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ABSTRACT This study proposes a hybrid fault detection methodology for detecting epoxy faults in
hairpin-based stator windings of electric motors. The hybridmethodology integrates amodel-based approach
for feature extraction and a data-driven approach for fault classification. A new lumped-parameter equivalent
circuit model specifically for hairpin windings is developed. It can accurately simulate the high-frequency
impedance behaviors of hairpin windings and physically interpret the distinction of the measurement curves
under different epoxy configurations. Using system identification, the parameters of this new model are
identified to extract the features of phase windings, reflecting different fault conditions by varying the
parameters in distinct ranges. Fault classification is implemented using a data-driven method to distinguish
the underlying patterns, which is difficult to achieve by conventional threshold limit checking due to the
inevitably introduced noise and uncertainties. Principal Component Analysis (PCA) is applied to refine the
features, followed by a Support Vector Machine (SVM) performing fault classification. The proposed hybrid
methodology successfully detects epoxy-related fault conditions, providing a new strategy for fault detection.

INDEX TERMS Stator windings, model-based, data-driven, fault detection, hybrid strategy.

I. INTRODUCTION
Brushless DC motors (BLDCs) have become the dominant
mode of propulsion in the automotive industry because of
their high power density and control simplicity [1]. With
state-of-the-art techniques, hairpin windings take the place
of conventional wound wire windings in stators to generate
magnetic fields, drive the rotor and output mechanical energy.
Detecting incipient faults of hairpin windings in manufactur-
ing lines is an important consideration for production quality
assurance.

Researchers have primarily based existing studies of stator
winding models [2], [3], [4], [5] on conventional wound wire
windings. However, simulations using such models for char-
acterizing hairpin windings can produce significant errors
because they do not account for variations of the hairpin
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winding’s inductance and resistance under different high-
frequency excitations. Therefore, this study has developed a
specific model to reproduce the high-frequency characteris-
tics of hairpin windings.

Based on conventional stator winding models, the new
model introduces one additional inductance parameter to
account for the skin and proximity effects as well as param-
eter changes due to different excitation frequencies. The
developed model can accurately simulate the high-frequency
impedance behaviors of hairpin windings in the frequency
domain and physically interpret the distinction of measure-
ment curves under different physical configurations.

This study also applies the new model for Fault Detec-
tion and Diagnosis (FDD) by combining machine learning
methodologies. A hybrid FDD model is proposed, integrat-
ing a model-based approach for feature extraction and a
data-driven approach for fault classification. First, parame-
ters are extracted from a physical model to reflect different
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configurations of hairpin windings with varying distinct
ranges. Then, a trained machine learning model effectively
removes noise, distinguishes underlying patterns, and pro-
vides fault detection or classification results. The hybrid
methodology leverages the strengths of both approaches and
overcomes their deficiencies, achieving high FDD accuracy
while retaining interpretability.

This paper is organized as follows. Section II reviews
related studies on model-based and data-driven fault detec-
tion methods. Section III outlines the proposed hybrid
methodology and its components. Section IV introduces
the acquired measurement data used as the input for fault
detection. Section V develops a lumped-parameter equivalent
circuit model and identifies the parameters using system
identification. Section VI performs fault classification using
a data-driven method. Section VII presents the conclusions of
this study.

II. RELATED STUDIES
Model-based and data-driven approaches are two common
methods in FDD. Model-based approaches can diagnose and
isolate faults straightforwardly with a physical understanding
of the system. On the other hand, data-driven approaches
exhibit remarkable adaptability for various systems, as they
do not necessarily require prior knowledge of the system. The
details of each approach are as follows.

A. MODEL-BASED APPROACHES
In model-based approaches, the physical relationships of the
objective system are established in the form of a mathemati-
cal representation [6], [7]. The inconsistencies between the
measurements and their predicted values from the models
are calculated and compared, referred to as residuals. The
residuals are then checked against the threshold limits and
are used as indicators for detecting faults.

Physics-based stator winding modeling can be presented in
either the frequency domain [2], [8], [9] or time domain [10],
[11], [12]. Time-domain analysis focuses on signal variation
over time whereas frequency domain is a spectral characteri-
zation of the system.

Most available models of stator windings are developed
based on conventional wound wire windings. Although some
behaviors of wound wire windings are similar to those of
hairpin windings, such models cannot adequately capture
all the characteristics of hairpin windings within BLDCs.
Detecting faults in hairpin windings based on these models
is not feasible. Therefore, a specific model for hairpin wind-
ings must be developed before implementing model-based
approaches.

B. DATA-DRIVEN APPROACHES
Data-driven approaches extract underlying information from
historical data or measurements and achieve fault detec-
tion by conducting classifications [13], [14]. With emerging
artificial intelligence (AI) techniques and data availability,
underlying patterns in data are substantially extracted using

data-driven approaches, which include both supervised and
unsupervised approaches. Supervised approaches perform
training based on labeled samples. On the other hand, unsu-
pervised approaches have no prior information about the
training samples; this is also referred to as clustering tech-
niques.

Since labels are available in this study, e.g., the health
status of stator windings, supervised learning algorithms are
of research interest. One popular machine-learning algorithm
is the Support Vector Machine (SVM) [15]. It is suitable for
nonlinear multilabel classification tasks and achieves good
performance for small samples. References [15] and [16]
applied SVM to diagnose different classes of faults (turn
faults and ground faults) within stator windings after different
techniques were used to extract features, e.g., spectral analy-
sis and Stockwell transform.

Artificial Neural Networks (ANNs) perform successfully
in pattern recognition and nonlinear function approximation
tasks [6], [17]. The capabilities for adaptive learning and
handling noisy or incomplete data make ANNs a powerful
machine-learning tool in FDD. Reference [18] collected both
voltage and current data to diagnose shorted-turn, phase-to-
ground and coil-to-coil faults within electric motors by using
a developed ANN. Reference [19] employed ANNs on stator
current signal data to detect insulation failure. This study
showed that additional feature extraction could improve the
detection accuracy.

Deep learning, which is a subset of machine learning,
has become popular nowadays due to its deep architec-
ture capturing high-level features. Unlike traditional machine
learning demanding a separate feature extraction process,
deep learning combines feature extraction and classification
into one step and can work directly on the raw data [20], [21].
Some commonly employed deep learning algorithms are
reviewed.

Convolutional Neural Networks (CNNs) are well suitable
for processing 2-D data [22], like images. Local recep-
tive fields, weight sharing, and spatial sub-sampling are the
three main architectural foundations of CNN structure [14].
Both [23] and [24] tried to detect interturn short circuits
based on current signal data. Reference [23] employed
CNNs directly on the raw signal data, conducting both fea-
ture extraction and classification within the same process
whereas [24] firstly used bispectrum analysis to generate 2-D
data, followed by a CNN performing classification.

Recurrent Neural Networks (RNNs) [25], [26] are spe-
cialized for processing sequential data with variable length.
They introduce a hidden state used as internal memory,
which contains information on all the previous elements
in the sequential data. To avoid vanishing or exploding
gradient problems within RNNs, Long Short-Term Mem-
ory networks (LSTMs) are developed, creating shortcut
paths across time steps to maintain long-term dependen-
cies. Reference [27] applied LSTMs directly on time-domain
current data to detect a three-phase short circuit to ground
fault and achieved superior detection accuracy compared to
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conventional Motor Current Signature Analysis (MCSA),
Multi-Layer Perceptron (MLP) and 1D-CNN in this specific
case. Reference [28] measured vibration signals to diagnose
the severity of open circuit faults within stator windings. Both
raw data and extracted features were used to train the LSTM
separately and using extracted features as the input presented
higher detection accuracy.

C. LIMITATIONS
Both model-based and data-driven approaches have their
limitations. Model-based approaches always require expert
knowledge to construct a model as a baseline to compare
other measurements. It is not always feasible to develop such
an accurate model for complex systems while accounting
for noise and uncertainties. The performance of data-driven
approaches significantly depends on the quality and quantity
of the available data. Such requirements for data are difficult
to satisfy due to the practical and environmental restrictions,
e.g., in manufacturing lines.

From the above analysis, model-based and data-driven
approaches complement each other. Hybrid fault detection
methods [29], [30] that integrate both approaches enhance the
detection effectiveness and increase the detection accuracy.
In this study, a hybrid fault detection methodology based on
a novel high-frequency modeling of hairpin windings and a
machine-learning classification method is proposed.

III. THE HYBRID FAULT DETECTION METHODOLOGY
The proposed hybrid fault detection method is illustrated in
Fig. 1. This method primarily relies on a model-based block
(represented by a dashed blue block) to extract the features
of hairpin windings and a data-driven block (represented by
a dashed orange block) to perform fault classification. These
two blocks are connected in series where the output of the
first block is the input of the second block.

High-frequency impedance data of hairpin windings are
measured and used as the primary input for the whole fault
detection method. Based on conventional equivalent-circuit
models of wound wire windings, a physics-based high-
frequency model is developed specifically for hairpin
windings to account for the skin and proximity effects.
By minimizing errors between measured impedance data and
corresponding predicted values of the physics-based model
under the same excitation frequencies, parameters within the
physical model are identified using system identification and
are used as extracted features to input into the subsequent
data-driven block to conduct fault classification.

Within the data-driven fault classification block, extracted
features are first manipulated to be compatible with the down-
stream classification process. Then a data visualization is
performed to get insight into the structure of the feature data
and guide the detection algorithm selection. Before apply-
ing Principal Component Analysis (PCA) to further refine
data, feature data are split into both training and testing sets.
A portion of data samples are first processed with down-
stream classification procedures for training, determining the

FIGURE 1. The hybrid fault detection methodology.

optimal parameters and weights of the learning method. The
rest are then used as testing data to predict the corresponding
class labels. The proposed machine learning model based on
an SVM successfully classifies both healthy and faulty stator
windings and fault detection results are output.

The measurement data is elaborated in the next section and
the implementation of each block is detailed in Sections V
and VI respectively.

IV. MEASUREMENT DATA
The experimental setup is the same as the system used in
our previous work [31]. The details of the available stator
samples, specific health status and fault types, the experi-
mental setup and the format of acquired data are detailed
in Appendix.

Fig. 2 shows the acquired measurement data of the phase 2
winding for all ten stator samples; similar trends are observed
in other phase windings of the stators. The plot presents
magnitude and phase angles across frequencies ranging from
20 kHz to 1 MHz, with the magnitude and frequency plotted
on a logarithmic scale to clearly show distinctions between
the plotted curves. Healthy stators 1 to 5 are shown by solid
lines whereas faulty stators 6 to 10 are represented as dashed
lines.

In Fig. 2, each phase winding measurement reveals the
presence of a pair of parallel resonance frequencies with
significant dissipative phenomena. Stators 9 and 10 (pre-
sented in red and black dashed lines, respectively), which
lack epoxy coating, exhibit higher resonance frequencies and
larger impedance magnitudes compared to other stators with
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FIGURE 2. Impedance measurement data within ten stators.

epoxy coating. Furthermore, stators 6 to 8, with epoxy faults,
exhibit a resonance frequency shift in contrast to the healthy
stators (stators 1 to 5). This can be observed in Fig. 7 within
Subsection V-E, where resonance frequencies f1 and f2 show
distinct varying ranges between healthy and faulty stators.
The measurements show that the resonance frequencies and
dissipative phenomenon of hairpin windings are significantly
affected by different epoxy configurations, a factor of critical
importance in high-frequency impedance behaviors. These
two factors can be promising indicators of epoxy-related fault
conditions.

Though some distinctions are observed in Fig. 2, it is still
not feasible to perform an effective diagnosis based on the
raw measured data. To effectively distinguish stator windings
with faulty conditions, these measured data are input to the
model-based block in Fig. 1 to extract significant features,
where a physics-based high-frequency model of phase wind-
ings is developed and utilized; details are presented in the next
section.

V. MODEL-BASED FEATURE EXTRACTION
This section extracts features of measurement data using a
model-based approach. Initially, a conventional model based
on wound wire windings is introduced, followed by its lim-
itations to characterize the hairpin windings. To account for
the skin and proximity effects of hairpin windings, a novel
high-frequency model is established specifically for hairpin
windings. The parameters of the developed equivalent circuit
model are identified using system identification.

A. A CONVENTIONAL MODEL
As discussed in Section II-A, an accurate model is essential
in model-based approaches. Most available high-frequency
models are based on wound wire windings [2], [10]. These
models represent the characteristics of stator windings using
a lumped-parameter equivalent circuit and a typical example
is illustrated in Fig. 3, adapted from [2].
The parameters of this model represent a clear physical

significance, as described in TABLE 1.

FIGURE 3. A conventional lumped-parameter equivalent circuit model.

TABLE 1. Physical significance of parameters.

B. LIMITATIONS
Since the conventional model is established based on wound
wire windings, the characteristics of hairpin windings are
not adequately represented. Therefore, simulations of hair-
pin windings based on such models are prone to errors.
Fig. 4 presents a comparison between the simulation results
based on the conventional model (red curves) and the actual
measurement data (blue curves). The procedures and imple-
mentation of this simulation are detailed in Subsections V-D
and V-E.

FIGURE 4. Simulation of hairpin windings based on the conventional
model.

Fig. 4 uses phase winding 2 of stator 1 as an example of
healthy. Evidently, the simulation demonstrates a favorable
agreement with the measurement data above 100 kHz. This
can be attributed to the model’s inclusion of two resonance
frequencies, ω1 and ω2, which effectively characterize the
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two peak magnitudes in the impedance variations. The reso-
nance frequencies ω1 and ω2 are approximated by reactance
parameters L1, L2, C1 and C2 [32], [33]. Since the resistances
RL1,RL2,RC1,RC2 are much smaller than the reactance
parameters, such resistances are often neglected [10], and the
equations to obtain ω1and ω2 are:

ω2
1 = (2π f1)2 =

1
L1C1

(1)

ω2
2 = (2π f2)2 =

1
L2C2

(2)

where ω1 and ω2 are the resonance angular frequencies and
f1 and f2 are the resonance frequencies in Hz.
However, a significant discrepancy between the measure-

ment data and simulation is observed under frequencies of
100 kHz. These discrepancies in the simulation can be pri-
marily attributed to variations of L, the inductance of a phase
winding and RL , the resistance of the inductor. These two
values vary with respect to excitation frequencies, due to elec-
tromagnetic interactions between the varying magnetic fields
and high-frequency currents flowing into the windings [34].

1) INDUCTANCE L VARIATION
For hairpin-based winding modeling, the inductance of phase
windings should be presented as [2] and [35]

L = Lcon + Lvar (3)

where Lcon is a constant component, while Lvar is a variation
in inductance L.
Lcon represents the inductance when part of phase windings

extends beyond the iron core and is exposed to surround-
ing air, as shown in Fig 11. (a) and (b) within Appendix.
This component remains constant and does not change with
excitation frequency. On the other hand, Lvar simulates the
additional inductance that arises when the majority of the
phase windings are installed in an iron core; this component
varies with respect to the excitation frequency.

The component Lvar is affected by eddy currents generated
within iron core laminations due to electromagnetic effects.
At high frequencies, more eddy currents are generated which
produces shielding effects that hinder magnetic flux line
penetration through iron core laminations. Consequently, this
results in a reduction of Lvar values. At low frequencies, less
eddy currents are produced where magnetic lines penetrate
the iron core, thereby increasing Lvar values.
Lvar can be estimated as a power function of the excitation

frequency f .

Lvar = a1 × (f )a2 (4)

where a1 and a2 are variables; f is the excitation frequency.

2) RESISTANCE RL VARIATION
Due to the skin and proximity effects [34], [36], resistance
RL varies in response to changes in excitation frequencies.

Similar to inductance L, resistance RL is composed of two
components.

RL = RL−con + RL−var (5)

where RL−con is a constant component and RL−var is a vari-
able component.
RL−var shows different behaviors at low and high frequen-

cies and can be presented as a quadratic response at low
frequencies, while demonstrating a square root response at
high frequencies [9], [35].

RL−var−low = a3 × (f )2 + a4 × f + a5 (6)

RL−var−high = a6 ×
√
f + a7 (7)

where a3 - a7 are variables; RL−var−low and RL−var−high
present behavior of component RL−var at low and high fre-
quencies separately.

3) LIMITATIONS OF INVOLVING L AND RL VARIATION
In order to characterize the hairpin windings, the conven-
tional model must incorporate the variables discussed above.
Owing to the curse of dimensionality [37], which depicts
that general problems become more difficult to solve with
increased dimensionality, introducing 7 additional variables
(a1 - a7) within the parameter vector significantly increases
the complexity of the model. Since the subsequent parameter
identification applies iterative numerical techniques, involv-
ing more variables makes optimization challenging in finding
the optimal set of variables, where a total of 17 variables
needs to be accommodated. Additionally, the space of the
search domain during the optimization expands exponentially
with dimensionality, leading to increased computational cost.
Therefore, a novel high-frequency model particularly for
hairpin windings is developed in the next subsection.

C. A NOVEL HIGH-FREQUENCY MODEL
Based on the discussion above, it becomes evident that RL1
plays a crucial role in characterizing the frequency response
of the hairpin windings, particularly when the excitation fre-
quency is below 100 kHz. The variation in resistance RL1
with excitation frequencies is due to the skin and proximity
effects caused by electromagnetic induction [38], [39]. This
phenomenon is reasonably accounted for by adding an induc-
tance LP parallelly to RL1 in the new model, see Fig. 5.

FIGURE 5. A novel equivalent-circuit model to accommodate
high-frequency dynamics of hairpin windings.
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The impedance behavior of the new model is:

Ẑ =
1

1
R1

+
1

2π fL1i+ 1
1

RL1
+

1
2π fLPi

+
1

1
2π fC1i

+RC1

+
1

1
R2

+
1

2π fL2i+RL2
+

1
1

2π fC2i
+RC2

(8)

where Ẑ is the complex impedance; i presents the imaginary
part and LP represents skin and proximity effects caused by
electromagnetic induction.

The newly proposed model avoids the necessity of intro-
ducing numerous variables to accommodate for inductance
and resistance variations. Keeping the elements constant
within the circuit, the model can accurately characterize the
high-frequency response of phase windings. In comparison to
the conventional models, this new model reduces the variable
quantities, the complexity of the model and the computa-
tional cost. Meanwhile, the simulation accuracy significantly
increases, as detailed in Subsection. E.

D. PARAMETER IDENTIFICATION
Parameters of the equivalent circuit model are identified using
system identification [37], [40]. The specific procedures are
illustrated in Fig. 6.

FIGURE 6. Parameter identification using system identification.

Measurement data are already collected in Section IV,
including both input and output data, which are necessary
for model validation. With measured excitation frequen-
cies f as input, the high-frequency lumped-parameter model
predicts impedance Ẑ based on initial parameters θ̂ under
constraints r , i.e., resonance frequencies.
The phase winding model in (8) is represented as

Ẑ = F
(
f , θ̂ | r

)
(9)

θ̂ = [R1,RC1,RL1,R2,RC2,RL2,L1,L2,LP]
T (10)

r = [ω1, ω2]T (11)

where Ẑ is the predicted impedance from the model; F repre-
sents the new high-frequency equivalent circuit model in (8);
θ̂ is an estimation of the true parameter vector θ and r repre-
sents constraints. Since C1 and C2 can be defined using (1)
and (2), these two parameters are not included in θ for param-
eter identification.

Parameters are identified by computing the errors between
measured outputs and the corresponding predicted values
from models [41]. By minimizing these errors, the model is
validated and parameters are identified.

θ̂opt = argmin
θ

(ε) = argmin
θ

(∣∣∣Z − Ẑ
∣∣∣) (12)

where θ̂opt is the optimum of parameter vector θ ; ε is output
prediction errors and Z is the measured impedance.
In Fig.6., the parameter vector θ̂ is adjusted based on

numerical optimization methods and iterative procedures.
The parameter tuning process can be considered a nonlinear
global optimization problem. This study finds that Parti-
cle Swarm Optimization (PSO) [42], [43] is well suited in
this case because of its effectiveness and efficiency com-
pared to other optimization methods. PSO is an evolutionary
algorithm where a collection of candidate solutions called
particles move in search space to find the best location (best
objective function). The movement of particles is influenced
by both their individual best location and the best location
of other particles. The location and velocities of particles are
updated iteratively until a stopping criterion is triggered.

Since parameters in the physics-basedmodel possess phys-
ical significance, parameters vary within constrained bounds
that are used in optimization, as shown in TABLE 2. The
upper and lower bounds are set up by referencing other
literature [2], [4], [10].

TABLE 2. Upper and lower bounds of parameters for optimization.

Mean Square Error (MSE) is found to be well suited as
the objective function in this specific optimization case since
other percentage-based error metrics, such as Mean Absolute
Percentage Error (MAPE) causemisleading results [44], [45].
The objective function is defined as

J =
1
N

N∑
k=1

qkε2k (13)
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FIGURE 7. Histogram of each parameter for thirty phase windings within 10 stators.

where J is the objective function; N represents the number
of data points, i.e., 171 in this case and qk presents the kth
weighting factor.

E. EXTRACTED FEATURES AND MODEL VALIDATION
Since PSO is a stochastic algorithm, 10 implementations
are conducted for each phase winding to reduce random-
ness and find the global optimum of parameters specific

for each phase winding. The histograms of each parameter
for 30 phase windings within 10 stator samples are shown
in Fig.7.

Despite the limited number of samples, these histograms
vividly illustrate the impact of different epoxy config-
urations on parameters variations. For parameters R2,
f1 and f2, the variation ranges for stators without epoxy (sta-
tors 9 and 10) are distinct from those with epoxy (stators 1-8).
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Large R2 values of stators without epoxy have a clear phys-
ical significance as they signify dissipative phenomena
originating from eddy currents in windings and laminated
iron cores. For the stators without epoxy, greater magnetic
flux penetrates the iron core during high-frequency excitation
due to the lack of epoxy coating on top of windings. This,
in turn, induces more eddy currents and results in larger
dissipative phenomena.

Particularly with respect to parameters f1 and f2, a clear
separation is evident among the three stator classes, and
do not overlap. These parameters are sensitive to the
epoxy-related fault conditions. The resonance frequencies
that are affected by epoxy configurations of stator windings
are promising indicators for fault detection.

Other parameters show less distinct variation with respect
to different epoxy configurations. However, their contribution
to the simulation accuracy has been validated through feature
ablation studies [46], where each parameter is excluded from
the model in turn to evaluate its individual impact on the
overall simulation accuracy.

After identifying the optimum parameter vector θ̂opt for
each hairpin phase winding, this parameter vector is substi-
tuted into (9) and the predicted impedance Ẑ is simulated as
illustrated in Fig. 8.

FIGURE 8. Simulation of hairpin windings based on the new model.

Fig. 8. continues to use phase winding 2 of stator 1 as
an example for comparing the simulation results as in Fig.4.
Fig. 8 confirms a considerable improvement for the new
model compared to Fig. 4 that uses the conventional model.
In Fig.8, the simulation has good agreement with measure-
ment data across the frequency range of interest, displaying
no noticeable discrepancies. The simulation based on the new
model is superior to that of the conventional model, lead-
ing to reduced objective cost function values and increased
simulation accuracy. For example, in Fig. 8, the objective
function value decreases by 60% compared to that in Fig.4.
Simulations of other phase windings based on the new model
also present the same level of improvement.

The established model accurately captures a certain
degree of physical configuration variation through parametric
changes. However, due to measuring, modeling and paramet-
ric uncertainties introduced during the model-based feature
extraction process, applying a threshold-based fault detec-
tion method becomes challenging. Therefore, a data-driven
method is introduced for the classification to perform fault
detection in Section. VI.

VI. DATA-DRIVEN FAULT CLASSIFICATION
After processing by the model-based method, features of
hairpin windings are extracted and used as input for fault
classification. The pipeline of data-driven fault classification
is illustrated within the orange block in Fig. 1.

A. DATA PREPROCESSING
To integrate model-based and data-driven blocks in Fig. 1,
one important step is to make sure the connecting inter-
face is compatible with both blocks, facilitating data transfer
between the successive blocks.

Features extracted from the model-based blocks are the
input of the data-driven fault classification process, which
includes nine optimum parameters of the equivalent circuit
model and two constraints of resonant frequencies for each
phase winding. With the model-based feature extraction, the
original measurement data of each phase winding with the
shape of (171, 4) are converted to a feature vector with a
length of 11. Each feature vector represents one phase wind-
ing, and a total of 30 phase windings produce the feature
data with a shape of (30,11), as presented in (14) using (10)
and (11).

X =

 [R1,RC1,RL1,R2,RC2,RL2,L1,L2,LP, ω1, ω2]1
...

[R1,RC1,RL1,R2,RC2,RL2,L1,L2,LP, ω1, ω2]30


(14)

where X is feature data extracted by the model-based block.
After this manipulation, the feature data X are ready for the

following data-driven fault classification.

B. DATA VISUALIZATION
Data visualization presents patterns of data and guides
preliminary algorithm selection. To visualize this high-
dimensional feature data X of shape (30,11), t-distributed
Stochastic Neighbor Embedding (t-SNE) [47] is applied.
t-SNE maps high-dimensional data into a two-dimensional
space. Similar points are concentrated whereas dissimilar
points are assigned by distance points. t-SNE reveals the
structure of data at a different scale. Fig. 9 shows t-SNE of
feature data that include 30 phase windings.
In Fig. 9, three clusters representing different stator classes

are easily observed. With the help of coloring the labels, the
boundaries of the clusters are clearly defined. Stators with
similar conditions are gathered, which contributes to the fault
classification.
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FIGURE 9. t-SNE visualization of feature data including 30 phase
windings.

C. PRINCIPAL COMPONENT ANALYSIS (PCA)
As illustrated within the orange block in Fig. 1, feature data
are split into both training and testing sets before inputting
PCA for further feature refining. Since it is not reasonable to
compare faulty stators without epoxy (stators 9 and 10) with
healthy stators (stators 1 to 5) that possess different epoxy
configurations side-by-side, data of stators 9 and 10 are not
included in this subsection for fault detection. Data split for
training and testing are detailed in TABLE 3.

TABLE 3. Training and testing samples for fault classification.

Using limited data for training and validation has practical
implications as it is difficult to gather a large number of faulty
samples in real manufacturing lines. To mirror real-world
scenarios, the samples under training and testing categories of
healthy and faulty classes always come from the same stator.
In the healthy class, three stators are randomly selected for
training and the other two stators are used for testing. In the
faulty class, one stator is used for training and the remaining
two stators for testing.

This study applies PCA to further refine feature data to
reduce noise and uncertainties. PCA [48] is a multivariate
statistical analysis method to extract features from data. It lin-
early extracts independent features by transforming the data
in a new coordinate system with uncorrelated variables. Also,
PCA reduces the dimensionality of data while preserving the
maximum variation of the original data. These two prop-
erties [49] make PCA a robust tool for feature extraction
within data analysis. The new extracted features are principal
components, defined as:

TTraining = XTrainingW (15)

where XTraining is training samples from feature data X ;
TTraining is full principal components transformed from
XTraining and W is weights, whose columns are the eigenvec-
tors of (XTraining

TXTraining).
Principal components are then used as input for the fol-

lowing classification algorithms. Theymaintain the same data
shape as input feature data since the full principal component
transformation is employed.W remains identical while trans-
forming testing samples, which assures the testing samples
transform into the same principal component space.

D. DETECTION ALGORITHMS
Guided by insights from t-SNE data visualization, a machine
learning algorithm is selected for fault classification. Since
labels play a critical role in cluster separations, a supervised
learning method is a priority of the algorithm selection.

This study finds Support Vector Machine (SVM) [50] is
suitable for this classification case due to its effectiveness in
nonlinear and multi-class classification tasks. In particular,
SVM works effectively for small datasets, i.e., in the case
of this study in a manufacturing environment context with
limited data.

An SVM called C-Support Vector Classification [51] is
applied in this study. It achieves classification by solving the
following primal optimization problem:

min
w,b,ζ

1
2
wTw+ C

n∑
i=1

ζi

subject to yi
(
wTφ(xi) − b

)
≥ 1 − ζi

ζi ≥ 0, ∀i ∈ {1, . . . , n} (16)

where w is the weight vector; b is the bias term; C is the
regularization parameter; ζ is the value of the misclassifi-
cation; xi is the ith training data point; φ(xi) maps xi to a
high-dimensional space and n is the number of data points.

SVM maps the input vector to a high-dimension feature
space where a linear decision surface is constructed for binary
classification. This decision surface is defined by parameters
w and b, which are determined by training data. The defined
decision surface is then applied to classify unseen testing
data.

E. EVALUATION RESULTS
With processing by PCA and SVM, an evaluation result is
illustrated in Fig. 10. Both training samples and testing sam-
ples are presented in the transformed principal component
space by plotting the first two principal components. Healthy
and faulty data show separate clusters where both testing
healthy and testing faulty data (represented as dark blue and
green dots) fall into the corresponding classes correctly.

Cross-validation is also implemented to evaluate the per-
formance of this machine learning method. Stators 6-8
are selected for training in turns whereas the other two
stators are used for testing. The healthy class keeps consis-
tent in each cross-validation setup where three stators are
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FIGURE 10. Evaluation results using SVM-based machine learning.

randomly selected for training and the other two for test-
ing. To reduce the impact of randomness in the training
process, 1000 training-evaluation cycles are conducted for
each cross-validation setup and mean testing accuracy as well
as overall experiment accuracy are calculated as shown in
TABLE 4.

TABLE 4. Cross validation setup and evaluation results.

All testing samples in both healthy and faulty classes can be
successfully classified, achieving 100% overall experiment
accuracy. This high accuracy benefits from some parameters,
such as R2, f1 and f2, extracted from the model-based method.
These parameters display distinct variability in the presence
of epoxy-related fault conditions, contributing to the achieved
accuracy. PCA also removes noise and further refines fea-
tures in data analysis despite some possible uncertainties
introduced during the modeling and parameter identification
process. The overall experiment accuracy improves by 5%
compared to a previous work that only applied data-driven
methods [31].

VII. CONCLUSION
Combining a novel physical model and a machine learning
method, this paper presents a hybrid fault detectionmethodol-
ogy that shows exceptional accuracy for epoxy fault detection
of stators with hairpin windings.

In particular, a new physical model that accounts for skin
and proximity effects is 60% more accurate than the con-
ventional model when simulating high-frequency impedance
behaviors. Using model parameters for fault detection, the
proposed SVM-based machine learning method effectively
removes noises in data, distinguishes between underlying
patterns, and successfully classifies both healthy and faulty
stator windings.

The hybrid method achieves higher overall accuracy than
pure data-driven approaches, combining the benefits of both
model-based and data-driven approaches while supplement-
ing their deficiencies. In the meantime, it also retains model
interpretability as the identified model parameters possess
actual physical significance. With respect to practical impli-
cations, the proposed hybrid fault detection method focuses
on manufacturing faults before stator windings enter the
assembly stage, which minimizes the risk of BLDC break-
down and reduces subsequent maintenance costs. Also, such
preventive maintenance enhances product delivery quality
and extends the lifespan of BLDCs.

Future works will exploit the physical model of hair-
pin windings to generate synthetic data, simulating various
operation conditions to enlarge the training dataset for a
learning system. With such data augmentation, a quanti-
tative limitation of available faulty operating data will be
addressed, advancing fault detection applications and increas-
ing accuracy.

APPENDIX
EXPERIMENTAL SETUP
Stator windings of BLDCs from a manufacturing line are
used in this study. The experiment uses ten stator sam-
ples with different conditions, as shown in TABLE 5. All
stators are of the same model and have a star-connected
configuration.

TABLE 5. Conditions of stators, adapted from [31].

Stator samples 1 to 5 with normal conditions are catego-
rized as ‘‘healthy’’ whereas stators 6 to 10 exhibit different
types of fault conditions. Specifically, stators 6-8 possess
faults related to the epoxy and stators 9 and 10 carry faults
related to welding, as shown in Fig. 11. (c). Since welding
faults are inspected before the stators enter the epoxy coating
process, stators 9 and 10 do not have an epoxy coating.
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The stator samples with different epoxy coating configura-
tions in experiments are presented in Fig. 11. (a) and (b).

FIGURE 11. Stator samples and fault types used in experiments, adapted
from [31].

The characteristics of stator windings have been found
to be reflected in impedance measured at high frequen-
cies [52], [53], [54]. In this study, the high-frequency
impedance data are acquired by applying an instrument called
GAMRYTM [55], which measures the impedance using a
sweeping sinusoidal signal from low to high frequencies.
Based on experimental results reported in published liter-
ature [2], [11], the frequency range of 20 kHz to 1 MHz
is selected in this study. This frequency range reportedly
presented a pair of resonance frequencies with large dissi-
pative phenomena within impedance measurement, in which
healthy and faulty stator windings exhibit distinguishable
patterns. Fig.12. shows the experimental setup used in this
study, where one terminal of a phase winding, along with the
neutral point of the stator, is connected to the GAMRYTM

instrument to measure the high-frequency impedance of the
specific phase windings. The other two phase windings of the
same stator are also measured later in turn to acquire similar
data.

FIGURE 12. Experimental setup in the lab.

A galvanostatic test [56], which keeps the input current in
constant magnitude and monitors the variation of the output
voltage, is performed at each phase winding. Four pieces of
information on the complex impedance are recorded: magni-
tude, phase angle, resistance, and reactance. The magnitude
and phase angles exhibit complex impedance in the polar
coordinate system whereas the resistance and reactance are
in the Cartesian coordinate system.

For every high-frequencymeasurement, there are 171 exci-
tation frequencies ranging from 20 kHz to 1 MHz employed.
The data shape for each phase winding is (171,4), where
the rows represent the excitation frequencies and the
columns record the impedance information. Considering that
three measurements are conducted within one stator for
each phase winding, a total of 30 measurement data are
available.
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