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ABSTRACT The real-time and accurate detection of premature ventricular contractions (PVC) in patients
is of great significance for preventing the occurrence of high-risk events such as sudden cardiac death and
guiding cardiac surgical procedures such as radiofrequency ablation. To improve the diagnostic accuracy and
real-time performance, and expand application scenarios, an economical wearable PVC real-time auxiliary
diagnosis system based on the multi-parameter squeeze excitation residual network (MP-SE-ResNet) is
proposed. We have realized the real-time acquisition, processing, and wireless transmission of dynamic
ECGs based on ESP32, furthermore, realized the PVCs recognition based on MP-SE-ResNet. Using the
lead-II ECGs in theMIT-BIH arrhythmia databases as training samples, and the network was evaluated using
the remainder of this dataset and data recorded by our device, respectively. The accuracy of the MIT-BIH
dataset reached 99.34%, and the sensitivity and specificity of PVC recognition reached 98.26% and 99.64%,
respectively. Using the ECGs recorded by our system, we achieved the following results: the accuracy was
94.07%, the sensitivity and specificity of PVC were 92.76% and 97.63%, respectively. The experimental
results show that the systemmeets the requirements of remote monitoring and auxiliary diagnosis. Therefore,
it provides a newmethod and design idea for wearable remote arrhythmiamonitoring and auxiliary diagnosis.

INDEX TERMS Wearable ECG device, ESP32, ECG cloud platform, multi-parameter SE-ResNet.

I. INTRODUCTION
Among patients with cardiovascular diseases, more than 80%
of cardiovascular patients are combined with arrhythmias,
which are highly likely to lead to malignant events such
as stroke and sudden cardiac death [1], [2], [3]. Ventricular
premature beat (PVC) is the most common reason of
abnormal heartbeat [4]. Under the certain conditions, it can
lead to life-threatening heart disease. Automatic detection
of PVC based on wearable remote holter can effectively
and timely prevent cardiac diseases such as arrhythmia and
avoid the occurrence of malignant arrhythmia events. Real-
time ECG monitoring of PVC can also accurately locate
the occurrence time of ventricular premature beat and the
location of premature beat source, so as to guide surgical
procedures such as radio frequency ablation [5], [6], [7].
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However, the wearable devices are prone to introduce some
problems such as interference and lead-fall, and massive real-
time data and its individual and environmental variability
put forward strict requirements on the implementation of
pre-processing algorithms and arrhythmia accurate recogni-
tion [8], [9]. Therefore, the current wearable ECG arrhyth-
mia diagnosis products are limited in terms of real-time
functionality and application scenarios. For wearable ECG
monitoring, technology challenges exist, and are mainly from
the following two aspects. The first challenge comes from the
physical implementation of the wearable smart ECG garment
system, including textile sensor design [10], wearable client
hardware circuit design for comfort measurement [11], [12],
[13], [14]. The second comes from the big data processing,
data storage, and long-term ECG cardiovascular diseases
monitoring and deep-mining for specific arrhythmia type,
which involves the efficient machine learning and improved
deep learning methods [15], [16], [17], [18], [19], [20].
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FIGURE 1. Overall design scheme.

Heart disease is sudden and progressive. This work intends
to develop a wearable ECG analysis product which is suitable
for multiple scenarios. The product uses the ESP32 as
the client chip to perform ECG signal denoising, quality
assessment, compression and data transmission, and receive
arrhythmia diagnosis results from remote servers in time.
Finally, the patients’ heart health status would be analyzed in
the cloud platform using multi-parameter squeeze-excitation
ResNet (MP-SE-ResNet) model and malignant arrhythmia
events can be detected in time. The key contributions of this
work are:

• Proposed and designed the wearable ECG acquisition
and processing system based on the BMD101 module
and ESP32 microcontroller, which performs ECG signal
acquisition, storage, processing, display, remote trans-
mission, and reception.

• Proposed MP-SE-ResNet model for dynamic ECG PVC
heartbeat recognition, which incorporates a feature
recalculation strategy that enhances useful features and
suppresses those irrelevant to the current task.

• Comparison of the proposed networks with existing
state-of-the-art methods using the MIT-BIH arrhythmia
database and the recorded data by our device.

The remainder of this paper is organized as follows. Section II
is the related works. Section III described the system design
scheme for this study. Section IV provides details of our
software Working flow. In section V, we provide details of a
MP-SE-ResNet based PVC recognition performance and the
experimental results. A discussion is presented in Section VI.
Finally, section VII concludes the paper.

II. RELATED WORKS
Continuously monitoring and recognition for life threating
arrhythmia based on wearable and smartphone devices using
deep-learningmethod become a hot topic in recent years [21],

[22], [23]. As PVC often exhibits no obvious clinical
symptoms during the attack and is a primary contributor to
sudden cardiac death, there have been many research results
on the real-time recognition of PVCs [24], [25], [26], [27].
Brito et al. [28] proposed a deep learning model based on
ResNet architecture in 2019, achieving an accuracy of over
90% in experiments using the MIT-BIH arrhythmia database.
In 2020, Li et al. [15] classified arrhythmias using a deep
residual network, yielding a 99.38% classification accuracy
on the MIT-BIH arrhythmia database. In 2021, Wang [29]
proposed an enhanced gated recurrent unit network for PVC
recognition, generating accuracies of 98.3% and 97.9% with
the MIT-BIH arrhythmia database and China Physiological
Signal Challenge 2018 database, respectively, using R-wave
annotations provided by the databases. In 2022, Sarshar and
Mirzaei [30] explored statistical features which include three
morphological features (RS amplitude, QR amplitude, and
QRS width) and seven statistical features are computed for
each signal, and combined CNN model for PVC recognition
on theMIT-BIH database, producingmore effective diagnosis
performance. In 2024, Ebrahimpoor et al. [31] proposed
a Multi-Domain Feature Extraction and Auto-Encoder-
based Feature Reduction method for PVC recognition, the
algorithm is also evaluated using MIT-BIH database. But
these studies did not outline a reliable way to classify and
detect the accuracy of PVCs based on a wearable cardiac
monitoring system in real-time.

In 2023, a PVC detection and classification system
based on the Nexys 4 DDR FPGA board were proposed.
Utilizing 4.36% of the total resources, they achieved
an improved accuracy and sensitivity of 98.29% and
98.64% for PVC recognition, respectively [32]. Though
FPGA has high computation speed, the power consump-
tion and cost are higher compared with the general
microcontroller.
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TABLE 1. Advantages and disadvantages of the researches.

Though these methods perform well in PVC recognition,
each of them has its advantages and disadvantages (as
summarized in Table 1). Furthermore, the accuracy of many
algorithms will diminish if the clinical dynamic wearable
large ECG data is used [33], [34]. A study of 100 patients
with atrial fibrillation revealed that 34% of wearable ECG
recordings were algorithmically classified as ‘‘unclassified’’
due to unknown cause, baseline artifacts, or low amplitude
recordings [35]. Therefore, the economic wearable smart
ECG monitoring system design and the evolution of models
or methods is crucial to enhance PVC detection performance,
facilitating clinical applications.

III. SYSTEM DESIGN SCHEME
As shown in Figure 1, the system includes ECG signal
acquisition, data transmission, primary control unit and
remote deep-learning based monitoring and diagnosis cloud
platform. The BMD101 ECG acquisition module was used to
collect ECG data, and the data was sent to the main control
unit through Bluetooth. The ESP32-WROOM-32 module
was used to collect and process ECG signals, then upload
them to the cloud server by the wifi embedded in the main
control module based on the socket communication, and
display real-time heart rate, HRV analysis, diagnosis results,
etc. on the OLED display screen. The cloud platform aims

to complete data reception, storage and real-time diagnosis.
After receiving the signal sent by the main control, the cloud
server stores the data in the user database, performs data
analysis and subject-specific auxiliary diagnosis, and returns
the diagnosis results to the main control unit.

A. ECG SIGNAL ACQUISITION MODULE
The stability and accuracy of ECG data acquisition directly
affect the subsequent ECG data processing, heart rate
calculation, ECG imaging and auxiliary diagnosis result,
so the sensor is the key for the design of the heart
detector [36], [37]. The signal acquisition module adopted
in this design is the BMD101 ECG signal acquisition chip.
The ECG acquisition module integrates SPP-C Bluetooth
to collect ECG data and send the data packets to the main
control. The module has low power consumption, 512Hz
sampling rate, 16-bit AD conversion accuracy, and can use
metal dry electrode or gel wet electrode to collect ECG
signals with a frequency response of 0.5Hz∼100Hz. In order
to meet the need of multi-scenario wearable applications,
a modular method is adopted to integrate the BMD101 ECG
signal acquisition chip, SPP-C Bluetooth module and power
module into a PCB board, which can be easily embedded in
the vest. Figure 2 shows the PCB circuit of ECG acquisition
block and its usage method.

FIGURE 2. BMD101 acquisition module.

B. DESIGN OF MAIN CONTROL UNIT BASED ON ESP32
In order to perform the real-time processing and transmission
of dynamic ECG signals and facilitate the upgrade of
subsequent products, we select the ESP32-WROOM-32 of
Le Xin Company as the main control chip. The chip’s
main advantage is low-power and has a Xtensa®32-bitLX6
single/dual-core processor, which has relatively strong com-
puting power [38]. In addition, the chip also supports
2.4 GHZ Wi-Fi and Bluetooth protocols. The two functions
can run at the same time and the data transmission has a
good stability. The Bluetooth function can reach +12dBm
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FIGURE 3. Main control unit circuit based on ESP32.

transmission power. The above performance can meet the
requirements of data processing algorithm and transmission
in this design. Figure 3 shows the schematic design of
the main control unit based on the ESP32-WROOM-32
module. The wearable BMD101 module perform the data
acquisition and Bluetooth transmission. The main control
unit ESP32-WROOM-32 receives the patient’s ECG signal
through the built-in Bluetooth module. Then, it proceeds
parsing, preprocessing and data compression, and it also
utilizes theWIFI module of the module or the external 4G/5G
module to upload the data to the cloud platform in real
time. A 0.96 inch four-position OLED display is used to
display the patient’s heart rate and diagnosis results. In order
to be portable, this design adopts a modular design, which
integrates the ESP32-WROOM-32 module, OLED display
screen and power module on a 28.5mm × 28mm PCB board.

IV. SOFTWARE PLATFORM
The wearable heart detector includes three modules: ECG
acquisition, main control and cloud server. ECG acquisition
module is mainly responsible for ECG signal acquisition,
A/D conversion, data processing and transmission; ESP32
main control part is mainly responsible for data transmission
with the cloud platform and acquisition block, ECG signal
analysis, ECG waveform and diagnostic results analysis
and display; The cloud server is mainly responsible for
receiving and storing the ECG data sent by the main control,
decompression, neural network diagnosis result, etc. Figure 4
shows the main working flow chart of the design, in which
(a) is the overall process, (b) and (c) are the communication
process between the acquisition module and the main control,
the main control and the cloud platform respectively.

FIGURE 4. Working flow chart, (a) The overall process (b) The Bluetooth
communication flow chart (c) the wifi communication flow chart.

ECG acquisition module adopts BMD101, which inte-
grates the function of analog-to-digital conversion and ECG
signal pre-processing. And band-pass filtering, median filter-
ing and smooth filtering algorithms are used to preprocess the
signal preliminary. The processed ECG data packet is sent
to the main control unit through the Bluetooth module. The
packet consists of three parts: data header, valid data to be
sent, and check variable. Among them, the sampling rate is
512Hz, and the effective data is 16 bits.
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The main control unit based on ESP32 module is respon-
sible for the receiving, processing and remote transmission
of the ECG signals. ESP32-WROOM-32 module resources
include WI-FI module and Bluetooth module, wherein
the Bluetooth communication module was started at the
beginning of the program. However, the WIFI module is
the thread which needs to be created after the successful
startup of Bluetooth, and the two modules are synchro-
nized after being enabled. Firstly, Call the library function
BluetoothSerial.h to implement Bluetooth communication
based on ESP32-WROOM-32 and write callback function
SerialBT.Bluetooth_Even() to execute ECG data receiving,
data parsing, etc., so that the Bluetooth module can always
in the state of be started and working when the program is
executed. Then, in the loop() function, the Bluetooth module
is controlled for connection and normal data transmission
according to whether it has successfully connected to the
ECG signal acquisition module. At the same time, ESP32-
WROOM-32 completes ECG data analysis and real-time
waveform display. When the OLED display works, the start
signal is first sent by the main control unit, and then the
secondary address, read and write flag bits are sent. After
the display is connected to the main control, 8 bits of data
are transmitted to the main control each time, and the host
replies to the reply signal after receiving it. When WI-FI is
enabled on the ESP32, it is used as a secondary to connect to
other WI-FI networks. By defining a WiFiClient class object
wifi_client, create the thread function Wifi_Connect() which
is started by the WI-Fi module to complete the start of WI-
FI,and control whether the thread continues to connect to the
WI-FI network to transmit data.

The remote cloud platform uses Alibaba Cloud server,
it is based on ubuntu system to perform the data storge
and multi-user SE-ResNet based lightweight arrhythmia
recognition tasks. The network is gradually modified for
different customers and the analysis results are returned to the
client in time. ECGdata acquisition andwaveform display are
shown in the figure 5.

V. PVC REAL-TIME RECOGNITION AND
IMPLEMENTATION BASED ON MULTI-PARAMETER
SE-RESNET
A. DATA SOURCE AND PREPROCESSING
The experimental data were obtained from the MIT-BIH
arrhythmia database and our acquisited data. The majority of
lead-II ECGs from MIT-BIH arrhythmia database were used
as training samples, the remainder and our device collected
data are used to evaluate the proposed multi-parameter SE-
ResNet model respectively. As the MIT-BIH database has
a total of 48 records, each record is 30 minutes, and the
sample rate is 360Hz. Each record consists of two leads.
The lead of each record was not exactly the same, and only
46 records includedMLII lead signals. The lead-II ECG from
these 46 records were used in the following experiments,
and all heartbeats are categorized into normal beats (N),

FIGURE 5. The Lead II ECG waveforms acquired from our device.

premature ventricular beats (V), and other beats (T). Because
the HRV parameter calculation needs to remove the first and
last heartbeat of each record, a total of 105651 heartbeats
were used for PVC recognition. Within this dataset, there
are 74699, 8510, and 22442 N, V, and T heartbeats,
respectively. 20000, 6500 and 10000 heartbeats were ran-
domly selected from 74699 normal beats, 8510 ventricular
premature beats and 22442 other beats respectively. A total
of 36500 heartbeats were used as training samples. Similarly,
3000, 800 and 2000 cardiac beat data were randomly selected
from the remaining N, V, and T heartbeats, respectively,
and a total of 5800 data were used for evaluation, leaving
the remaining 63,351 heartbeats for testing. To validate the
reliability of the designed system and the proposed model,
ECG data of 10 patients with ventricular premature disease
and other arrhythmias were recorded using the wearable
system. The acquisited ECG records were annotated by three
clinical experts of the Fifth Affiliated Hospital of Zhengzhou
University and a total of 6875 heartbeats were obtained. There
are 4235,926,1714 for N, V and T, respectively.

The proposed approach’s performance is gauged using
accuracy (Acc), sensitivity (Se) and specificity (Sp). The
specific calculation formula for each metric is as follows
(1∼4):

Accuracy (Acc) =
TP+ TN

TP+ TN + FP+ FN
(1)

Sensitivity (Se) =
TP

TP+ FN
(2)

Specificity
(
Sp

)
=

TN
TN + FP

(3)

Positive predictivity
(
Pp

)
=

TP
TP+ FP

(4)

All of the detection statistics are centered on the mutually
exclusive categories of true positive (TP), false positive (FP),
true negatives (TN), and false negative (FN) [39], [40], [41].
TP refers to accurate identification of a condition or trait
while FP refers to incorrect identification of a condition or
trait. TN refers to accurate identification of the absence of a
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condition or trait whereas FN denotes incorrect identification
of the absence of a condition or trait.

B. MULTI-PARAMETER SE-RESNET MODELING
Wearable ECGs exhibit individual variability and strong
interference. Addressing these issues, our study adopts
the SE-ResNet model, a deep network architecture with
robust nonlinear fitting ability. The model incorporates
a squeeze-excitation module embedded within a residual
structure. The network model employs a feature recalculation
strategy, automatically determining the importance of each
feature channel by learning. Subsequently, useful features
are enhanced, while the features not useful to the current
task are suppressed based on their importance. Because
the ECG has time-dependent features, such as double and
triple rhythm, the characteristics such as heart rate variability
(HRV) parameters and age, are important features for the
arrhythmia recognition. As HRV parameters can compensate
for the morphological characteristics of single heartbeat
ECG. In this study, five characteristics: RR interval, ratio of
RR interval before and after heartbeats, root mean square
of the difference between adjacent RR intervals, age, and
gender, are computed and integrated into the fully connected
layer, providing useful information and effectively improving
the model’s classification accuracy.

In order to obtain the best network structure parameters
and structures, SE-ResNet models with different layers
and structures are designed, and repeated experiments and
comparisons are made using MIT-BIH arrhythmia dataset.
Figure 6 shows the cross-validation accuracy of MP-SE-
ResNet networks with layers 8, 12, 16 and 20, respectively.
As shown in the figure, the 16-layer SE-ResNet achieved
better test results, and the performance of the 20-layer net-
work was comparable to the 16-layer network. Considering
the processing speed of wearable ECG data and the real-time
requirements of the system, therefore, this paper chooses 16-
layer SE-ResNet (Fig 6; Table 2 ) as the PVC recognition
model.

As shown in Figure 7, the input single-channel ECG
heartbeat size is 1×320, and after a layer of convolution, it is
sent to the residual block, and 16,32 and 64 channels were
selected respectively. The network model has 15 convolution
layers and one fully connected layer in total. Take the first
group of residual blocks (short-connect) as an example.
In order to make better use of the context ECG characteristic
information, channel level statistics are generated by global
average pooling. The excitation layer adopts two fully con-
nected layers (FC) to realize channel scaling, the reduction
rate is set to 4, and the dimension of feature data is changed
from 1×16 to 1×4, and then played back to 1×16. Finally,
the activation function is used to re-scale the data back to
the data dimensions before the squeeze. It is equivalent to
mapping the data associated with the input to a set of channel
weights, so that the channel features are not limited to the
local receptive field of the convolutional network, and giving
different weights to the channels.

FIGURE 6. PVC recognition results of different network complexity.

TABLE 2. Details of the proposed SE-ResNet structure.

C. PVC RECOGNITION RESULTS BASED ON
MP-SE-RESNET
In this work, the partial data of the MIT-BIH Lead-II ECG
heartbeats are used for training the networks, the remaining
and our device recorded data for evaluating the model,
respectively. In order to avoid the chance of random data
extraction, three random experiments were carried out, and
the average value of the three experiments was taken as the
final experimental result. The evaluationmetrics derived from
the experiments (Table 3) reveal that our proposed method
achieves an overall recognition accuracy of 99.34% using the
MIT-BIH database. The Se, Sp and Pp of PVC recognition
reach 98.26%, 99.64%, and 84.03%, respectively. The overall
recognition accuracy on our recorded data is 94.07%, with
the Se, Sp and Pp yielding 92.76%, 97.63%, and 86.33%,
respectively. Despite the imbalance in heartbeats within the
MIT-BIH dataset, the experimental results underscore the
effectiveness and robustness of the proposed model.

The ROC curves of the MIT-BIH and our recorded data
are illustrated in Figure 8. Among them, Micro-average is
a micro-average method which adds up the number of true
positives, false positives and false negatives of all categories
and then calculates the overall index. Macro-average is a
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FIGURE 7. Deep MP-SE-ResNet learning network modeling.

macro average method, which calculates the metrics (such
as sensitivity, positive and predictability) of each category
and then uses the average of these metrics as the overall
metric. Class 0, Class 1, and Class 2 represent N, V and T,
respectively.

FIGURE 8. ROC curves of using different database.

From Figure 8 (a) and (b), indicating that the model
exhibits the best classification performance for the three type

TABLE 3. PVC recognition results based on MP-SE-ResNet.

TABLE 4. Ablation experiment of MP-SE-ResNet.

heartbeats. The area under the curve for N and V are the
larger, the recognition result of the O type is relatively lower.
The reason for being lower than N and V is that the sample
size is too small.

D. ABLIATION EXPERIMENTS AND COMPARISON OF
DIFFERENT NETWORKS
To evaluate the effects of our proposed multi-parameter (MP)
and squeeze-excitation (SE) block for the ResNet model.
We performed experiments using the MP-SE-ResNET, MP-
ResNet, SE-ResNet and ResNet respectively. The PVC
recognition results on the MIT-BIH and our recorded
databases of the five networks are depicted.

From Table 4, it can be observed that both the MP module
and the SE module consistently improve the results, whether
in theMIT-BIH dataset or in our recorded dataset. In theMIT-
BIH dataset, the use of the SE module and ResNet module
together results in a 0.43% improvement compared to using
ResNet alone, while the use of the MP module and ResNet
module together leads to a 0.39% improvement over using
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ResNet alone. The combined use of the MP module and the
SE module improves the results by 2.11% compared to not
using these two modules. Similar improvements of 1.64%,
1.62%, and 3.18% are observed in our recorded dataset.
Table 4 also indicates that the simultaneous use of the MP
module and the SE module does not conflict; instead, their
combined use yields greater improvement.

We compare our proposed approach with the published
robust deep learning classifiers, such as ResNet, LSTM,
CNN, and AlexNet. The same number of convolutional layers
were designed, and the structural parameters were adjusted
to the optimum. The same data were used to evaluate the
networks respectively, and the results were compared. In the
above experiments, the epoch is set to 30.

The PVC recognition results on the MIT-BIH and
our recorded databases of the five networks mentioned
before are depicted in Fig. 9 (a) and (b), respectively.
As shown in Fig.9(a), SE-ResNet yields an improved overall
accuracy of 1.52%, 1.68%, 3.46% and 7.25% compared
to MP-ResNet, MP-LSTM, MP-CNN, and MP-AlexNet,
respectively. In contrast, MP-SE-ResNet yields a Se of
98.26% for V, compared to 93.88%, 92.64%, 83.97% and
81.4% of MP-ResNet, MP-LSTM, MP-CNN, and MP-
AlexNet, respectively. The overall recognition accuracy of
our designedMP-SE-ResNet is 99.34%. The proposed model
outperforms other existing models. Using our recorded
data, the proposed MP-SE-ResNet model yields higher
overall accuracy and enhanced accuracy and sensitivity of
PVC recognition in abnormal heartbeat detection tasks.
The accuracy of the developed SE-ResNet algorithm is
94.07%, higher than MP-ResNet, MP-LSTM, MP-CNN, and
MP-AlexNet. The Se of premature ventricular contractions
recognition is 92.76%, compared to 86.61%, 85.96%, 79.16%
and 84.77% of MP-ResNet, MP-LSTM, MP-CNN and MP-
AlexNet, respectively. It can be seen from the figure that the
model used in this paper has better results than other models.
Moreover, the 16-layer network has low complexity, high
efficiency and convenient real-time implementation, so it has
certain application value.

VI. DISCUSSION
ECG is the gold standard for arrhythmias detection.
Development of wearable and Internet of Things (IoT)
technologies enables the real-time and continuous individual
ECG monitoring and arrhythmia diagnosis. The existing key
technology challenges are mainly including the hardware
implementation, the real-time signal analysis performed on
the embedded processor and the cloud computing for long-
term ECG disease type mining. In this paper, we designed
a wearable dynamic single lead ECG SmartVest system
based on the MP-SE-ResNet model. We proposed the
system hardware and software design in detail, and also the
ECG preprocessing real-time PVC recognition system are
developed and the experiments are performed.

As wearable dynamic ECG exhibits strong background
noise and variability. Furthermore, ECG is weak time domain

FIGURE 9. Results of PVC recognition of using different classifiers.

waveform, and the microvariation of its morphological
characteristics is key for arrhythmia recognition. But the
microvariation of the ECG waveform is easily arise the gra-
dient disappearance of the deep-CNN networks. The residual
network aims to solve the gradient disappearance issue in
deep neural networks by incorporating a residual block.
This mechanism allows the network to adapt to the network
structure of any depth by learning the residual. The squeeze-
excitation network incorporates the attention mechanism,
automatically determining the importance of each feature
channel through learning. This mechanism promotes useful
features and suppresses less useful features following their
importance. The network model comprehensively considers
theweight of each channel and themainwave of ECG signals.
Therefore, it can fully extract the morphological features
from multiple channels and their primary waves, enhancing
the network’s robustness and generalization capability.

The heartbeats are categorized into classes, and the
confusion matrix on theMIT-BIH and our recorded databases
are depicted in Figs. 10 and 11, respectively. The proposed
MP-SE-ResNet network demonstrates excellent performance
in PVC recognition experiments using single-lead long-
term ECGs. However, the network produces suboptimal
recognition results of the third class in the MIT-BIH database
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FIGURE 10. Confusion matrix of different networks on the MIT-BIH database. (a) MP-SE-ResNet;
(b) MP-ResNet; (c) MP-LSTM; (d) MP-CNN; (e) MP-AlexNet.

due to data imbalance, with an excessive amount of the first
type and a limited number of other types.

We investigated the open-access published PVC recog-
nition literature on the MIT-BIH database (Table 5).
Acharya et al. [42] developed a deep convolutional network
model to classify heartbeats. The MIT-BIH database is
employed for classification, and the model yields an overall
classification accuracy and Se of 94.03% and 94.07%,
respectively. Wang et al. [43] proposed an ECG technique
based on multi-lead signals and a deep learning architecture.
Automatic identification of ECG signals is performed using
the INCART arrhythmia database, producing an overall
classification accuracy and Se of 93.40% and 84.10%,
respectively. Niu et al. [44] employed three morphological
and seven statistical features and developed an artificial
neural network (ANN) classifier for PVC and non-PVC ECG

heartbeat recognition. The classification accuracy and Se
of PVC achieved using the MIT-BIH dataset are 96.40%
and 85.70%, respectively. Wang [29] proposed an improved
gated recurrent unit (IGRU) by setting a scale parameter
into existing bidirectional GRU (BGRU) model for PVC
signals recognition. The experimental results of the model
on the MIT-BIH database yields the recognition accuracy
of 98.3%. Sarshar and Mirzaei [30] explored a combined
statistical features and CNN model for PVC recognition on
the MIT-BIH database, producing more effective diagnosis
performance. Cai et al. [24] developed a novel PVC recogni-
tion algorithm that combined deep learning-based heartbeat
template cluster and expert system-based heartbeat classifier.
The PVC identification Se, P+ and ACC are 87.51%, 92.47%
and 98.63%, respectively. Harkat and Benzid [45] proposed a
DCT and CWT feature extraction and RBF classifier for PVC
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FIGURE 11. Confusion matrix of different networks on our recorded database. (a) MP-SE-ResNet;
(b) MP-ResNet; (c) MP-LSTM; (d) MP-CNN; (e) MP-AlexNet.

TABLE 5. Comparison of PVC recognition results.

recognition, achieving an overall sensitivity of 95.2% and an
accuracy of 98.2%. The discussed literature highlights the
superior sensitivity of the proposed SE-ResNet in recognizing
PVCs in wearable ECG, which is of clinical significance.

TABLE 6. Comparison of Computational Complexity with similar method.

To evaluate the algorithm complexity, of our method,
we compared our method with the recently published
algorithms in Table 6. Where Params represents the number
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of parameters in the entire network; MFLOPs stands for
Million Floating Point Operations Per Second, indicating the
computational complexity of the model; Maximum kernel
size refers to the largest one-dimensional convolutional
kernel size or the number of units in the fully connected
(FC) layer. In the proposed MP-SE-ResNet in this paper, the
network primarily utilizes convolutional and fully connected
layers to extract and transform features from input data.
Therefore, similar algorithms were selected for comparison
of network complexity. In previous studies, most networks
chose shallow networks (less than 10 layers) for classi-
fication. Due to the shallow network depth, larger-sized
(or quantity) convolutional kernels or more units in the
fully connected layers were needed to extract sufficiently
discriminative features, resulting in a large number of
parameters. The method used in this paper achieves higher
classification accuracy by stacking multiple convolutional
kernels of small sizes and multiple FC layers with a small
number of units. However, inevitably, better performance
may lead to higher computational costs. We noticed that
methods using CNNs (except for Arivarasi et al. [36], who
used two parallel multilayer FC layers) generally result
in higher computational complexity, consistent with the
principles of deep learning, as convolutional operations are
more complex than matrix multiplication. Compared to other
methods, MP-SE-ResNet achieves a balance in performance,
number of parameters, and model computational complexity.

VII. CONCLUSION
This paper proposes a design scheme of a multi-scene
wearable wireless ECG acquisition and real-time auxiliary
analysis system, and completes the software and hardware
design and algorithm effect test. Based on multi-parameter
deep SE-ResNet network, the recognition of single lead
wearable ECG signal ventricular premature beat was realized.
BMD101 ECG acquisition module and ESP32 primary
control unit to complete real-time acquisition and ECG pre-
processing. We also developed a real-time PVC recognition
software based on multi-parameter SE-ResNet model. MIT-
BIH lead-II ECG arrhythmia data were used as training
samples. The whole recognition accuracy on the remaining
MIT-BIH arrhythmia dataset was 99.34%, and the Se and
Sp were 98.26% and 98.94% respectively. The recognition
accuracy of our recorded data was 92.54%, and the Se and Sp
of V reached 91.68% and 97.60%, respectively. Experimental
results demonstrated that our proposed model outperforms
other existing models. The system is economical and reliable,
and provides technical ideas for chronic cardiac disease
management and real-time monitoring of arrhythmia, and
has certain popularization and application value. Considering
the real-time operation of the ECG monitoring and the
non-balance of Arrhythmia data, in the future research,
we will focus on the highly efficient ECG data compression
algorithm and the exploring of robust classification strategies
for handling imbalanced ECG data.
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