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ABSTRACT Deep learning (DL) based camouflage target localization, classification and detection using
UAV data is currently an evolving and promising hotspot in the field of digital image processing and
computer vision. Weed, an undesirable plant that hinders crop growth, acts as a camouflage target w.r.t
sugarcane crop (Saccharum Officinarum). Weed exhibits green-on-green color-based merging capability
(backgroundmatching) and similar spectral behavior with the sugarcane crop, resulting in a visually complex
camouflage habitat, making it difficult to distinguish and detect weed from crop. The concealed nature of
weed in the sugarcane field, qualifies it as a camouflage target. In this scenario, weed is distributed in the
form of multiple small patches across the UAV imagery, making the detection even more complicated,
leading to a requirement of a pixel-based classification and subsequent target detection technique. The
research problem is to successfully detect weed (camouflage target) at the smallest resolvable pixel size
(2-4 cm/px), keeping in mind the similar behavior (merging color) and its difficulty to differentiate it from
the sugarcane crop (background). To achieve this challenge, color and texture are exploited as important
feature representations. They are extracted via UAV image(s), which can aid in small and multiple weed
patch detection, by implementing a rich feature-based Deep Neural Network (DNN). In this revolutionary
era of AI and modern drones, DNNs provide feature based elastic transformations, expedited processing,
improved accuracy, and optimized mapping and detection. These representation-based networks traverse
deeper into color and texture feature representations as a unified component, pixel by pixel, eventually
detecting the camouflage targets by their self-learning capabilities in comparison to traditional classification
approaches. DNNs exhibit good capabilities to solve camouflage target detection problems, therefore we
have proposed a methodology based on deep learning feature-based modelling which generates classified
and localized image maps that highlight multiple and small weed patches at the minimal pixel level possible
from a merged green-on green background. We have explored and proposed a methodology that self learns
exhaustive features from the UAV imagery via feature transformations which in turn reduces the feature
bias and exhibits enhanced prospects w.r.t sensitivity of imagery background. This eventually results in
improved localization and classification of camouflage targets with respect to traditional target detection
and localization modelling techniques in natural background. It is observed that the proposed methodology
is capable of detecting small patches of weed (similar color behavior) from its background with an accuracy
of 90.5%.
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KEY HIGHLIGHTS
• Development of an adaptive and efficient algorithm based on color and texture features which classifies the study
area into two classes (binary classification): weed and non-weed, eventually detecting small and multiple weed
patches from RGB UAV images. • Proposing and formulating a self-learning framework trained to detect multiple
weed patches of varying sizes, with promising visual detection in varying conditions such as: (a) saturation intensity,
(b) contrast, (c) shadow, and (d) luminance conditions in the imagery w.r.t ground truth. • Critical comparison of the
network with notable state of art algorithms from literature such as support vector machines (SVM), random forest
classifier (RF), 3-layer multi-layer perceptron (MLP) and 2-D ConvNet on the basis of an array of post-classification
metrics w.r.t ground truth.

INDEX TERMS UAV, deep neural networks, classification, target detection, computer vision.

I. INTRODUCTION
Camouflage target identification and detection in natural
background by localizing and classifying modern drone data,
i.e. multi-spectral high-resolution sensor(s) equipped UAV
(unmanned aerial vehicle) data, especially by machine learn-
ing based parameterized classifiers is an intricate and intuitive
process which happens to be one of the active hotspots
in the cumulative fields of drones, image processing and
computer vision. In this study, UAV acquired aerial imagery
of a sugarcane field with weed as a camouflage target,
which is merged with green-on-green sugarcane crop (back-
ground) is the visually complex scenery which makes target
localization and classification typical and difficult. Classifi-
cation and localization of real-time captured, high-resolution
UAV datasets requires good consideration of relevant and
related factors. More complexity is automatically appended
if the target is camouflage in nature, i.e. a type of target,
which is concealed, by merging in the background. The
camouflage nature of the target makes it hard to identify,
detect and eventually classify. Relatively similar spectral
behavior of the target (foreground) with the surroundings
(background) creates false illusions such as disruptive cam-
ouflage (breaking/bending shape) [1], background matching
(blending/merging with the background), masquerade (copy-
ing other target/object), and dazzle camouflage exhibited by
animals, humans and man-made targets on purpose or natu-
rally [2], [3], [4]. Indistinguishable visual nature of embedded
and rapidly spreading weed (unwanted plant growth) in a
sugarcane field, makes this imagery a background-matching
camouflage target template [5]. The nature of weed patches
is varying in sizes (smallest being in the range of 2-4 cm/px)
and is multiple in number. Detecting and classifying these
concealed targets into concise and accurate classes with
distinguished class boundaries, independent from explicit
programming but rather, trained on an exhaustive feature set
is an emerging area of research these days. Finding rele-
vant features in the imagery belonging to respective classes,
labelling them and training the visual facets of imagery
via deep learning algorithms is one of the active research
domains, which assists such problems with automatic feature
extraction and learning, robustness towards varying natural
factors and flexible architecture which can be tuned according
to the research problem statement. Deep learning has found

commendable findings and applications in object detection
and classification, precision agriculture, automatic disease
detection, semantic segmentation, data clustering and target
detection and monitoring.

II. RELATED WORK
Weed, in the sugarcane field, competes for nutrition, water,
sunlight and growing space, making it tough for the orig-
inal crop to flourish, resulting in a probable bad produce
with respect to otherwise ideal conditions. Traditional weed
management techniques constitute financial burden, man
power and are eventually, time-based investments [6], [7].
An automated detection scheme via binary classification
and localization can aid in swift and factual weed detec-
tion, control and management, finding its practical applica-
tions in small-object detection, precision agriculture (early
weed detection) and eventually multiple camouflage target(s)
detection. Discovering separability between two modalities
(weed and non-weed areas), with relatively similar signa-
ture requires learning patterns of spatial association about
target-background item-item co-occurrence via efficacious
pixel-level feature extraction [8], which in turn aids in
improved feature set and network training for deep learning-
based classifiers. In addition to the factors discussed above,
there is a need of a fault tolerant, feature rich algorithmwhich
works on multi-target detection, effectively. The variation in
appearance of the target, such as color, merges the camou-
flage target with the background. Pressing requirement is of
an efficient target detection scheme that successfully segre-
gates the target from the background with less bias in feature
selection choice, and minimum background knowledge. The
complexity of the images also makes target detection rela-
tively difficult. Along with the fact that distinguishing and
localizing camouflage from its natural background itself is a
huge challenge, there also happens to be false alarm, misclas-
sification, poor detection rate, that needs to be compensated
by a thorough post-classification metric assessment against
the ground truth.

Deep learning, a subclass of machine learning, allows
complex and computational training of high dimensional data
inputs with multiple levels of abstraction, by layering several
self-learning algorithms [9]. The basic underlying concept of
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deep learning lies in ‘‘representation’’, i.e. discovering and
extracting meaningful pattern by feeding ‘‘raw data’’ via a
feature extractor for data transformation(s) to finally repre-
sent a meaningful representation unit such as a feature vector,
classifier or detector [10], [11], [12]. Deep learning classi-
fiers are hence, representation-based learning algorithmswith
channeled levels of data sets using general-purpose learning
procedure with substantial higher accuracy than traditional
algorithms [9], [13], [14]. Modelling non-linear, varied rep-
resentation units, on a high-resolution dataset is the beauty
of deep neural networks, where the network increments the
complexity and automates feature selection, as the network
progresses. Deep Neural Networks (DNNs) have revealed
exceptional performance metrics on image classification and
localization of targets, provided computational needs are
fulfilled, as these algorithms have relatively strenuous and
tedious training periods, hence demanding specialized graph-
ics processing units (GPU) for its protracted processing. The
problem-solving approach is also more refined owing to step
by step implementation and analysis. Hence, it has been
observed that in a high-resolution UAV data that possesses
a complex, concealed target problem with less information
and separability about class-wise feature domain, deep learn-
ing plays a significant role in localization, classification and
eventually camouflage target detection [15]. Popular machine
learning techniques such as XGBoost [16] have been uti-
lized for rich feature extraction such as spatial information,
intensity and texture features to detect and discriminate in
vegetation targets but lacks minimal pixel detection [17],
whereas color and area based image filtering techniques for
weed detection in vegetable crops using machine vision has
been also been explored in recent works [18], regression
based classification to map crop planting quality has also
been widely explored and implemented giving meaningful
insights in the application of computer vision in such com-
plicated problem statements [19]. SegR-Net, a deep learning
algorithm based on rich feature extraction and multiscale
feature fusion for retinal vessel segmentation utilized deep
feature magnification, feature precision and interference for
accurate segmentation masks [20]. Various CNN architec-
tures such as ResNet50, MobileNet were explored to classify
weeds in soybean crops successfully and exhibited great
potential in using deep learning as a tool for camouflage
target detection [21]. Literature also indicates towards a
greater potential in terms of accuracy, target detection and
reduced false alarm rates when machine learning based tech-
niques are used for such problem statements rather than
traditional techniques [22]. Certain classifiers inspired by
object detection techniques such as YOLO (You only look
once) [23], which explores unified architecture in a single
pipelined network, hereby, also gaining a lot of popularity
in deep-learning based real-time weed detection from cotton
and other crops [24]. It can be concluded that object/target
detection using DNNs via classification and localization
scheme, primarily depends on the depth of how information

rich ‘‘object/target representations’’ are and the overall choice
and design of the network implemented. It is preferred that
though the scheme is tailor-made and optimized according
to the problem statement, there should still be wise choice
of feature representations and self-learning adaptability of
feature extraction and feeding for the network. Practically,
deep learning in this study, incrementally learns feature set
extracted from UAV acquired dataset from low-level to high-
level categories. Ability to traverse information pixel-wise
and learn complex patterns to localize and classify targets
is the beauty of deep learning algorithms. In comparison to
traditional image recognition techniques, where feature set
needs to be extracted manually and identified by an expert,
deep learning automatically chooses rich feature set accord-
ing to the necessary outcome.

In this paper, we exploit the immense potential DNNs
exhibit, by proposing and formulating a robust framework
that (1) accurately classifies, localizes and detects large num-
ber of small and multiple weed patches of varying sizes in
merged background (w.r.t sugarcane crop) with (2) promising
visual detection on high dimensional multi-spectral UAV
imageswith variations in (a) saturation, intensity, (b) contrast,
(c) shadow, and (d) luminance conditions in the imagery w.r.t
ground truth (3) validated by an array of post-classification
performance metrics. This research explicitly classifies the
problem area into two classes (binary classification), and
composes a scheme which outputs a binary mask, exhibiting
multiple weed patches successfully. This paper is divided into
seven sections as follows: Section (3)provides an in-depth
insight into the UAV data, study area of our research, and data
acquisition approach (flight plan, testing and implementation,
pre-processing and orthomosaic map generation). Section IV
presents a systematic overview of technical concepts and
current state of art, which acts as the theoretical anchor
to conceptually support the paper. Section V describes the
comprehensive methodology for weed detection (processed
data, data labelling, network design and optimization, imple-
mentation along with accuracy assessment and information
presentation). Results and detailed analysis of performance
metrics are described and discussed in Section VI. Finally,
Section VII concludes the paper with potential future scope.

III. STUDY AREA AND DATASET PREPARATION
This section describes the study area, data description and
highlights the target of interest viz. weed w.r.t our problem
statement, which will be used for developing and validating
our proposed methodology.

A. STUDY AREA
Study area for our research problem composes of a
weed-infested sugarcane field in the Dhanauri region
(29◦55’52.56’’N, 77◦57’58.85’’E, ref system datumWGS84)
of Roorkee, Uttarakhand, India, as depicted in Figure 1(a).
The topography of the study area is relatively flat. The
imagery constitutes of multiple and varying sized green
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patches as marked and depicted by red circles in Figure 1(b)
that conceals with the background viz sugarcane field. Both
the plants are green in color, hence making the unwanted
weed exhibit merging properties with the background, there-
fore qualifying as a camouflaged target (background match-
ing). Weed as a camouflage target mixes with the background
(sugarcane crop), making target search and detection typical
and challenging.

FIGURE 1. (a) Study area, (b) highlighted weed (target) patches in
sugarcane field (background), (c) red band, (d) blue band and (e) green
band of UAV image.

B. DESCRIPTION OF DATA
High resolution, airborne image dataset constituting of origi-
nal tristimuli, i.e., red (R), green (G) and blue (B) bands was
acquired using a professional DJI Phantom 3 drone mounted
with a completely integrated 4K camera sensor, as displayed
in Figure 1 (c), (d), and (e). The DJI Phantom 3 Professional
Edition quadcopter also has its own in-built imaging system.
A dedicated flight plan for in-situ image and ancillary data
acquisition alongwith its associated deliverables was planned
and mapped with consideration for our area of interest, which
is primarily a weed-infested sugarcane field. A UAV image’s
spatial resolution indicates the degree of detail that can be
resolved in the image and is usually expressed in terms of the
area of ground that a single pixel of an image can cover, also
known as Ground Sampling Distance (GSD). The altitude
of the UAV, the characteristics of the sensor, and the flight
parameters are only a few of the variables that affect the
spatial resolution, i.e., GSD of a UAV image. Keeping in
mind our problem statement, we finalized the ideal pixel size
range that may aid in resolving multiple and smallest weed
patches. Finally, an acquisition of 261 images (median of
42807 key points per image) at a fixed altitude of 50 meters,
with an effective pixel size (GSD) of 2.13 cm, which may be
the optimum size to detect multiple weed patches according
to our problem statement was conducted. UAV flight plan
parameters for this dataset are shown in Table 1, which is
a composition of a proper scheme to determine flight path,
flight height (h) and image capture rate based on imagery
needed, effective pixel size (GSD) and type of sensor used.

TABLE 1. Flight plan for UAV acquisition.

Multiple green on green (weed on sugarcane) patches
of varying size were observed in the orthophotos (4000
3000 pixels distribution) collected, with the effective pixel
size of the orthomosaic image being 2.13 cm/pixel.

C. DATA PREPROCESSING
A high resolution, low value GSD orthomosaic that covers
the sugarcane field to capture multiple weed patches at a
very fine spatial resolution is the dataset requirement. For
the purpose of effective and precise data acquisition and
data quality, a detailed flight plan and data preprocessing
scheme is needed. Transforming the raw data (obtained from
DJI Phantom 3 professional quadcopter) into meaningful
and integrated data points is known as data pre-processing.
It describes the steps taken to prepare data for visual analysis,
such as cleaning, converting, and transforming it. Enhancing
the quality of the data and tailoring it to the problem statement
are the objectives of data preprocessing. In our case, high-
resolution UAV data set acquisition and preprocessing is
performed using DroneDeploy [25] and Pix4D [26] tools.
Step 1:DJI Phantom 3 drone is calibrated and pre-requisite

planning on DroneDeploy [25] is initiated.
Step 2: Keeping and assuming flight height (H = 50m)

to be constant during flight, and finalizing study area’s geo-
graphic coordinates, starting and end point, data acquisition
is launched.
Step 3: Post-acquisition, parameters such as calibration

(camera model optimization), geolocation information status
(availability of GPS/GCP), KMZ band order (blue, green and
red), and co-ordinate system (set to WGS84) are optimized.
Step 4: Using Pix4D, data pre-processing steps are initi-

ated, such as, a.) initial processing b.) match grid + point
cloud and c.) DSM resolution.
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Step 5: Noise reduction, lens distortion correction, band
registration, radiometric correction are the pre-processing
steps performed to acquire the georeferenced high resolution
RGB orthomosaic images.
Step 6: UAV orthomosaic processed and effective pixel size

of drone images is calculated by computingGround Sampling
Distance (GSD), which describes the distance between two
consecutive pixel centers [39]. High resolution drone dataset
is ready and the processed image is up for interpretation, visu-
ally and/or digitally or electronically, to extract information
about the target which was illuminated

Higher spatial resolution implies that smaller objects and
features can be detected and identified in the image accu-
rately [40]. To acquire and process these high-resolution
images, DroneDeploy, Pix4D and a dedicated GPU setup
(NVIDIA Quadro P2200) is used in this study.

IV. THEORETICAL BACKGROUND
Our problem statement comprises of weed (target) merged
with sugarcane crop (background), in different shapes and
sizes, making localization and classification difficult. Detect-
ing multiple and variating weed patchesof different intensity
variations of color, especially in early stage is quite typ-
ical too. Imaging modality for our problem statement is
unmanned aerial vehicle (UAV) dataset, popularly known
as ‘‘Drone’’ [27]. High resolution UAV digital images are
acquired without actually being in direct contact with the
target; by sensing or recording reflected energy and sub-
sequently surveying, processing, analyzing and utilizing
the acquired digital information. Exploiting this imaging
modality by using problem-specific computative designed
machine-learning based algorithm(s) to detect merged targets
is feasible due to the technical advantages drone survey-
ing exhibits, such as reduced field time and survey costs,
increased accessibility along with detailed and comprehen-
sive high-resolution data collection. Data acquisition by
modern drones is to-the-point accurate w.r.t the flight plan
and has deliverables such as orthomosaic photo maps, point
clouds, digital surface/terrain models (DSM/DTM), contour
lines, etc. The concerned deliverable for our study are UAV
frame raster and orthomosaic maps, which is a digitally
stitched, high resolution raster made by combining multiple
captured images (also called ortho-rectification), which are
free from lens distortion or anomalies such as camera tilt
or perspective [28]. Orthomosaic images accurately depict
enormous geographical areas and, in our case, exhibits our
targets accurately. Accurate image acquisition and organized
flight plan scheme for UAV facilitates cleaner and accurate
dataset. Pixel, defined as ‘‘a two-dimensional picture ele-
ment that is the smallest non-divisible element of a digital
image’’ is the most informative source w.r.t problem state-
ment as it provides necessary information needed to know
about the difference between weed and non-weed pixels in
the imagery [29]. In case of UAV imagery, ground sampling
distance (GSD) is calculated as the overall effective pixel of
the imagery. Higher spatial resolution, and in turn lower GSD

or effective pixel size aids in resolving minute objects/targets
and navigate through the intricacies of high dimensional
data. Image acquisition parameters (sensor’s shutter speed,
aperture, ISO, image side and front overlap conditions, flight
altitude), choice of GCPs, pre-processing and having access
to high-performance computing plays a crucial and decisive
role in orthomosaicking drone images. GSD, is henceforth,
calculated by the following formulation [30]:

GSDh =
H × Sh
f×Ih

(1)

GSDw =
H × Sw
f×Ih

(2)

where:
GSDh = GSD w.r.t height
GSDw = GSD w.r.t width
H = flight height
f = focal length
Sh/Sw = sensor height/sensor width
Ih/Iw = image height/image width
Greater computed value, out of GSDh or GSDw will be the

final GSD or effective pixel size of the study area. The final
computed GSD for our study is 2.13 cm/px. GSD calculation
is important for both aerial photography and photogramme-
try, and in our case an effective pixel size of 2.13 cm/px
implies that the image represents linearly 2.13 cm 2.13 cm
on the ground, which is a rich and high-resolution dataset for
camouflage classification and localization. Metadata is the
data or information about data which includes file name, level
of quantization, number of bands, geo-referencing and pixel
size, and is the primary and most contributory information
source with regards to the image-based dataset acquired.
The preliminary image statistics such as total pixels, image
dimension and central moments such as mean, standard devi-
ation, histogram give a glimpse into the dataset and image
quality, as summarized in Table 2. These preliminary data
information points provide an insight into the raw data and
helps decide the image processing operations needed to be
implemented on the dataset for further processing (training
dataset generation, feature extraction and eventually feeding
to the network).

Spanning through individual pixels, is the most useful
preliminary method for accessing the quality and information
content of the data. Visual inspection and traversing through
the basic image statistics such as min, max, mean, standard
deviation, image histogram values deduce that color and tex-
ture are significant and important clues for target localization
and identification in our problem. Total pixels for our study
are 4000 3000 pixels, with each pixel having effective size
of 2.13 2.13 cm. Image band values (min and max) while
navigating through both weed and non-weed areas give us
a range-based value set to work on and whether the image
is affected by atmospheric effects or not, while the range of
histogram (max-mean) gives insight into the contrast of the
image, which is quite good, in our case. Brightness values
(BV) of pixels in an image depict the relation of the amount
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TABLE 2. Preliminary image statistics.

of radiance in watts per sq. cm striking an image detector, and
lie in the range of 0-255. For an image pixel P, represented by
row (i), column (j) in an array of matrix, BVij represent the
brightness values of the pixel. The mathematical average of
the BVs of an image is known as mean [32] represented as:

µ =
1
N

N∑
i=1

BVi (3)

where:
BV = digital number of the pixel
N = total no. of pixels
i = pixel descriptor
The measure of the statistical dispersion is formulated by

Standard Deviation (SD) [32], which is the root mean square
of values from their arithmetic mean and is represented as:

σ =

√√√√ 1
N − 1

N∑
i=1

(BV i − µ)2 (4)

where:
BV = digital number of the pixel
N = total no. of pixels
µ = arithmetic mean
i = pixel descriptor
SD values indicate the nature of clustering of data points

around the mean. Role of statistical evaluation of image
datasets help to curate effective inter-class relations and
associations, eventually aiding in accurate feature identi-
fiers [6]. Texture, on the other hand is an innate property
which expresses the local spatial structure in the pixel, in turn
describing the variation in the tone of an image. It depends on
the variation of gray levels and also depends on the BV. Tex-
ture measures can be 1.) First order statistics and 2.) Second
order statistics. The first set comprises of mean, entropy and

variance; while the second set is constituted by co-occurrence
metrics, such as mean, contrast, second moment, variance,
dissimilarity, homogeneity, entropy and correlation [34].
Gray Level Co-occurrence Matrix (GLCM) is a decision-
based gray-tone spatial dependency matrix, which provides
deeper insight into the pixel-pixel co-occurrence relationship
in terms of smoothness, coarseness and regularity [21], [22].

For an image pixel P, represented by row (i) and column
(j) in an array of matrix, and (i, j)th entry in a normalized
gray-tone spatial dependence matrix [34], textural features
(t1-t5) are computed as follows:

Angular Second Moment (t1)

t1 =
∑
i

∑
j

{p(i, j)}2 (5)

Contrast (t2)

t2 =
N−1∑
i,j=0

P(i− j)2 (6)

Correlation (t3)

t3 =

∑
i

∑
j

(i, j)P (i, j)− µxµy

σxσy
(7)

Entropy (t4)

t4 = −
∑
i

∑
j

p (i, j) log (p (i, j)) (8)

Dissimilarity (t5)

t5 =
N−1∑
i,j=0

P (i, j) |i− j| (9)

Both color and texture can be discriminating factors to dis-
tinguish between weed and non-weed, in turn being utilized
as features to train the network, though the similar color of
the target (weed) and background (crop) happens to be a
major challenge. Our goal is to detect small and multiple
patches of weed, especially multiple patch detection to the
smallest pixel size. When it comes to data modelling, differ-
ent applications utilize different kinds of architectures, such
as, for predicting probabilities a predictive model comes to
use, while to show relationship or dependencies, a descriptive
model is chosen, whereas for in-depth statistical analysis,
a diagnostic model is preferred while for a yes/no or 0/1
answer, classification model is best suited. Classification is
a robust process that categorizes clear, accurate class bound-
aries which, ideally should be scale and source independent.
It should be practically oriented and comprehensive in nature.
Image classification can be expanded into different forms
on the basis of the research problem statement/scientific
application.

A pure classification scheme constitutes of assigning a
particular label/class to a part of an image that is supposed
to depict varied label/class information, whereas classifica-
tion with localization scheme involves particular object/target
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FIGURE 2. Flowchart of the proposed methodology: (a) input UAV rasters at input layer, (b) hidden layers and nodes, and (c) classified binary
map(s) at output layer.

where the localization part creates a bounding box/shape
mask around the object/target. Classification with object
detection involves a bounding box or a polygon region of
interest (ROI) which assigns specific classes to the different
objects in the image. Detecting a target is hence a combina-
tion of both image classification and localization. Marking a
polygon-based ROI around the target(s) shape in the input
image at a pixel image level not only segments down the
input image into areas containing the pixels of objects and
background, separately, but this type of pixel-wise segmen-
tation also presents us with the object’s shape instead of
just a rectangular bounding box enclosing the object, mak-
ing our detection more convenient. A basic classification
scheme constitutes of steps such as digital UAV dataset
acquisition, primary visual inspection and statistical analysis,
followed by necessary image enhancement techniques and
operations on the dataset. Without proper pre-processing or
planning, there could be data ambiguity which can lead to a
low classification scheme. Our problem statement deals with
the type of object(s)/target(s) that hide their signatures and
merge into the natural background making it a complex and
tricky task for the camouflaged target to be detected, clas-
sified and monitored. Deep learning-based target detection
extracts group of rich features that group similar pixels into
one class, while detecting boundaries of objects in varying
shapes and sizes, eventually localizing the camouflaged tar-
get and detecting weed patches. Ability to self-learn with a
labelled training set, without being explicitly programmed
with clear class definition is one of the goals of this research.
In the process of detecting targets, there is a need to use
multi-features such as spectral, spatial & texture-based char-
acteristics which can be efficiently used together along with
training datasets [19], [23], [24]. There is an abundant layer

of sensitivity with respect to background to detect weed
patches such as color-based sensitivity and textural varia-
tions which may be useful to address this type of problem.
There is a need for a fault tolerant and robust classifier
that works on multi-target identification and localization, i.e.
small objects/targets (patches) and multiple objects/targets
(patches) detection with a wise choice of feature set. There
also is a need of an establishment of a metric-based quality
and post-classification assessment scheme for validation of
the detection. Machine learning’s target-background associa-
tion approach can be very fruitful to accurately classify and
localize small and multiple weed patches in UAV imagery.

It can overall be concluded, that there is a need of a
fault-tolerant algorithm that works on multi-target identifi-
cation viz, small and multiple target (weed) detection in a
spatially rich dataset (UAV), keeping in consideration low
feature bias and high feature extraction scheme to success-
fully and accurately detect camouflage targets. For validation
purposes of the same, establishment of a metric based quality
assessment scheme is highly encouraged. Incorporating the
scientific concepts aforementioned in this section, research
gaps such as occlusion, similarity in texture and color, inad-
equate data sets, cluttered background, error-free technique
without much background knowledge are attempted to be
resolved to a great extent, while simultaneously classifying
and localizing multiple and varying size weed patches in the
form of a binary masked image output.

V. METHODOLOGY
Proposed methodology (Figure 2) aims at efficient camou-
flage target detection using densely connected deep neural
network which is trained by mapping complex data asso-
ciations and features (feature engineering) via various data
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transformations and feedback mechanisms. The proposed
methodology of our study is divided into two sub-sections,
A) dataset generation, and, B) training and implementation
of designed DNN as explained below.

A. DATA SET GENERATION
1) REFERENCE DATA GENERATION
Ground truth or reference dataset in machine learning refers
to the accuracy of the training set being classified, basi-
cally the ‘‘reality’’ one wants their classier/model to predict
that checks the results against the real world. Data set gen-
eration via labelling is also critical as it aids in making
targets identifiable and easier for the network to recognize,
category/class wise. Labels/tags are of many types such as
‘‘in-house data labeling’’, ‘‘synthetic labeling’’, ‘‘outsourc-
ing’’, ‘‘crowdsourcing’’, etc. Labels adds meaning to the
dataset which aids in precise predictions and better data
usability. For our problem statement, we will be using both
in-house dataset generation and synthetic data generation.

Our main focus will be on curating manual polygon-based
ROIs(Region of Interest) of both weed and non-weed areas.
After successful ground truth labeling, weedmasks were gen-
erated (to be also used for accuracy assessment later). Amask
is simply an image where some of the pixel intensity values
are zero, and rest are non-zero. Wherever the pixel intensity
value is zero in the mask image, the pixel intensity of the
resulting masked image will be set to the background value
(normally zero) [41]. Mask creation on basis of visual inspec-
tion of weed and non-weed patches is done by using a set
of polygon ROIs for visualization and evaluation purposes.
ENVI, a geospatial tool industry standard image processing
tool, is used to make manual ROIs. Data labelling via ROI
masking, is cumulated in the steps below:
Step 1: Launch ENVI. Navigate visually through the

image. On the basis of visual navigation, confirm weed
camouflage target as ‘‘weed’’ and mark weed precisely and
steadily in the image, in freeform polygon shapes using the
ROI Tool [42], ENVI. Mark the vertices of the polygon or
polyline, or click and drag to draw the shape. Also, assign
a Label ∈ {0,1} to each pixel i, where Labeli represents the
value of each binary pixel i. A tag value of 0 means that the
pixel belongs to non-weed class (sugarcane crop), while a tag
value of 1 means that the pixel belongs to the weed class.

FIGURE 3. (a) UAV raster, (b) polygon ROI of weed and (c) weed mask of
UAV raster.

Step 2: After labelling ROIs for both the classes, mask
file and shapefiles are created, which can also be exported
in ASCII format, as shown in Figure 3.

Step 3: To re-use these accurate yet time-consuming
ground truth, images are augmented synthetically on the basis
of their saturation and contrast factor, to increase the training
raster dataset which shares the same ROIs and masks.

Steps 1-3, from Reference data generation, are also imple-
mented on images with variations in (a) saturation intensity
(b) contrast (c) shadow (d) luminance (illumination) condi-
tions, as depicted in the next section.

2) SYNTHETIC DATA GENERATION
Synthetic dataset is annotated information that is generated
artificially. A synthetically augmented dataset will enable us
to re-use the time-consuming labor of manually designed
ROIs again on those images, hence avoiding further data
annotation. Synthetic data has been regarded as one of the
most promising general techniques on the rise in modern
DL, especially computer vision-based target detection tech-
niques [43], [44], [45]. In our work, we have attempted
to augment data using saturation stretch and variating con-
trast/intensity of the whole image by multiplying it with
contrast and intensity factors respectively.

FIGURE 4. Saturation stretch of varying UAV rasters, with their weed
polygons marked and masked, (a), (b), (c) and (d).

FIGURE 5. (a) UAV raster with its (b) marked weed, (c) weed mask, and
augmented rasters with contrast factor (d) 0.2, (e) 0.4, (f) 0.6, (g) 0.8 and
(h) 2.0.

Saturation stretch intensifies the color of a 3-band input
image by performing a gaussian stretch by producing output
bands that have more saturated colors [46]. The input data
are transformed from red, green, and blue (RGB) space to
hue, saturation, and value (HSV) space. The HSV data are
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then automatically transformed back to RGB space [46], [47],
as shown in Figure 3 for various UAV rasters, along-with
their ROIs with weed marked and masked respectively.

FIGURE 6. (a) UAV raster with its (b) marked weed, (c) weed mask and
augmented rasters with contrast factor (d) 2, (e) 4, (f) 6, (g) 8 and (h) 10.

On the basis of varying contrast and intensity factors of
contrast and saturation, augmented images can be created
which will be good training data sets having same masks,
as shown in Figure 5 and Figure 6 for contrast and Figure 7
for saturation factor.

FIGURE 7. (a) UAV raster with its (b) marked weed, (c) weed mask and
augmented rasters with saturation factor (d) 2, (e) 2.5, (f) 3, (g) 3.5 and
(h) 4.

This sub-section aids in determining the acquisition and
processing steps of UAVdataset, reference data set generation
for visualization and evaluation process and synthetic data
generation for data augmentation process.

3) FEATURE TRANSFORMATION
Features are the initiating parameter evaluation in a com-
puter vision problem and feature engineering is a domain
of data preparation which uses domain knowledge of data
to curate and extract features that help in item-item ‘‘repre-
sentations’’, which increase the overall efficiency of DNN
algorithms [48]. As discussed earlier, features are marked
properties or attributes which are unique to an image. Decid-
ing the type, importance and description of features play an
integral role in target detection, by encoding useful infor-
mation into numerical series which can be in turn used to
differentiate pixel-based clusters from one another. Features
can be regions (centroid co-ordinate, size, shape, orientation),
lines (equations of lines) or points (coordinate scale).

Image features are of two types: local or global, where
local features aim to detect key points in the images and

describe the regions around these key points, hence it is
safe to say that image feature points provide valuable and
rich information on image content [49]. Local image features
are generally used in object recognition and identification.
While, global features describe an image as a whole, and
can be interpreted as a particular property, and henceforth,
being generally used for image retrieval, object detection and
classification. Extracted features are much low dimensional
than the original image, hence reduction in dimensionality
reduces the overheads of processing the images [50].

TABLE 3. Color models, with their channels and conversion w.r.t RGB
color model used in the study.

Color and texture are prominent image descriptors, which
are used as features in our study. A color model is a digital
representation of color-based information in an imagery and
on the basis of applications, different color spaces can be
utilized to one’s benefit [51]. Hence, color becomes an impor-
tant clue or identifying tool for localization and identification
of targets. These color models provide various numerical
and visual representations, aiding difference in the classes by
enabling analysis and study of the relationships and proper-
ties of color. RGB, as a color model is depicted as a cube by
mapping red, green and blue dimensions onto the x, y and z
axis in 3D space, whereas HSV is represented as a cylindrical
color model that remaps the RGB into dimensions such as
hue, saturation and value; H, S and V, which are interde-
pendent values [52]. RGB to HSV color model conversion
aids in sharpening, smoothening and enhancing the edges
of the image characteristics and has a higher utilization rate
of color information and is an attractive color model. It is
suitable for scene classification, target analysis and target
segmentation. It also decouples intensity component from
color carrying information components – giving us a way
to display colors closer to our interpretation. Gray level,
on the other hand has less noise and is adequate for locating
low-level feature extraction such as edges and corners. The
best method for RGB to grayscale color model conversion
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is the luminosity method [37], [53]. In our study, we have
experimented with RGB, HSV and grayscale color spaces
(Table 3) to extract maximum feature combinations to train
the deep network. UAV raster in the RGB color space shows
variations in BV in the green channel between weed and
crop to some extent, while HSV channels exhibit some varied
level of detected weed in certain BV ranges, making their
individual bands great intensity-based features. Moving over
to grayscale channels of the raster, the variation in character-
ization of gray tones reveal texture-based features, which is
extracted using Gray-level Co-occurrence Matrix (GLCM),
which in turn exhibits an array of promising features with
a lot of potential to understand the weed-crop pixel distri-
bution [54]. Gray level co-occurrence matrix calculates how
often a pixel with gray-level value ‘‘i’’ occurs either horizon-
tally, vertically or diagonally to adjacent pixels with the value
‘‘j’’, where ‘‘i’’ and ‘‘j’’ are the gray level values (tone) of the
image. In terms of feature extraction, there are three groups
of texture measures: 1. contrast group (contrast, dissimilarity,
homogeneity), 2. measures related to orderliness (angular
second moment, entropy), and 3. descriptive statistics group
of the GLCM measures (mean, variance, correlation) [36].
For a given input image, a set of features fk , k ∈ {1,2. . . n}

are extracted from the backbone of the network, which works
from high-resolution low semantics to low-resolution high
semantics. For two classes, like our problem, two features
(say X1, and X2) will have different orientations and value
sets as depicted in Figure 8 [55]. An exhaustive feature set is
curated and extracted from our study area, as tabulated below
in Table 4.

FIGURE 8. Feature set relation with classes.

Table 4 has been distributed into three major categories of
feature extractors, namely, a.) Color intensity-based features,
and b.) Texture: statistical (spatial distribution of gray values)
features and c.) Texture: co-occurrence matrices (expression
of local spatial structure) features. Intensity/color features
such as R, G, B band values of raster, along with dominant
color, viz, green band values play an integral role in deter-
mining the weed-non-weed color threshold by observing the
variation in BV values. Similar pixel clustering for respective
classes are also aided by intensity features such as mean and

TABLE 4. Feature list (Spectral, Statistical and Textural) for early weed
detection.

std deviation values of weed, non-weed classes along with
color model values and interpretation in HSV and grayscale
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TABLE 4. (Continued.) Feature list (Spectral, Statistical and Textural) for
early weed detection.

color models. On the other hand, texture features such as
histogram spatial distribution of tonal gray values on the lines
of mean, variance, skewness and kurtosis explicitly define
class-wise central value, asymmetry and data points distribu-
tions in both the classes. Co-occurrence texture assessment
gives insights into joint pixel occurrence probability, degree
of randomness, local tonal variations in the images, character-
ization of the texture’s regularity and the spatial distribution
of class edges. These exhaustive features help aid feed the
data with improved feature set to help segregate the classes,
which in turn aids in good classification and localization of
our target, i.e., weed.

This sub-section aids in determining the role of feature
engineering in feeding the DNNs to make it more effec-
tive. The role of color and texture-based features have been
explored and proposed.

B. APPLICATION OF DNN
1) CAMOUFLAGE TARGET DETECTION USING DEEP
LEARNING MULTI-LAYER CLASSIFIER (TRAINING
AND TESTING)
A deeply connected, feature-extensive computational
deep-learning modelling with iterative and multiple process-
ing layers, trained on the concept of representation learning,

extracted from the UAV rasters to effectively detect small
and multiple weed patches and finally deliver a binary clas-
sified map is the main theme of this paper [9]. The network
design, as shown in Figure 2, is sequential forward in nature
and starts with fully connected layers and nodes which are
the building blocks of the network. The scheme takes in
consideration increasing level of representations, from raw
UAV images to polygon-based ROIs and complex feature
representation maps. The modules of the network are simple
but non-linear in nature, making it easy to learn complex
mapping at the pixel-level. The network starts with the input
layer, which inputs UAV rasters and their representation as
an array of pixel values, moving to intensity-texture based
statistical analysis, and polygon-based ROI labelling, which
is the initiation of the network. As the feature inputs are
numeric in nature, Keras [58], plays a significant role in data
interpretation and introduces a thorough layering approach.
The input influences each successive layer as it moves ahead.
Feature extraction and abstract representations on the basis of
intensity (color) and texture descriptors help interpret spatial
and spectral distribution within the image pixels and is the
optimal foundation for weed detection. At the hidden layer
level, these abstractions take place, layer-by-layer, which are
composed of exhaustive feature sets that are self-learning in
nature and help eventually train the network. Feature sets are
further, standardized, due to data-transformations sensitivity.
Activation functions aid in establishing non-linearity in the
network. They determine the rate of information transfer
from one node to another. To increase the accuracy and
overall speed of the training process and the stability of the
network, RelU is preferred in our problem statement [59],
formulated as:

f (x) = max[0, x) (10)

where, f (x) is the activation function, x is the neuron input,
both f(x) and derivative are monotonic, returning positive
value (0,∞).

The design is a feed-forward stack of multilayers where
inputs from the previous layers keep on passing to the other
layer, to finally reach the output layer, where data trans-
formations take place, resulting in class values (0 and 1).
In the first run, random weights are assigned, which are then
auto-appended further, also known as backpropagation [60],
for which we need: a) objective function (loss function)
and b) optimizer. For the purpose of binary mask classi-
fied raster as output, multi-categorical cross entropy is used.
For this network, binary cross entropy [61] is preferred,
formulates as:

Loss = −
1
N

N∑
i=1

yi. log (p (yi))+ (1− yi) .

log (1− p (yi)) (11)

In terms of optimizer, Adaptive Moment Estimation
Algorithm, commonly known as Adam is selected for our
binary image classification problem owing to its adaptive
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learning rate, great compatibility with targets and considering
its exemplary results with large datasets, according to litera-
ture [62]. Its robust nature and expedited efficient learning
rate make it an ideal optimizer for our problem statement.
Overall, the proposed DNN classifier explores the features
and is trained to recognize pixels belonging to their respective
classes. With deep layers, a hierarchy of increased learning,
abstraction and complexity is established, also known as
feature hierarchy, which helps in detecting multiple weed
patches of varying shapes and sizes, successfully. Post feature
extraction, the following algorithm aids in camouflage target
detection using deep learning multi-layer network.

Algorithm:
WeedFound← false
while true do
Labeli← assign ‘‘1’’
whileWeedFound == false do
detect_weed(f)
if weed is detected then
WeedFound← true
class← weed

end if
end while
bg(f)
if bg is false then
WeedFound← false
class← non-weed
Labeli← assign ‘‘0’’

end if
end while
The algorithm depicts the presence of ‘‘weed’’ in an

area of interest if the Labeli has weed present, along
with ‘‘WeedFound’’ function which assigns label ‘‘class’’
to the detected area, leading to a generation of a binary
masked output with ‘‘weed’’ and ‘‘non-weed’’ patches.
The classified binary raster, when obtained, is further
transformed as weed, non-weed and extra detection via
image subtraction (using decision tree) for more fur-
ther visual understanding and assessment, as shown in
Figure 9.

VI. IMPLEMENTATION, RESULTS, AND DISCUSSION
In the case of background-merging camouflage target,
such as weed merged with sugarcane crop, if observed,
at the pixel level, two subsequent pixels of nearly similar
spectral reflectance might belong to completely different
object/feature/class. Accurately and minutely assigning pix-
els to their correct class label is the ultimate objective of
this paper. Post-performance metrics and accuracy assess-
ment for the classifier is the final and validating step of the
proposed methodology. In terms of machine learning, the
ground truth determines the accuracy of the training sets
classified. In other words, classifier accuracy is achieved
by comparing ground reference map/ground truth acquired
from UAV rasters to the binary masked output obtained

post-classification. But before jumping into the accuracymet-
rics, it is noteworthy to also realize and keep in mind the
assumption that classification results may be mildly erro-
neous due to variating labelling clusters, incorrect labelling
and correlation between bands or imperfect classification
algorithm.

For overall improved accuracy, our algorithm/technique
needs to be:

1. Accurate and fault tolerant in nature
2. Must have capability to learn spatial association in

terms of target-background item-item co-occurrence
resulting in distinguished weed and crop (non-weed)
target localization and detection

3. Accurate target detection with binary classified maps
as output

4. Reduced false alarm rate
An error matrix (confusionmatrix), post-classification aids in
computing the effectiveness of the DNN-based classifier w.r.t
the ground truth and the reference data generated. Simply put,
it is a comparative analysis in the form of a mathematical
matrix which compares the ground truth values, i.e., actual
values with respect to the classifier’s predicted values. Based
on the confusion matrix, several post-classification metrics
can be computed, as shown in Table 5.

TABLE 5. Post-classification accuracy assessment.

Different post-classification performance metrics have dif-
ferent significance, such as recall or sensitivity indicates the
ability of the classifier to predict and resolve the weed patches
correctly. Precision on the other hand explains, that when the
classifier predicts a raster, how often is the classifier correct,
in determining the weed patches. Accuracy is an overall
performance metric as to how often the classification is com-
pletely correct while, misclassification or error rate is how
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FIGURE 9. Exhibit I, II and III are (a) UAV rasters with variating contrast, saturation intensity and luminescence factors, with their (b) respective weed
masks, (c) classified output and (d) spectral subtraction, i.e. classified binary mask - weed mask to highlight weed, extra weed and non-weed patches,
along with legends for reference.

TABLE 6. Comparative analysis with literature.

often can the classifier be wrong or misclassify. Our classifier
exhibits 90.5% accuracy in detecting multiple weed patches
of varying shapes and sizes and demonstrates a sensitivity of
0.806. The final output of the classifier is shown in Figure 9
where multiple small patches of weed of varying shapes and

sizes are efficiently detected even after presence of appear-
ance variance and green-on-green background complexity.

Table 6 exhibits the comparative analysis of our fine-tuned
feature-based DNNs performance with algorithms from pop-
ular literature, when implemented on the same problem
set.

VII. CONCLUSION AND FUTURE SCOPE
It can be concluded that our DNN-based representation
learning style classifier exhibits immense capabilities w.r.t
traditional supervised learning models (Table 6) and maps
out multiple and small patches of weed of varying shapes
and sizes effectively. The ability to learn intelligently from
color and texture-based features is the advantage of this
classifier, which resolved weed even at minimal pixel size
(2.13 cm/px), from a complex natural background. The
classifier addresses a potential feature set that defines and
localizes the real time classes to a respectable accuracy
of 90.5%. The classifier successfully resolves camouflaged
target (weed) under different illumination conditions. It is
safe to say that an attempt to discover a pattern in our
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dataset, and to detect camouflage target(s) in concealed back-
ground matching template has been explored in this work.
Future work with regard to this problem statement can focus
on acquiring and processing UAV datasets with the same
problem at different heights, varying GSDs and even on
different target-background imageries such as various other
crops, along with improving this classifier to accommodate
more natural yet complex camouflage target based scientific
datasets.
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