of this section.

1) TOKENIZATION
We use the NLTK library for tokenization [36]. This
function’s time complexity is O(n), where n is the length
of the input text. This means that the processing time will
increase linearly with the size of the input text, indicating a
linear time complexity.

2) LEMMATIZATION
We utilize the WordNetLemmatizer [35] function for
lemmatization, which employs a Python dictionary. This
dictionary facilitates direct lemma retrieval based on the
word, part of speech, and offset. Since dictionary lookups
in Python are typically O(1) on average, the time com-
plexity for lemma lookup using the WordNetLemmatizer
is also O(1). By leveraging this dictionary-based imple-
mentation, the WordNetLemmatizer achieves constant-time
performance for lemma lookups, regardless of the size
of the WordNet lexicon or the number of words being
lemmatized.

3) WAGNER_FISCHER ALGORITHM
The Wagner-Fischer algorithm employs dynamic program-
ming and a matrix to determine the minimum edit distances
between substrings. Its time complexity depends on both
matrix initialization and computation. The initialization
phase involves filling a matrix of size (m + 1) × (n + 1)
with initial values, requiring O(mn) time. The computation
step involves accessing each cell to calculate the minimum
distance by considering adjacent cells, necessitating O(m ×
n) time. Therefore, the algorithm’s overall time complexity
is O(m × n), where m and n represent the input strings’
lengths.

To improve the algorithm’s efficiency, Ukkonen’s [34]
enhancement offers a time complexity of O(n+ d2), where n
is the longer string’s length, and d represents the edit distance.
In DEDUCT, the value of d is bounded by τ . Thus, the time
complexity can be considered O(n + τ 2). Future work can
include optimizations that enhance the algorithm’s efficiency
in various applications by achieving better time complexity.

4) CRC COMPUTING
The time complexity of computing a CRC is O(n), where
n represents the length of the input data. This linear time
complexity arises from the iterative process of performing
bit-wise operations, such as XOR (exclusive OR) and bit
shifts, to calculate the CRC value. During CRC compu-
tation, each bit or byte of the input data is processed
individually, resulting in several iterations proportional to
the input size. Consequently, the time required to compute
the CRC increases linearly with the length of the input
data.

5) ENCRYPTION
Block ciphers, including DES (Data Encryption Standard)
[32], Triple DES [33], and AES (Advanced Encryption
Standard) [31], are widely used cryptographic algorithms
known for their ability to provide secure data encryption.
One notable characteristic of these block ciphers is their
time complexity, which can be considered O(1). The time
complexity of O(1) implies that the execution time of these
block ciphers remains constant regardless of the input size;
unlike many other algorithms where the execution time
scales linearly with the input size, block ciphers operate on
fixed block sizes and perform a fixed number of operations,
regardless of the input length. This constant-time execution
ensures that the encryption process remains efficient even for
large amounts of data.

6) CLOUD-SIDE
When client storage is limited, it can lead to duplicate data
being received by the cloud. To prevent this, the cloud effi-
ciently searches for existing data by employing a hash table
where each CRC value serves as a key, and its corresponding
encrypted data is the associated value. This approach ensures
that search, insertion, and deletion operations have an average
time complexity ofO(1), indicating constant time complexity.
Assigning a pointer has a constant time complexity of O(1),
regardless of the size or complexity of the assigned data.

When retrieving the original token on the cloud, it is neces-
sary to consider the complexity of the permitted operations in
the Wagner-Fischer algorithm that generates the deviations.
Deleting and inserting elements have a time complexity of
O(n), where n is the length of the string, as they involve
shifting subsequent elements. On the other hand, replacing
an element has a constant time complexity of O(1) since
it directly modifies the element at the specified index. The
overall time complexity of reconstructing the token depends
on the number of operations in the deviation. The retrieving
process involves iterating through each operation in a loop,
which takes a time complexity ofO(m) wherem stands for the
number of operations. During this loop, the string elements
are combined through concatenation operations, each taking
a time complexity of O(n). Considering that concatenation
occurs at every iteration, its overall contribution to the total
time complexity can be estimated as O(m × n), where m
is the number of operations and n is the maximum length
between the two input strings. Considering the complexities
of the allowable operations and the concatenation, the overall
time complexity for retrieving the original token can be
summarized as O(m× n).

B. THRESHOLD COMPARISON
In this section, we investigate the impact of threshold values
on two metrics, the bandwidth ratio (BWr) and compression
ratio (Cr). Our analysis involves two threshold values and
assumes the utilization of CRC-8 and CRC-16 methods along
with DES-64 and AES-128 encryption methods. Table 2

VOLUME 12, 2024 70753

K. Ghassabi, P. Pahlevani: DEDUCT: A Secure Deduplication of Textual Data in Cloud Environments

TABLE 2. The effect of the threshold value (τ) value on compression ratio (Cr) and bandwidth ratio (BWr) with different CRC values.

summarizes the findings. The client’s storage ratio refers to
the proportion of data that can be stored locally. For instance,
a ratio of 0.1 implies that the client’s local storage can
accommodate up to 0.1 times the data’s size that needs to
be uploaded. Table 2 shows how varying storage allocations
influence BWr. As more storage is allocated to the client,
the BWr declines until it reaches an optimal point. The
compression ratio of the proposed system is affected by
the chosen threshold value, but the observed difference is
relatively minor and can be disregarded.

Selecting a higher threshold value generally results in more
deviations and tokens matching the same base. Conversely,
a smaller threshold value yields a more effective compression
ratio. This efficiency stems from the lower cost of each
deviation in smaller tokens. Refining the definition of
deviations could potentially alter this trend.

C. BANDWIDTH RATIO
Fig.7 shows the bandwidth ratio (BWr) for different local
storage allocations. The client stores the CRC value of bases
locally to save bandwidth usage and only transmits the CRC
value to the cloud upon identifying a duplicate base. However,
if the client’s storage becomes full, it must discard a base
with the lowest frequency. This could lead to a duplicate base
being classified as new if it was previously transmitted to the
cloud but is no longer available in local storage. This directly
impacts BWU, which in turn influences BWr.
As the client’s storage capacity expands for various con-

figurations, we consistently observe a corresponding decline
in BWr. This is because providing adequate storage space
allows each encountered CRC value to be stored locally,
enabling the client to maintain a comprehensive record of
all data and effectively identify duplicates. By allocating
local storage that is approximately 0.001 times the size of
the Touchdown dataset, it can perform more efficiently and
reduce bandwidth usage by almost 67% on average and 78%
in the best case scenario.

D. COMPRESSION RATIO
Fig.8 shows the compression ratios obtained with various
configurations. By employing CRC-8 and DES-64, the
Touchdown dataset can be compressed up to 67%. Even
when alternative algorithms such as CRC-16 and AES-128

FIGURE 7. The comparison of BWr for DEDUCT with different
configurations.

FIGURE 8. The Cr of the proposed method with different configurations.

are utilized, substantial compression can still be achieved,
reaching approximately 65%.

Fig.9 compares the compression ratios of the proposed
method to TL-GD, GD-Hamming [14], and CD. Com-
paratively, TLGD and DEDUCT outperform the state-of-
the-art. While TLGD exhibits slightly higher compression

70754 VOLUME 12, 2024

K. Ghassabi, P. Pahlevani: DEDUCT: A Secure Deduplication of Textual Data in Cloud Environments

ratios, it lacks security measures and bandwidth reduction
capabilities. Conversely, DEDUCT achieves remarkable
compression ratios while safeguarding data integrity and
reducing bandwidth usage. It is worth noting that the
threshold value remains constant in each configuration, and
the size of the deviations does not change. Additionally, the
number of pointers to the encrypted bases depends on the total
number of stored encrypted bases.

FIGURE 9. The comparison of Cr for different deduplication methods.

E. ENCRYPTION RATIO
The encryption ratio (Er) of the proposed method is shown
in Fig.10. The encryption size and the CRC value influence
this ratio. The transmitted encrypted data directly relates to
the client’s local storage, which is determined by the size
of the CRC values. As the storage capacity increases, the
number of transmitted encrypted data decreases. Increasing
the client’s storage capacity is crucial to enhance data
transfer efficiency. This reduces the amount of encrypted data
transmitted, as only CRC values are sent for duplicate bases.
Consequently, amore efficient process is achieved. The figure
highlights the relationship between storage capacity and data
transmission efficiency.

F. PROCESSING TIME
As illustrated in Fig.11, the DEDUCT system distributes the
workload of secure data deduplication between the client
and server. The client handles tasks like data splitting,
transformation, and encryption, while the server focuses on
duplicate data verification using CRC values and storage
management with pointers. This breakdown typically leads
to a higher client processing time due to encryption and
transformations. Factors like data size, duplication ratio,
and encryption complexity further influence the workload
split. However, increasing client storage can optimize overall
performance. With more storage, the client can maintain a
larger CRC value cache, enabling it to check for duplicates
locally before sending data to the server. This reduces server

FIGURE 10. The comparison of Er for the the proposed method.

verification workload, as shown in the trend between client
storage ratio and server workload in Fig.11. A client-side
storage ratio of 100% indicates that server processing time
becomes negligible compared to the client-side workload.
However, it’s important to remember that the server is still
responsible for essential tasks like managing storage pointers
and performing minimal verifications, even in this scenario.
It’s also crucial to consider the trade-offs of increased client
storage, including the cost of hardware upgrades, potential
security risks for sensitive data stored locally, and the
processing power limitations of client devices, especially for
complex encryption algorithms or large datasets.

IX. RELATED WORKS
This section investigates related works in four categories:
Deduplication and privacy, popularity-based encrypted dedu-
plication, mitigating side-channel risks in deduplication
systems, and generalized deduplication and privacy concerns.

A. DEDUPLICATION AND PRIVACY
Classic data deduplication methods have raised concerns
about data privacy [3]. Traditional encryption algorithms pose
challenges for deduplication since they make encrypted data
indistinguishable from random bits, making it difficult to
identify identical messages. Convergent encryption (CE) [19]
was introduced as a solution to achieve encrypted deduplica-
tion by deriving encryption keys from the data content. This
enables deterministic encryption and ensures that identical
messages produce identical ciphertexts. However, CE only
offers confidentiality guarantees for unpredictable data,
leaving predictable data vulnerable to offline brute-force
attacks [6]. Additionally, given sufficient time and resources,
the cloud service provider could break the encryption and
gain access to the exact information stored in each user’s
outsourced data [40]. Yang et al. [49] proposed a data
deduplication scheme using Boneh-Goh-Nissim cryptosys-
tem and bloom filters. Their approach aims to achieve tag

VOLUME 12, 2024 70755

K. Ghassabi, P. Pahlevani: DEDUCT: A Secure Deduplication of Textual Data in Cloud Environments

FIGURE 11. The Portion of total time spent on the client and cloud-side (τ < 6).

consistency, confidentiality, access control, and resistance
to brute-force attacks in cloud storage. However, latency
remains a concern in its implementation. To further address
the challenges of deduplication and privacy, [45] introduces a
secure data-sharing scheme that integrates data deduplication
and sensitive information hiding. Wildcard substitution is
employed in electronic medical records to enhance privacy
and deduplication efficiency. Moreover, multiple key servers
are utilized to mitigate the risk of brute-force attacks and
single-point-of-failure scenarios.

Recent advancements in the data deduplication have
focused on optimizing Maximum Likelihood Estimation
(MLE) specifically for deduplicating file chunks rather
than entire files, enhancing deduplication efficiency [25].
Password-Authenticated Key Exchange (PAKE)-based pro-
tocols have also been introduced to facilitate secure key
sharing and determination on the client-side [7], [26]. Alter-
native privacy-enhancing mechanisms, such as Multi-Key
Revealing Encryption (MKRE) [39], have been proposed
to address the challenges of deduplication while preserving
privacy. By using MKRE, the encryption scheme becomes
more resistant to attacks attempting to break the encryption.
However, the security claims of MKRE have only been
proven in the programmable random oracle model, which
may not accurately represent real-world scenarios. A secure
cloud auditing scheme that supports data deduplication with
efficient ownership management was proposed by Wang et
al. in [51]. This scheme employs a lazy update strategy
to efficiently manage data ownership changes. The cloud
maintains a flag determining whether an update is necessary,
effectively reducing update frequency and computation
overhead.

B. POPULARITY-BASED ENCRYPTED DEDUPLICATION
Data deduplication systems often face a trade-off between
data security and storage efficiency. To address this challenge,
researchers have explored popularity-based encrypted dedu-
plication schemes. These schemes treat popular data, such as
widely shared songs or movies, differently from unpopular
data, like medical records or scientific research results.
In popularity-based encrypted deduplication schemes, only
popular data is encrypted using convergent encryption [19]

and subjected to deduplication, while unpopular data is
randomly encrypted to ensure semantic security [38]. Exist-
ing schemes often rely on a trusted third party to store
deterministic tags that record data popularity. However,
this reliance on a trusted third party introduces a security
vulnerability. If the trusted third party is compromised,
the deterministic tags become accessible, enabling offline
brute-force attacks to reveal data content [43]. Reference [48]
utilizes a double-layer encryption approach for less popular
data, allowing Cloud Storage to verify the correctness of
inner-layer convergent ciphertext. The outer-layer encryption
employs PRP, symmetric encryption, and XOR, leading to
reduced computational costs for users and cloud storage.

C. MITIGATING SIDE-CHANNEL RISKS
Harnik et al. were the first to propose a method to safeguard
against side-channel attacks by malicious users [37]. They
introduced the concept of employing a random threshold
for uploads to prevent attackers from inferring the presence
or absence of a file on the cloud. The server randomly
selects a threshold for each data chunk, and client-side
deduplication is only enabled when the number of file
uploads surpasses this threshold. This approach prevents
an attacker from determining the non-existence of a file.
Alternative methods involve randomization of thresholds
during operation [10] or their determination based on game-
theoretic optimization [11]. Armknecht et al. [12] studied
the trade-offs between security and efficiency, proposing a
randomized response technique to preserve privacy. Another
approach, known as ZEUS [41], necessitates the client
simultaneously request the storage of two chunks. The
server’s response to these requests is deterministic, meaning
that if one or both chunks already exist, the user will be
prompted to upload a combination of the two. While this
indicates the server’s possession of at least one chunk,
it does not reveal which one specifically. Building upon
this concept, RARE [17] further enhances protection by
randomly requesting the user to upload either both chunks
or a combination of the two whenever at least one chunk
is detected on the server. As a result, attackers face more
significant challenges in accurately determining whether a
particular chunk is stored in the cloud. To further address

70756 VOLUME 12, 2024

K. Ghassabi, P. Pahlevani: DEDUCT: A Secure Deduplication of Textual Data in Cloud Environments

client-side deduplication, CIDER [18] extends the principles
introduced by RARE to encompass the simultaneous storage
of more than two chunks. This method enables users to
request the storage of multiple chunks simultaneously. Before
enabling client-side deduplication, users must include two
fingerprints in each storage request to facilitate proper
randomization of responses and ensure that no individual
chunk can undergo client-side deduplication.

D. GENERALIZED DEDUPLICATION AND PRIVACY
CONCERNS
Sehat et al. introduced Yggdrasil [15], an innovative
privacy-preserving deduplication mechanism that tackles the
programmable random oracle challenge. Their approach
involves clients applying information-theoretic transforma-
tions to their data before uploading it to the cloud service
provider. Bonsai [44] addresses the limitations of Yggdrasil
by presenting a novel approach that eliminates the need
for local storage on the client side, reduces the search
complexity for the CSP, and enhances privacy safeguards.
Unlike Yggdrasil, which assumes that the CSP is unaware
of the client’s data distribution, Bonsai does not make this
assumption, making it more adaptable for handling data
with diverse characteristics. HEKATE [16] is introduced as
a valuable resource for analyzing the impact of different
configurations on throughput and deduplication ratios. The
significance of this tool lies in its ability to assist users in
evaluating classic or generalized deduplication approaches
based on the specific data characteristics of their work-
loads without requiring a complete system implementation.
By employing HEKATE, designers, and administrators gain
insights into how a particular configuration will influence
system performance and the extent of storage reduction that
can be anticipated.

X. CONCLUSION
This paper presents DEDUCT, a textual deduplication
technique that leverages generalized deduplication and
client-side preprocessing to significantly enhance cloud
storage efficiency and data security. DEDUCT demonstrates
notable improvements in these key areas compared to existing
state-of-the-art methods. DEDUCT achieves a compression
ratio of 66% which translates to direct cost savings and
improved scalability for cloud storage solutions, offering
increased capacity and reduced financial burden. Moreover,
DEDUCT’s design is well-suited for resource-constrained
devices commonly found in the Internet of Things (IoT).
This adaptability addresses crucial needs in resource-limited
environments where efficient data handling is critical.
While the evaluation focused on the Touchdown dataset,
DEDUCT’s applicability extends to broader domains. Its
strengths in efficiently deduplicating large textual datasets
make it highly relevant to IoT, mobile, and embedded
systems, where storage and bandwidth are often limited.
DEDUCT’s flexibility and resource-friendly approach offer
valuable solutions for these areas.

We aim to enhance client-side preprocessing techniques
for future work by utilizing natural language processing
and machine learning algorithms. Employing advanced
tokenization and lemmatization algorithms can enhance the
accuracy of near-duplicate data identification while reducing
computational overhead. Additionally, energy efficiency is
paramount in resource-constrained environments like IoT
and edge computing devices, and DEDUCT can be further
optimized to address this concern.

REFERENCES
[1] P. Anderson, Q. Wu, D. Teney, J. Bruce, M. Johnson, N. Sünderhauf,

I. Reid, S. Gould, and A. van den Hengel, ‘‘Vision-and-language
navigation: Interpreting visually-grounded navigation instructions in real
environments,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 3674–3683, doi: 10.1109/CVPR.2018.00387.

[2] W. Xia, H. Jiang, D. Feng, F. Douglis, P. Shilane, Y. Hua, M. Fu, Y. Zhang,
and Y. Zhou, ‘‘A comprehensive study of the past, present, and future
of data deduplication,’’ Proc. IEEE, vol. 104, no. 9, pp. 1681–1710,
Sep. 2016, doi: 10.1109/JPROC.2016.2571298.

[3] P. Prajapati and P. Shah, ‘‘A review on secure data deduplication: Cloud
storage security issue,’’ J. King Saud Univ. Comput. Inf. Sci., vol. 34, no. 7,
pp. 3996–4007, Jul. 2022, doi: 10.1016/j.jksuci.2020.10.021.

[4] D. T. Meyer and W. J. Bolosky, ‘‘A study of practical deduplica-
tion,’’ ACM Trans. Storage, vol. 7, no. 4, pp. 1–20, Jan. 2012, doi:
10.1145/2078861.2078864.

[5] OpenDedup. (2023). OpenDedUp. Accessed: Aug. 6, 2023. [Online].
Available: http://opendedup.org./

[6] S. Keelveedhi, M. Bellare, and T. Ristenpart, ‘‘DupLESS: Server-Aided
encryption for deduplicated storage,’’ in Proc. 22nd USENIX Secur.
Symp. (USENIX Secur.), 2013, pp. 179–194.

[7] J. Liu, N. Asokan, and B. Pinkas, ‘‘Secure deduplication of encrypted data
without additional independent servers,’’ in Proc. ACM SIGSAC Conf.,
Oct. 2015, pp. 874–885, doi: 10.1145/2810103.2813623.

[8] K. Ghassabi, P. Pahlevani, and D. E. Lucani, ‘‘Deduplication of textual
data by NLP approaches,’’ in Proc. IEEE 97th Veh. Technol. Conf.
(VTC-Spring), Florence, Italy, Jun. 2023, pp. 1–6, doi: 10.1109/vtc2023-
spring57618.2023.10199538.

[9] K. Jin and E. L. Miller, ‘‘The effectiveness of deduplication on virtual
machine disk images,’’ in Proc. Israeli Exp. Syst. Conf., May 2009,
pp. 1–12, doi: 10.1145/1534530.1534540.

[10] S. Lee and D. Choi, ‘‘Privacy-preserving cross-user source-based data
deduplication in cloud storage,’’ in Proc. Int. Conf. ICT Converg. (ICTC),
Oct. 2012, pp. 329–330, doi: 10.1109/ICTC.2012.6386851.

[11] B. Wang, W. Lou, and Y. T. Hou, ‘‘Modeling the side-channel attacks in
data deduplication with game theory,’’ inProc. IEEEConf. Commun. Netw.
Secur. (CNS), Sep. 2015, pp. 200–208, doi: 10.1109/CNS.2015.7346829.

[12] F. Armknecht, C. Boyd, G. T. Davies, K. Gjøsteen, and M. Toorani, ‘‘Side
channels in deduplication,’’ in Proc. ACM Asia Conf. Comput. Commun.
Secur., Apr. 2017, pp. 266–274, doi: 10.1145/3052973.3053019.

[13] H. Chen, A. Suhr, D. Misra, N. Snavely, and Y. Artzi, ‘‘TOUCHDOWN:
Natural language navigation and spatial reasoning in visual street
environments,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recog-
nit. (CVPR), Jun. 2019, pp. 12530–12539, doi: 10.1109/CVPR.2019.
01282.

[14] R. Vestergaard, Q. Zhang, and D. E. Lucani, ‘‘Generalized dedu-
plication: Bounds, convergence, and asymptotic properties,’’ in Proc.
IEEE Global Commun. Conf. (GLOBECOM), Dec. 2019, pp. 1–6, doi:
10.1109/GLOBECOM38437.2019.9014012.

[15] H. Sehat, E. Pagnin, and D. E. Lucani, ‘‘Yggdrasil: Privacy-aware dual
deduplication in multi client settings,’’ in Proc. IEEE Int. Conf. Commun.,
Jun. 2021, pp. 1–6, doi: 10.1109/ICC42927.2021.9500816.

[16] L. Nielsen and D. E. Lucani, ‘‘Hekate a tool for gauging data deduplication
performance,’’ in Proc. IEEE 6th Int. Conf. Smart Cloud (SmartCloud),
Nov. 2021, pp. 67–72, doi: 10.1109/SmartCloud52277.2021.00019.

[17] Z. Pooranian, K.-C. Chen, C.-M. Yu, and M. Conti, ‘‘RARE: Defeating
side channels based on data-deduplication in cloud storage,’’ in Proc. IEEE
Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), Apr. 2018,
pp. 444–449, doi: 10.1109/INFCOMW.2018.8406888.

VOLUME 12, 2024 70757

http://dx.doi.org/10.1109/CVPR.2018.00387
http://dx.doi.org/10.1109/JPROC.2016.2571298
http://dx.doi.org/10.1016/j.jksuci.2020.10.021
http://dx.doi.org/10.1145/2078861.2078864
http://dx.doi.org/10.1145/2810103.2813623
http://dx.doi.org/10.1109/vtc2023-spring57618.2023.10199538
http://dx.doi.org/10.1109/vtc2023-spring57618.2023.10199538
http://dx.doi.org/10.1145/1534530.1534540
http://dx.doi.org/10.1109/ICTC.2012.6386851
http://dx.doi.org/10.1109/CNS.2015.7346829
http://dx.doi.org/10.1145/3052973.3053019
http://dx.doi.org/10.1109/CVPR.2019.01282
http://dx.doi.org/10.1109/CVPR.2019.01282
http://dx.doi.org/10.1109/GLOBECOM38437.2019.9014012
http://dx.doi.org/10.1109/ICC42927.2021.9500816
http://dx.doi.org/10.1109/SmartCloud52277.2021.00019
http://dx.doi.org/10.1109/INFCOMW.2018.8406888

K. Ghassabi, P. Pahlevani: DEDUCT: A Secure Deduplication of Textual Data in Cloud Environments

[18] R. Vestergaard, Q. Zhang, and D. E. Lucani, ‘‘CIDER: A low over-
head approach to privacy aware client-side deduplication,’’ in Proc.
GLOBECOM IEEE Global Commun. Conf., Dec. 2020, pp. 1–6, doi:
10.1109/GLOBECOM42002.2020.9348272.

[19] J. R. Douceur, A. Adya, W. J. Bolosky, P. Simon, and M. Theimer,
‘‘Reclaiming space from duplicate files in a serverless distributed
file system,’’ in Proc. Int. Conf. Distrib. Comput. Syst., Jun. 2003,
pp. 617–624, doi: 10.1109/icdcs.2002.1022312.

[20] R. Vestergaard, D. E. Lucani, and Q. Zhang, ‘‘Generalized deduplication:
Lossless compression for large amounts of small IoT data,’’ in Proc. Eur.
Wireless 25th Eur. Wireless Conf., May 2019, pp. 1–5. [Online]. Available:
https://ieeexplore.ieee.org/document/8835941

[21] R. Rivest, The MD5 Message-Digest Algorithm, document RFC1321,
1992, pp. 179–194.

[22] R. D. Eastlake and P. B. Jones, ‘‘US secure hash algorithm 1 (SHA1),’’
Sep. 2001. [Online]. Available: https://www.rfc-editor.org/rfc/rfc3174,
doi: 10.17487/rfc3174.

[23] T. Hansen and D. Eastlake, ‘‘US secure hash algorithms (SHA and
SHAbased HMAC and HKDF),’’ May 2011. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc6234, doi: 10.17487/rfc6234.

[24] J. S. Sobolewski,Cyclic Redundancy Check. Cham, Switzerland: Springer,
2006, pp. 3–33, doi: 10.1007/1-4020-0613-6-4130.

[25] Y. Zhao and S. S. M. Chow, ‘‘Updatable block-level message-locked
encryption,’’ IEEE Trans. Depend. Secure Comput., vol. 18, no. 4,
pp. 1620–1631, Jul. 2021, doi: 10.1109/TDSC.2019.2922403.

[26] J. Liu, L. Duan, Y. Li, and N. Asokan, Secure Deduplication of Encrypted
Data: Refined Model and New Constructions. Cham, Switzerland:
Springer, 2018, pp. 374–393, doi: 10.1007/978-3-319-76953-0-20.

[27] A. Goker and J. Davies, ‘‘Web information retrieval,’’ in Information
Retrieval: Searching in the 21st Century. Cham, Switzerland: Springer,
2009, pp. 85–101.

[28] R. M. Kaplan, ‘‘A method for tokenizing text,’’ in Inquiries Into
Words, Constraints and Contexts. Stanford, CA, USA: CSLI Publications,
Jan. 2005, pp. 55–64.

[29] V.I. Levenshtein, ‘‘Binary codes capable of correcting deletions, insertions,
and reversals,’’ Sov. Phys. Doklady, vol. 10, no. 8, pp. 707–710, Jan. 1966.
[Online]. Available: https://ci.nii.ac.jp/naid/10020212767

[30] R. A. Wagner and M. J. Fischer, ‘‘The string-to-string correction
problem,’’ J. ACM, vol. 21, no. 1, pp. 168–173, Jan. 1974, doi:
10.1145/321796.321811.

[31] S. Heron, ‘‘Advanced encryption standard (AES),’’Netw. Secur., vol. 2009,
no. 12, pp. 8–12, Dec. 2009, doi: 10.1016/s1353-4858(10)70006-4.

[32] D. Coppersmith, ‘‘The data encryption standard (DES) and its strength
against attacks,’’ IBM J. Res. Develop., vol. 38, no. 3, pp. 243–250,
May 1994, doi: 10.1147/rd.383.0243.

[33] S. S. Keller, ‘‘Modes of operation validation system for the triple data
encryption algorithm (TMOVS): Requirements and procedures,’’ Special
Publication (NIST SP), Amer. Nat. Standards Inst., Gaithersburg, MD,
USA, 1998, doi: 10.6028/nist.sp.800-20.

[34] E. Ukkonen, ‘‘Algorithms for approximate string matching,’’ Inf. Con-
trol, vol. 64, nos. 1–3, pp. 100–118, Jan. 1985, doi: 10.1016/s0019-
9958(85)80046-2.

[35] NLTK: Sample Usage for Wordnet. Nltk.org. Accessed: Jul. 7, 2023.
[Online]. Available: https://www.nltk.org/howto/wordnet.html

[36] NLTK: NLTK.Tokenize Package. Nltk.org. Accessed: Jul. 15, 2023.
[Online]. Available: https://www.nltk.org/api/nltk.tokenize.html

[37] D. Harnik, B. Pinkas, and A. Shulman-Peleg, ‘‘Side channels in cloud
services: Deduplication in cloud storage,’’ IEEE Secur. Privacy, vol. 8,
no. 6, pp. 40–47, Nov. 2010, doi: 10.1109/MSP.2010.187.

[38] J. Stanek and L. Kencl, ‘‘Enhanced secure thresholded data deduplication
scheme for cloud storage,’’ IEEE Trans. Depend. Secure Comput., vol. 15,
no. 4, pp. 694–707, Jul. 2018, doi: 10.1109/TDSC.2016.2603501.

[39] S. Zhang, H. Xian, Z. Li, and L. Wang, ‘‘SecDedup: Secure encrypted data
deduplication with dynamic ownership updating,’’ IEEE Access, vol. 8,
pp. 186323–186334, 2020, doi: 10.1109/ACCESS.2020.3023387.

[40] K. Akhila, A. Ganesh, and C. Sunitha, ‘‘A study on deduplication
techniques over encrypted data,’’ Proc. Comput. Sci., vol. 87, pp. 38–43,
Jan. 2016, doi: 10.1016/j.procs.2016.05.123.

[41] C.-M. Yu, S. P. Gochhayat, M. Conti, and C.-S. Lu, ‘‘Privacy
aware data deduplication for side channel in cloud storage,’’ IEEE
Trans. Cloud Comput., vol. 8, no. 2, pp. 597–609, Apr. 2020, doi:
10.1109/TCC.2018.2794542.

[42] V. Balakrishnan and L.-Y. Ethel, ‘‘Stemming and lemmatization: A
comparison of retrieval performances,’’ Lect. Notes Softw. Eng., vol. 2,
no. 3, pp. 262–267, Jan. 2014, doi: 10.7763/lnse.2014.v2.134.

[43] P. Puzio, R.Molva,M. Önen, and S. Loureiro, ‘‘PerfectDedUp: Secure data
deduplication,’’ in Data Privacy Management, and Security Assurance:
10th International Workshop, DPM 2015, and 4th International Workshop,
QASA 2015, Vienna, Austria, September 21–22, 2015. Revised Selected
Papers 10. Springer, 2016, pp. 150–166, doi: 10.1007/978-3-319-29883-
2_10.

[44] H. Sehat, A. L. Kloborg, C. Mørup, E. Pagnin, and D. E. Lucani, ‘‘Bonsai:
A generalized look at dual deduplication,’’ 2022, arXiv:2202.13925.

[45] Z. Wang, W. Gao, M. Yang, and R. Hao, ‘‘Enabling secure data
sharing with data deduplication and sensitive information hiding in cloud-
assisted electronic medical systems,’’ Cluster Comput., vol. 26, no. 6,
pp. 3839–3854, Dec. 2023.

[46] J. R. Douceur, ‘‘The Sybil attack,’’ in Peer-to-Peer Systems, P. Druschel,
F. Kaashoek, and A. Rowstron, Eds. Berlin, Germany: Springer, 2002,
pp. 251–260.

[47] M. Bellare, S. Keelveedhi, and T. Ristenpart, ‘‘Message-locked encryption
and secure deduplication,’’ in Advances in Cryptology EUROCRYPT 2013.
Berlin, Germany: Springer, 2013, pp. 296–312.

[48] Z. Wang, W. Gao, J. Yu, W. Shen, and R. Hao, ‘‘Lightweight secure
deduplication based on data popularity,’’ IEEE Syst. J., vol. 17, no. 4,
pp. 5531–5542, Dec. 2023, doi: 10.1109/jsyst.2023.3307883.

[49] X. Yang, R. Lu, J. Shao, X. Tang, and A. A. Ghorbani, ‘‘Achieving efficient
secure deduplication with user-defined access control in cloud,’’ IEEE
Trans. Depend. Secure Comput., vol. 19, no. 1, pp. 591–606, Jan. 2022.

[50] S. P. Miller, B. C. Neuman, J. I. Schiller, and J. H. Saltzer, ‘‘Kerberos
authentication and authorization system,’’ Project Athena Tech. Plan Sect.
E.2.1, MIT Project Athena, Cambridge, MA, USA, Tech. Rep., Dec. 1987,
p. 136. [Online]. Available: http://web.mit.edu/Saltzer/www/publications/
athenaplan/e.2.1.pdf and http://web.mit.edu/acs/athena.html

[51] M.Wang, L. Xu, R. Hao, andM. Yang, ‘‘Secure auditing and deduplication
with efficient ownership management for cloud storage,’’ J. Syst. Archit.,
vol. 142, Sep. 2023, Art. no. 102953, doi: 10.1016/j.sysarc.2023.102953.

[52] X. Yang, R. Zhang, C. Yue, Y. Liu, B. C. Ooi, Q. Gao, Y. Zhang, and
H. Yang, ‘‘VeDB: A software and hardware enabled trusted relational
database,’’ Proc. ACM Manage. Data, vol. 1, no. 2, pp. 1–27, Jun. 2023.

[53] S. S. Patra, S. Jena, J. R. Mohanty, and M. K. Gourisaria, ‘‘DedupCloud:
An optimized efficient virtual machine deduplication algorithm in cloud
computing environment,’’ inDataDeduplication Approaches. Amsterdam,
The Netherlands: Elsevier, 2021, pp. 281–306.

KIANA GHASSABI received the B.Sc. degree in
information technology and the M.Sc. degree in
computer science from the Institute for Advanced
Studies in Basic Sciences (IASBS), Iran, in
2019 and 2023, respectively. Her research interests
include wireless communication, data security,
network coding, and the Internet of Things (IoT).

PEYMAN PAHLEVANI received the Ph.D. degree
in wireless communication from Aalborg Univer-
sity, Denmark, in 2014. He conducted research
with the Department of Computer Science, UCLA,
and collaborated with institutions including MIT
and Porto universities. He is currently an Assistant
Professor with the Institute for Advanced Studies
in Basic Sciences (IASBS). His expertise spans
wireless communication, network coding, vehicu-
lar communications, cooperative networking, and

WiFi video streaming. He also contributed to international conferences and
reviewed high-impact journals, such as IEEE TRANSACTIONS ON VEHICULAR

TECHNOLOGY.

70758 VOLUME 12, 2024

http://dx.doi.org/10.1109/GLOBECOM42002.2020.9348272
http://dx.doi.org/10.1109/icdcs.2002.1022312
http://dx.doi.org/10.17487/rfc3174
http://dx.doi.org/10.17487/rfc6234
http://dx.doi.org/10.1007/1-4020-0613-6-4130
http://dx.doi.org/10.1109/TDSC.2019.2922403
http://dx.doi.org/10.1007/978-3-319-76953-0-20
http://dx.doi.org/10.1145/321796.321811
http://dx.doi.org/10.1016/s1353-4858(10)70006-4
http://dx.doi.org/10.1147/rd.383.0243
http://dx.doi.org/10.6028/nist.sp.800-20
http://dx.doi.org/10.1016/s0019-9958(85)80046-2
http://dx.doi.org/10.1016/s0019-9958(85)80046-2
http://dx.doi.org/10.1109/MSP.2010.187
http://dx.doi.org/10.1109/TDSC.2016.2603501
http://dx.doi.org/10.1109/ACCESS.2020.3023387
http://dx.doi.org/10.1016/j.procs.2016.05.123
http://dx.doi.org/10.1109/TCC.2018.2794542
http://dx.doi.org/10.7763/lnse.2014.v2.134
http://dx.doi.org/10.1007/978-3-319-29883-2_10
http://dx.doi.org/10.1007/978-3-319-29883-2_10
http://dx.doi.org/10.1109/jsyst.2023.3307883
http://dx.doi.org/10.1016/j.sysarc.2023.102953

