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ABSTRACT In this study, we discuss a mathematical framework to handle the inverse problem for the
applications of partial differential equations (PDEs). In particular, we focus on wave equations and attempt
to identify the wave parameters such as wave velocity from scant measurements of the domain’s response
to prescribed initial conditions. To this end, we need an algorithm to play the role of inverse PDE solver for
full-waveform inversion. Over the past several years, multilayer neural networks have been developed and
applied to a broad range of problems in applied mathematics and physics. Specifically, Physics Informed
Neural Network (PINN) as a novel technique has been proposed recently for solving partial differential
equations. In PINN’s algorithm, the mesh generation effort is not necessary as it is for any other numerical
discretization method. The algorithm just needs a batch of points in which to apply the conditions set in
the loss function. We employ PINN for solving the wave equations during the inversion process. The first
objective of this research is to develop a robust and efficient algorithm based on PINN for the reconstruction
of the wave velocity profile in heterogeneous media. Continuous and piecewise continuous functions are
considered for the wave velocity target profiles. Next, we are interested in performing the inversion process
of the wave equation in semi-infinite heterogeneous media which is one of the major advantages of the PINN
in contrast to traditional numerical approaches. The last objective is to simultaneously recover the parameters
of the viscously damped wave equation in heterogeneous domains. The effect of noisy measured response
on the inversion process is also investigated.

INDEX TERMS Heterogeneous media, inverse problem, noisy measured response, partial differential
equation, physics informed neural network, wave equations.

I. INTRODUCTION
In recent decades, advances in mathematical algorithms [1],
[2], [3], [4], data acquisition systems, and computer hardware
have renewed hope for identifying the physical (material)
parameters of a mathematical model with minimum given
information. From a mathematical point of view, at the
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center of such problems lies, typically, an inverse problem.
That is, a problem, for example, where the geometry of the
domain, the boundary and initial conditions of the domain,
and the domain’s response i.e. displacement at some stations
may be known, but the domain’s material composition
is unknown. There are plenty of developments aiming at
the solution of such a mathematically and computationally
challenging inverse problem that recently arises in various
applications [5], [6], [7], [8].
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A. Pakravan: One-Dimensional Elastic and Viscoelastic Full-Waveform Inversion

FIGURE 1. Schematics of PINNs’ workflow for solving full waveform
inversion in heterogeneous media.

Inverse problems involving the simulation of waves to
reconstruct elastic and viscoelastic material in heterogeneous
finite, semi-infinite, and infinite domains find applications
in many science and engineering disciplines. In this study,
we focus on one dimensional wave equation and attempt
with the reconstruction of the spatially-distributed mate-
rial properties of a domain such as wave velocity and
wave-attenuation by leveraging the medium’s response to
interrogating waves. Mathematically, the problem entails the
identification of the spatially dependent coefficients of the
partial differential equation (PDE) governing the physics of

FIGURE 2. Comparison between PINN and numerical methods to solve
wave equation in a domain of interest embedded in semi-infinite media.

FIGURE 3. Comparison between PINN and numerical methods to solve
wave equation in a domain of interest embedded in infinite media.

the problem (wave equation). The PDE coefficients may be
either scalars, continuous or piecewise continuous functions.

In general, the inverse problems have solutions that may
not be unique and may not depend continuously on the given
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FIGURE 4. u Sampled at x = 0.35.

effects [9], [10], [11], [12], [13], [14]. Hence the inverse
problems are typically ill-posed and are difficult to solve.
To find the optimal solution of the inverse problem and handle
the ill-posedness, appropriate iterative techniques need to be
applied [12], [15], [16], [17], [18], [19], [20], [21], [22], [23],
[24]. Even in inverse-PDE problems, we must solve the PDE
as a direct problem in each iteration. In some rare cases, yet
useful, there exists an analytic-exact solution to the PDEs.
Nevertheless, some type of numerical methods are required
to be employed for the vast majority of solving PDE for many
applied math applications. Finite element method (FEM) [25]
and finite difference method (FDM) [26] are two common
examples of the numerical approximation techniques.

The domain discretization is the idea behind these
numerical approaches. The computational domain of interest
where our PDE are to be solved is divided to some sub-
regions, and based on the numerical approximation, we find
the solution on each of these sub-regions. Putting together
these individual solutions will be resulted in the final solution
of the computational domain. The procedure to find the
solution of PDE targets to minimize the approximation error,
and the solution provides different properties depending
on what numerical method we utilize. Also, the accuracy
of the solution depends on the chosen discretization mesh
for the domain. A fine mesh as a level of precision
of the discretization causes the computational costs for
some applications with large scale of interest domain
[27], [28].

Advances in computing power and rapid growth of
available data in recent years have invigorated the field
of neural networks and data science [29], [30], [31], [32],
[33]. The most notable architecture within neural networks
is multilayer neural networks [34], [35], [36], [37], [38],
[39], [40], [41], [42] which have achieved exceptional results
in a wide range of problems. Although the theory to train
neural networks has been available since the early 60’s [35],
[43], [44], it has recently become possible to train them on
commonly available hardware. Typical applications of neural
networks employ these networks to recover functions that
are not directly available to the user. For example in image

FIGURE 5. Schematics of PINNs’ workflow for solving full waveform
inversion of viscously damped motion in heterogeneous media.

recognition, functions that map images to the corresponding
classes are vastly complex and high dimensional functions.

PDE is another problem that many researchers have been
interested in finding unknown functions by neural networks.
As we mentioned, numerical methods divide the geometry of
the PDE into simple elements and compute an approximated
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FIGURE 6. Measured displacement response um(0.5, t).

FIGURE 7. Target and inverted wave velocity profiles.

FIGURE 8. Measured displacement responses at three stations.

solution on these elements using basis or shape functions. The
neurons in a neural networks can also be assumed as kind
of basis functions. The first study [45] in this context shows
that neural networks are closed form expressions, and thus
provide information about the approximation anywhere in the
relevant domain. This information includes derivatives of the
solution, as neural networks with the appropriate activation
functions are differentiable functions. Furthermore, they

FIGURE 9. (a): Target and inverted wave velocity profiles, (b): Absolute
error.

state that training neural networks is a highly parallelizable
process.

Physics informed neural networks (PINN) [46] as a
novel technique is recently presented for solving the dif-
ferential equations. This approach stems from multilayer
neural network’s capacity to be universal function approx-
imators [34] and continuous improvements in automatic
differentiation [47] to calculate gradients of the neural
network’s outputs with respect to its inputs. These features
easily help us to model the PDEs. This method solves the
obtained PDE directly through the loss function. In fact, the
formulation is such that neural networks are parametric trial
solutions of the differential equation, and the loss function
accounts for errors with respect to initial/boundary conditions
and collocation points. After introducing PINNs, a large
variety of studies in many applications have been prompted
so far such as Cai et al. [48] in heat transfer, Jin et al. [49]
and Rodriguez-Torrado et al. [50] in fluid mechanics,
Mao et al. [51] in high speed flows, Jagtap et al. [52] in
supersonic flows, Haghighat et al. [53] in solid mechanics,
and Xu et al. [54] in geophysic. For review of other applica-
tions/problems of PINNs, see [55], [56], [57], [58], [59], [60],
[61], [62]
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FIGURE 10. (a): Target and inverted wave velocity profiles, (b): Absolute
error.

TABLE 1. L2 norm error in the recovered c for different locations of
receivers.

TABLE 2. L2 norm error in the recovered c for different locations of
receivers.

The advantage of PINN is not limited to direct solving
the partial differential equations. This algorithm is also valid
to solve inverse problems. In other words, using PINN,
we concern to identify unknown parameters of PDE in

FIGURE 11. (a): Target and inverted wave velocity profiles, (b): Absolute
error.

presence of some measured responses. The inverse problem
is what this study focuses on. It consists of discovering
unknown coefficients in the wave equations by examining
measured samples of the reference solution um (measured
response).

Recently, many applications of wave propagation in
science and engineering disciplines used PINNs which
we briefly review here. Haghighat et al. [53] explored the
application of PINNs for parameter identification in linear
elasticity and nonlinear plasticity. Shukla et al. [63], [64]
used PINNs to solve inverse wave problems for identifying
and characterizing surface cracks, as well as for the
identification of microstructural properties of polycrystalline
nickel. Moseley et al. [65] and Rasht-Behesht et al. [66]
investigated the use of PINNs for solving the acoustic
wave equations. Song et al. [67] employed PINNs to solve
the frequency-domain anisotropic acoustic wave equation.
Smith et al. [68] and Waheed et al. [69] applied PINNs to the
Eikonal equation for first arrival-time prediction and travel
time tomography, respectively. Zhang et al. [70] used PINNs
to estimate the velocity and density fields based on acoustic
wave equations.

Among all the PINNs’s work, there is a perceived
shortage of studies dedicated to full waveform inversion
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FIGURE 12. Target and inverted wave velocity profiles.

for reconstructing material profiles. The objective of this
research is to develop a robust and efficient algorithm based
on PINNs’ structure for the reconstruction of the wave
parameters in heterogeneous finite and unbounded domains.

II. METHODOLOGY
In this section, heterogeneity of media is investigated in three
cases. First, the inverse problem is developed for general
one-dimensional wave equation. Next, the inversion process
in semi-infinite domain is investigated. Finally, we discussed
inverted viscously-dampedwavemotion using PINN scheme.

A. ONE-DIMENSIONAL WAVE PROPAGATION
First, we are interested in to solve the inversion process of
the wave propagation in heterogeneous domain (non-constant
wave velocity c). We write governing wave Equation along
with initial and boundary conditions:

∂2u
∂t2

−
∂

∂x
(c2

∂u
∂x

) = 0, x ∈ [0, 1], t ∈ [0, 1]

u(x, 0) = sin(πx),
∂u
∂t

(x, 0) = 0

u(0, t) = 0, u(1, t) = 0

Since u is a function of x and t , and c is a function
of x, we define two fully connected feed-forward neural
networks, one to train for u(x, t) and the other to train

FIGURE 13. (a): Target and inverted wave velocity profiles, (b): Absolute
error.

for c(x). A set of randomly selected training data points
is used as input for both networks, and the output of both
networks are employed for automatic differentiation using
backpropagation. Visualization of PINNs for solving this
problem is presented in Figure 1. For all the cases in this
study, we use hyperbolic tangent for activation function and
L-BFGS as optimization algorithm. The loss function is
considered as:

$ =
1
Nu

Nu∑
i=1

|BI (x i, t i)|2 +
1
N3

N3∑
j=1

|f (x j, t j)|2

+
1
Nm

Nr∑
i=1

Nm∑
k=1

|um(i, tk ) − û(i, tk )|2

where
BI = boundary and initial conditions,
f = wave PDE,
um = measured displacement response,
û = training displacement response,
Nu = number of training points for boundary and initial

conditions,
N3 = number of training points for PDE (collocation

points),
Nr = number of receivers (stations of measured response),
Nm = number of measured responses per receiver.
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FIGURE 14. Noisy measured response at x = 0.25.

FIGURE 15. Target and inverted wave velocity profiles.

B. WAVE PROPAGATION IN SEMI-INFINITE
AND INFINITE MEDIA
Numerical methods, such as Galerkin [25], handle the weak
form of PDEs. As a result of the energy nature of the
functional in the Galerkin method, the boundary without
prescribed displacement or traction will be treated as free
surface since it has no contribution to the total potential
energy. Constructing the integration terms in weak form
requires lower and upper limits, and these limits are obtained
by boundary conditions of the domain. Therefore, to solve

FIGURE 16. Measured displacement responses at three stations.

a wave propagation problem in infinite/semi-infinite media,
we need to reduce the domain to a truncated computation
domain. To this end, we can employ the enlargement of
the computation domain to avoid the wave refection issue.
These treatments would result in complicated numerical
implementation or unnecessary computational burden for
uninterested regions. After the 1950s, some schemes such
as transparency conditions [71] and artificial absorbing
layers [72] were introduced to resolve the wave reflection
issue and avoid utilizing enlarged domains. These approaches
result in new strong forms of PDEs including some tuned
coefficients and need complicated numerical implementa-
tion. As discussed earlier, PINN deals with the strong form
of PDEs directly so that we are allowed to apply boundary
conditions on only part of the domain boundaries. Any
portion of a domain without boundary conditions even for
both ends can easily be implemented by PINN. We just
do not specify boundary training data points at ends where
there is no boundary conditions, and data points at ends
are considered as collocation points. This feature would be
extremely advantage of PINN in comparison to traditional
numerical methods especially for solving the problems with
iterative steps such as full waveform inversion that involves
infinite or semi-infinite domain.

Figures 2 and 3 schematically represent how the governing
equation of wave motion for an interest domain embedded
in semi-infinite/infinite media is modeled by PINN and
numerical schemes. As seen, when we use the PINN method
entire the computational domain plays the role of our interest
domain whereas traditional numerical approaches such as
FEM needs an enlarged computational domain to satisfy the
boundary conditions which increases the computational cost.
In our current PINNs algorithm, we just modify the loss
function by eliminating the boundary condition(s). To study
the sufficiency and accuracy of the PINN for wave equation
in semi-infinite domain, Figure 4 provides a comparison
between the displacement u computed based on PINN
method in a domain of interest against the displacement
u computed based on FEM in an enlarged domain. The
agreement is excellent.
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FIGURE 17. Target and inverted wave velocity profiles.

C. VISCOUSLY DAMPED WAVE PROPAGATION
Next, we are interested in to implement the inversion process
for viscously damped wave propagation in heterogeneous
media (considering unit mass density (ρ = 1)):

∂2u
∂t2

−
∂

∂x
(E

∂u
∂x

) + η
du
dt

= 0, x ∈ [0, 1], t ∈ [0, 1]

u(x, 0) = sin(πx),
∂u
∂t

(x, 0) = 0

u(0, t) = 0, u(1, t) = 0

FIGURE 18. Target and inverted wave velocity profiles.

FIGURE 19. Absolute error.

Since u is a function of x and t , and E and η are only
functions of x, we define two fully connected feed-forward
neural networks, one to train for u(x, t) and the other to train
E and η, simultaneously. A set of randomly selected training
data points is used as input for both networks, and the output
of both networks are employed for automatic differentiation
using backpropagation. The structure of PINNs for viscously
damped motion in heterogeneous domain is provided in
Figure 5. The loss function which was introduced earlier for
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FIGURE 20. Measured displacement responses at three stations.

undamped case is utilized for this case as well with modifying
the wave PDE f based on viscously damped motion.

III. NETWORK ARCHITECTURE AND TRAINING DATA SET
In this study, our goal is to investigate the inverse PINNs using
only the wave equations. For better comparison and avoiding
computational cost, the length of the domain of interest and
time of the simulation in all numerical examples is set as
one unit. To evaluate the PINNs algorithm, we construct the
numerical examples with different types of material profiles
(domain’s heterogeneity). Of course, changing the network
architecture and training data set in each example may obtain
better results, but it is a big issue and a negative point
that shows we continuously need tuning the problem to
improve the results. Therefore, we use a consistent network
architecture and training data points for all the numerical
examples. For adjusting an appropriate number of hidden
layers, neurons, and training data set for inverse PINNs
problems, we first implemented some simple forward PINNs
examples for our domain of interest with different types of
network architecture and training data set. For verification,
we compared the results with exact solutions and Finite
Element Method. Finally, we adjusted the fixed following
parameters for all the examples in this work:

number of hidden layers = 3,
number of neuron per layer = 20,
Nu = 800,
N3 = 2000,
Nm = 1001.

IV. NUMERICAL EXAMPLES
In this section, we present several numerical examples of
full waveform inversion in heterogeneous media based on the
above cases that were discussed.

A. RECONSTRUCTING LINEAR WAVE VELOCITY
We first consider a heterogeneous domain where the wave
velocity varies linearly with x, which is assumed as the target
wave velocity profile for the inversion process. Figure 6
shows the measured displacement response um at x = 0.5,

FIGURE 21. Target and inverted wave velocity profiles.

which we obtained by solving the forward problem using
Finite Element Method (FEM).

Figure 7 shows the reconstructed wave velocity profiles
(red dots) of the domain using the PINNs. In this case, we use
one receiver at x = 0.5. As seen in the figure, the true profile
(blue line) is recovered well using PINN scheme. The value
of L2 norm error is equal to 0.0329.

B. RECONSTRUCTING SMOOTH WAVE VELOCITY
Next, we are interested in to implement the full waveform
inversion when parameter c varies smoothly with x. We do
this study in several cases.
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FIGURE 22. (a): Noisy measured response at x = 0.2, (b): Target and
inverted wave velocity profiles.

FIGURE 23. Target wave velocity profile c(x).

First, we define the spatial variation of wave velocity as

c(x) = 1 + e−( x−0.5
0.4 )2 (1)

For inversion process to recover the target c(x) profiles,
we need some samples of measured displacement responses
by solving the forward problem (FEM). Figure 8 depicts the
measured responses in three sample stations.

We first do the inversion process three times separately.
In each attempt, we use the measured response only from

FIGURE 24. Measured displacement responses at three stations.

one receiver at different location. The reconstruction of c
and absolute error are shown in Figure 9. As seen, the wave
velocity is properly recovered for all the cases. Themaximum
errors are observed at both ends, and there is also a small gap
between inverted and true profiles at pick point in the middle.
These results demonstrate that even one sensor to collect the
measured response can successfully recover the target profile.

Next, the number of receivers is increased to two.
Figure 10a shows the reconstructed profiles are desirable.
Similar to the previous cases, the maximum amount of errors
occur at ends and middle of the domain. It is interesting
to note that all the recovered profiles are very similar, and
locations of the sensors do not do not significantly impact the
quality of the results.

Then, the number of receivers is increased to three. The
result in this case shows that the profiles are recovered
well (Figure 11a) and slightly better when compared to the
results obtained using two receivers, presented in Figure 10a.
The values of L2 norm errors for all cases of this example
are provided in Table 1. In summary, the target profile
is recovered well for all cases and the performance with
accuracy of the reconstructed profiles are very close to each
other. Increasing the number of sensors slightly reduce the
errors, and maximum errors appear on boundaries and middle
of the domain.

Now, we modify Equation (1) as below to have a wave
velocity target profile as a bell-shaped curve with two flat
regions at both ends.

c(x) = 1 + e−( x−0.5
0.15 )2

In this experiment, we investigate the inversion process
with several cases of placing one and two receivers in the
domain to obtain the measured responses from forward
problem. Figure 12 depicts the accurately reconstructed
wave velocity, which is practically indistinguishable from the
target c. Table 2 summaries L2 norm errors for all cases.
Finally, we consider a heterogeneous domain with nonlin-

ear third order wave velocity target profile as

c(x) = 7.2727x3 − 12x2 + 5.7273x + 1
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FIGURE 25. Target and inverted wave velocity profiles.

FIGURE 26. Target and inverted wave velocity profiles.

We use two and three receivers to store the measured
responses from forward problem. Figure 13a compares
the inverted profiles against the target profile. Both cases
recovered the true profile fairly well. There are some
gaps between the inverted and true results at both ends
of the domain, otherwise the inverted results match with
target profile. Figure 13b also states absolute error for both
cases.

FIGURE 27. Target wave velocity profile c(x)

Next, the effect of noise on the PINN full-waveform inver-
sion is investigated. To this end, inversion was performed
using the measured responses contaminated by 5% and 10%
Gaussian noise as shown in Figure 14. Two receivers are used
to collect the measure responses from the forward problem.
The inverted profile exhibits smooth variation even in the
presence of 10%noise as seen in Figure 15. Thewave velocity
is fairly reconstructed with 5% noise, however, in the case of
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FIGURE 28. Measured displacement responses at three stations.

TABLE 3. L2 norm error in the recovered c for truncated domains.

TABLE 4. Predicted damping coefficient for different locations of
receivers.

10% noise is also acceptable. The values of L2 norm errors
are equal to 0.2209 and 0.3464 for 5% and 10% Gaussian
noise, respectively.

C. RECONSTRUCTING LAYERED WAVE VELOCITY
One of the interesting inverse problems in heterogeneous
media involves attempting to reconstruct sharp (discontinu-
ous) profiles. In this section, we want to investigate the ability
of PINN to invert the layered wave velocity profile. As a
first attempt, we are interested in recovering a 2-layer domain
with sharp interfaces between the layers. Again, we solve the
forward problem (FEM) to obtain the measured displacement
response um (Figure 16).

Figures 17 and 18 compare the reconstructed wave velocity
profiles with target profile. In Figure 17, the inverted profiles
are depicted based on measured response from only one
sensor at three various stations. Figure 18 presents the
behavior of the inversion process as the number of sensors
increases. As seen in all cases, the target 2-layer profiles
are reasonably well captured, and the algorithm is able
to recover the sharp discontinuities in the target profile.
The results also suggest that this problem can be stable
even when the measured response is collected from only
one receiver. Figure 19 presents absolute errors for three
cases of measured response by one receiver at x = 0.50,

TABLE 5. L2 norm error in the recovered c for different locations of
receivers.

two receivers at x = 0.25, 0.50, and three receivers at
x = 0.25, 0.50, 0.75. As expected, maximum errors are
observed in the discontinuous region.

Next, we suppose a 4-layer domain with sharp interfaces
between the layers and define the spatial variation of the wave
velocity as

c(x) =


1 for 0 ≤ x ≤ 0.3
1.5 for 0.3 ≤ x ≤ 0.55
1.2 for 0.55 ≤ x ≤ 0.75
2 for 0.75 ≤ x ≤ 1

Figure 20 shows the measured displacement responses at
three sample locations on the domain. Figure 21 depicts
the reconstructed profiles using one, two, and three sensors
to collect the measured responses. As observed, the target
profile cannot be captured desirable when one sensor is
employed. The inverted profiles which are obtained by
two and three receivers are reasonably well, however, the
sharp interfaces may not be well reconstructed. The zigzag
behavior of the target profile in the middle appears to make
the inversion process challenging for reconstructing layers
two and three. It is expected that increasing the number
of receivers can overcome this issue and lead to a better
approximation for the recovered profile, however, in this
study, we limited the number of the receivers to maximum
three for the elastic profile in a domain of interest with one-
unit length.

Finally, the effect of noise on the quality of the inverted
profile is investigated. To this end, 20% Gaussian noise is
injected to the original measured responses. Figure 22a shows
the noise-polluted displacement responses at one sample
location in the domain (x = 0.2). Figure 22b shows the
reconstructed profile using two sensors at x = 0.2 and x =

0.8. As seen in the figure, the inverted profile obtained from
the noisy measurements is not as accurate as the noise-free
results but is still quite acceptable.

D. RECONSTRUCTING SMOOTH WAVE VELOCITY IN
SEMI-INFINITE MEDIA
Here, we consider a semi-infinite domain with a target
wave velocity as shown in Figure 23. We are interested in
recovering the target profile from x = 0 to x = 5. Figure 24
represents the displacement measured responses at some
sample points. Similar to the previous examples, we perform
the inversion process for each unit interval of the domain.
The implementations to obtain the inverted profiles have been
conducted separately five times, covering the intervals from
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FIGURE 29. Target and inverted wave velocity profiles.

FIGURE 30. Target and inverted wave velocity profiles.

x = 0 to 1, x = 1 to 2, x = 2 to 3, x = 3 to 4, and
x = 4 to 5. For each case, we consider 3 hidden layers with
20 neurons per each for network architectures, and the total
randomly selected number of training and collocation points
are Nu = 800 and N3 = 2000, respectively. Regarding
the geometry of our domain, we only assign the boundary
training points at x = 0 for the first region (x = 0 to 1). Three

FIGURE 31. Measured displacement responses at three stations.

receivers with Nm = 1001 per each are used for measured
responses in each truncated domain.

Accordingly, we reconstruct c(x) profiles shown in
Figure 25 corresponding to five truncated domains of
interest. In each region, the reconstructed profile adequately
captures the target wave velocity of the interest domain.
Table 3 also summaries L2 norm errors for all cases.
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FIGURE 32. Target and inverted elastic modulus profiles.

FIGURE 33. Absolute error.

Figure 26 combines all the inverted profiles of the truncated
domains.

E. RECONSTRUCTING LAYERED WAVE VELOCITY IN
SEMI-INFINITE MEDIA
Here, we want to recover a 4-layer interest domain (x = 0 to
5) which is embedded in a semi-infinite media as shown in
Figure 27. The displacement measured responses at three
sample stations are provided in Figure 28, and the receiver
at each station collects Nm = 1001 displacement response.

FIGURE 34. (a): Target and inverted E(x), (b): Target and inverted η(x).

We divide the domain of interest into five truncated domains
with equal unit lengths. Similar to the previous example, the
inversion procedure is applied separately to each truncated
domain. Three hidden layers with 20 neurons per each layer
is assumed as network architectures including Nu = 800 and
N3 = 2000 for training and collocation points, respectively.
The inverted profiles of the one unit truncated domains

are separately provided in Figure 29. The true profile is
reconstructed fairly well in the continuous regions. As noted
before, one of the interests here is the ability to recover the
sharp discontinuities in the target profile. As shown in the
figures, the PINN scheme captures the sharply varying profile
reasonably well. Lastly, the combination of the recovered
profiles of the truncated domains is depicted in Figure 30.

F. RECONSTRUCTING SMOOTH E AND CONSTANT η

First, we are interested in implementing the full damped
waveform inversion when target elastic modulus E varies
smoothly as defined in Equation (2), while the target damping
coefficient is assumed to be constant η = 0.4.

E(x) = 2.5 + 0.525 sin(2πx) + 0.525 cos(πx) (2)

Figure 31 depict the measured responses in three sample
stations by solving the forward problem (FEM). Since u is a
function of x and t , and E is a function of x, we define two
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FIGURE 35. (a): Target and inverted E(x), (b): Target and inverted η(x).

fully connected feed-forward neural networks, one to train
for u(x, t) and the other to train for E(x). Figure 32 shows
the reconstructed elastic modulus profiles using two and
three sensors in the domain. Both cases capture the smooth
target E profile very well. Figure 33 illustrates the absolute
error for both cases, and as shown, the maximum errors
occurs at the boundaries. The results of inverted damping
coefficients are provided in Table (4) which are very close
to the target value. The values of L2 norm errors are equal
to 0.1829 and 0.1779 in the cases of two and three receivers,
respectively.

G. RECONSTRUCTING SMOOTH E AND η

Now, we are interested in simultaneously reconstructing both
smooth E and η target profiles. E and η profiles smoothly
vary as defined in Equation (2) and (3), respectively.

η(x) = 0.6749x2 − 1.1038x + 1.0871 (3)

We first use two sensors at x = 0.25 and x =

0.75 for time-history measured responses. Figure 34 depicts
reconstructed profiles for E(x) and η(x). As seen, while
the function E(x) is well reconstructed, there is room for
improvement in the inverted function η(x). To this end,
we increase the number of receivers to three and four and

FIGURE 36. (a): Target and inverted E(x), (b): Target and invertedη(x).

implement the inversion procedure. The accuracy of η(x)
using three receivers for measured responses is slightly better
than before (Figure 35). Four receivers capture both smooth
target profiles E(x) and η(x) very well (Figure 36). The
values of L2 norm errors for both E and η are provided
in Table 5.

H. RECONSTRUCTING LAYERED E AND η

Next, we attempt to recover sharp heterogeneous target pro-
files of elastic modulus and damping coefficient. Figure 37
depicts a 2-layer domain with sharp interfaces between the
layers. Again, we solve the forward problem (FEM) to obtain
the measured displacement response um (Figure 38), which is
used for inversion process.

However, the goal of this example is the reconstruction
of both target profiles. We first assume that we are more
interested in recovering only the elastic modulus profile and
an approximate value of the damping coefficient. In other
words, using the current measured responses obtained from
two heterogeneous parameters, we aim to investigate the
ability of PINN to recover one heterogeneous profile and
one approximated scalar value. Figure 39 shows the inverted
elastic modulus profile of the layered medium using two
sensors at x = 0.25 and x = 0.75 to collect the measured
responses of the forward problem. As seen, the result is fairly
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FIGURE 37. (a): Target profile of E(x), (b): Target profile of η(x).

FIGURE 38. Measured displacement responses at three stations.

good even when considering a non-heterogeneous domain for
the damping coefficient. The output value for η is equal to
0.563 which is within the range of exact target profile of η.
Finally, it is sought to reconstruct both heterogeneous

profiles E and η. For the inversion process, we employ the
measured responses from two receivers at x = 0.25 and
x = 0.75. Figure 40 shows inverted profiles forE(x) and η(x).
As shown in the figure, E(x) is well reconstructed, while η(x)
is poorly recovered. Then, we use the measured responses
from three stations and repeat the inversion process. The

FIGURE 39. Target and inverted elastic modulus profiles.

FIGURE 40. (a): Target and inverted E(x), (b): Target and inverted η(x).

results (Figure 41) indicate that, although the performance
of the inverted η(x) is better than in the previous case,
it is still not entirely accurate. Next, the problem will be
redone using the measured responses from four receivers.
Both reconstructed profiles are depicted in Figure 42 which
states the recovered η(x) is fairly desirable in this case.
In summary, attempting to perform the inversion process
simultaneously for multiple parameters in a heterogeneous
domain may require an increase in the number of receivers
to collect the measured responses.
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FIGURE 41. (a): Target and inverted E(x), (b): Target and inverted η(x).

V. CONCLUSION
In this study, we investigated inverse problems for wave
equations in heterogeneous media using physics informed
neural networks. For all the inverse problems, we obtain
the time-history displacement measured response by solving
the forward problem with FEM. We developed an algorithm
based on PINN for solving the inverse wave equation in
heterogeneous domain. In the first case, the aim was to
reconstruct the wave velocity target profile c(x) for the entire
domain. We assessed inversion process for both continuous
and piecewise continues target profiles. Displacement mea-
sured responses from forward problem were used at some
certain locations in the domain. Numerical results implied
that the algorithm worked well in efficiently capturing the
target profiles. One receiver to collect measured response
seems to be enough to obtain the suitable recovered profile,
however, increasing the numbers of the receivers improve the
accuracy. Two or three receivers could be reasonable for all
the cases even with noisy measured responses.

Next, we used PINN to solve the inverse wave equation
for a domain of interest embedded in a heterogeneous
infinite/semi-infinite media. To model these types of
domains, we just need to define collocation points instead of
training data points at the end(s) where we do not have fixed
boundary condition(s). This is one of the major advantages

FIGURE 42. (a): Target and inverted E(x), (b): Target and inverted η(x).

of PINN in comparison to traditional numerical schemes.
To assess the performance of the algorithm for this problem,
we assumed a semi-infinite domain and applied the inversion
procedure with both continuous and piecewise continuous
target wave velocity profiles. For both cases, we attempted
to reconstruct the target wave velocity for five separate
truncated domains with a unit length from x = 0 to x =

5. The measured responses were obtained by solving the
forward problem in an enlarged domain with FEM, and the
results indicated that PINN was able to recover the target
profiles fairly well.

The last objective was a full waveform inversion approach
for reconstructing elastic modulus and viscous damping coef-
ficient subject to PDEs that govern the motion of viscously
damped wave propagation. Regarding the heterogeneous
domain, we investigated two cases. First, the inversion
process was performed for smooth E(x) profile and constant
η. This means that we supposed the domain’s heterogeneity
depended solely on E . However, the algorithm simultane-
ously reconstructed E(x) and predicted η. Utilizing measured
response from two receivers could properly capture both
target E profile and coefficient η value. Then, we considered
heterogeneity for both E and η. To this end, we supposed
two cases smooth and layered target profiles for E and η.
Difficulties in simultaneous inversion arose in the example
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provided. Specifically, the reconstructed E profile was easily
obtained using only two receivers, but these two receivers
could not produce an acceptable recovered profile for η.
Increasing the number of sensors to four could successfully
overcome this issue and provide the desirable output for the
profile of η as well.
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