
Received 22 April 2024, accepted 8 May 2024, date of publication 17 May 2024, date of current version 29 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3402239

Optimizing Monocular Driving Assistance for
Real-Time Processing on Jetson AGX Xavier
HUY-HUNG NGUYEN , DUONG NGUYEN-NGOC TRAN , (Member, IEEE),
LONG HOANG PHAM , (Member, IEEE), AND JAE WOOK JEON , (Senior Member, IEEE)
Department of Electrical and Computer Engineering, College of Information and Communication Engineering, Sungkyunkwan University, Suwon 16419,
South Korea

Corresponding author: Jae Wook Jeon (jwjeon@skku.edu)

This work was supported by the Institute of Information and Communications Technology Planning and Evaluation (IITP) Grant funded by
Korean Government (MSIT), an intelligent system for 24/7 real-time traffic surveillance on edge devices, under Grant 2021-0-01364.

ABSTRACT While computer vision and computing technology advances have facilitated advanced driver
assistance applications, systems with multi-task design remain highly demanding to operate at high speed on
resource-constrained devices. Our study addresses this challenge by proposing a real-time driver assistance
solution specifically developed for a single Jetson AGXXavier embedded device. It simultaneously performs
lane detection, traffic object detection and recognition, and rule-based scene analysis. To achieve high
throughput (up to 43 frames per second) without reliance on additional hardware or cloud server, the
system exploits Jetson device’s specialized AI accelerator and employs various optimization techniques:
multithreaded programming, the TensorRT framework, and post-training quantization. The modular design
integrates state-of-the-art task-specific methods and ensures adaptation to diverse traffic scenarios across
countries as well as future hardware and solutions. Experimental results using a Korean dashcam traffic
dataset validated the system’s effectiveness and practicality.

INDEX TERMS Advanced driver assistance system (ADAS), autonomous driving, edge device, real-time.

I. INTRODUCTION
An advanced driver assistance system (ADAS) deploys
a combination of artificial intelligence technologies in a
modern vehicle to enhance driver safety and awareness.
Through a human–machine interface, an ADAS can give
vehicle drivers essential information about current traffic
conditions such as road and lane boundaries and traffic lights
and signs and provide warnings about possible hazards for
collision avoidance.

In recent years, different aspects of ADAS for autonomous
vehicles have attracted research interest for their potential
role in reducing the number of accidents, injuries, and
fatalities on the road [1]. Substantial progress has been made,
especially in using deep learning for computer vision tasks
such as object detection and lane recognition. Although
state-of-the-art (SOTA) algorithms often rely on complex
and computationally demanding network models, many

The associate editor coordinating the review of this manuscript and

approving it for publication was Byoung Wook Choi .

research studies have focused on creating compact and
efficient models capable of delivering real-time performance.
In addition to software development, progressively more
powerful embedded platforms targeting autonomous driving
have been launched or planned, including NVIDIA Jetson
and Drive, Intel Mobieye EyeQ, Tesla Hardware [2], [3].
Moreover, specialized hardware called AI accelerators or
neural processing units (NPUs) have been created to accel-
erate deep learning operations with high power efficiency.
The Google Tensor Processing Unit and NVIDIA Deep
Learning Accelerator (DLA) [2], [4] are prime examples of
this approach.

However, building autonomous vehicles with the most
powerful embedded platform and every sensor would be
incredibly expensive and potentially underutilized. Con-
versely, integrating every possible feature into a system may
lead to excessive computational costs, rendering simulta-
neous real-time operation unfeasible. Therefore, to achieve
widespread adoption, it is important and still challenging to
develop an ADAS with an appropriate collection of features

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 71853

https://orcid.org/0000-0001-5394-9381
https://orcid.org/0000-0001-7537-6377
https://orcid.org/0000-0002-3240-657X
https://orcid.org/0000-0003-0037-112X
https://orcid.org/0000-0002-2404-7415

H.-H. Nguyen et al.: Optimizing Monocular Driving Assistance for Real-Time Processing

that can perform efficiently and effectively on affordable,
resource-constrained edge devices.

This study proposes a real-time driving assistance system
on edge device that uses traffic images from a monocular
dashboard camera mounted on the vehicle. The system
has a modular architecture with modules implementing
SOTA solutions for lane detection, traffic object detection
and recognition (vehicles, pedestrians, traffic lights, traffic
signs, road markings), and ruled-based scene analysis for
collision avoidance. Inspired by the feature set in [5], the
modules provide the core functionality of a standard ADAS,
as outlined in [1].

While deploying each task individually in real-time on
an edge device is generally achievable [6], [7], [8], [9],
multi-task frameworks are still highly demanding [10], [11],
[38]. Existing approaches to overcome this typically involve
either distributed computing with multiple edge devices [5],
or cloud-based offloading with an onboard edge device and
a remote cloud server [12], [13], [14]. Both approaches
necessitate additional management of cross-device or edge-
cloud communication and data transfer over a stable,
low-latency and secure connection. This requirement
introduces considerable complexity in development and
maintenance.

Our proposed approach focuses on implementing the
system exclusively on a single Jetson AGXXavier embedded
board. All the available computing resources on the device,
the multi-core central processing unit (CPU), the graphics
processing unit (GPU), and especially the two DLA cores,
are leveraged to handle simultaneous execution of both
deep learning and non–deep learning tasks. Furthermore,
we analyze the workload of the deep learning tasks and
strategically allocate computing units to each task. Several
optimization techniques are then applied to enable real-time
performance on the edge device: multithreaded processing,
the NVIDIA TensorRT inference framework and post-
training quantization. Our modular architecture not only
enhances scalability to more robust hardware and upgrad-
ability to future task-specific solutions, but also ensures
adaptability across diverse traffic scenarios and regulations
in various countries. Most importantly, this single-device
approach reduces installation and maintenance costs as well
as overall power consumption, and eliminates the need to
address potential cross-device communication issues affect-
ing latency and stability. We evaluated the system through
extensive experiments on a Korean dashcam traffic dataset
from KATECH (Korea Automotive Technology Institute)
[15], [16] using the targeted Jetson AGX Xavier, the latest
Jetson AGX Orin, and a desktop system. The empirical
results demonstrate the system’s effectiveness and real-world
viability.

In brief, our key contributions are:
• Establish amulti-task ADAS pipeline using amonocular
camera. The system simultaneously performs lane
detection, traffic object detection and recognition, and
rule-based scene analysis for collision avoidance.

• Design a modular framework, where each module
handles a specific main task. The modular design min-
imizes the effort required for adaptation to alternative
hardware, future task-specific solutions and diverse
traffic conditions in various countries.

• Construct the framework to work solely on a single
Jetson AGX Xavier board. All available computing
components, especially the two DLA cores, are utilized
to operate deep learning and non-deep learning tasks.

• Optimize the framework to perform in real-time at up
to 43 frames per second (FPS) on the edge device.
To achieve that performance, tasks are assigned com-
puting units sufficient for their workload. Multithreaded
programming, the TensorRT inference and post-training
quantization techniques are also applied.

• Analyze the experiment results from different system
configurations on the target and other platforms to prove
our design reasons and to show the extensibility of the
proposed framework.

The rest of this paper is organized as follows. Section II
discusses related work on ADAS. Section III describes
the proposed system’s features and implementation. The
experiments are examined in Section IV, and the conclusions
are presented in Section V.

II. RELATED WORK
This section briefly reviews common deep learning–based
solutions for lane detection and traffic object detection tasks
outside ADAS. After that, we describe the main approaches
to ADAS.

A. TASK SPECIFIC IMPLEMENTATION
1) SINGLE-TASK APPROACH
a: OBJECT DETECTION
Object detection methods can be broadly categorized into
two main approaches. Two-stage detectors, exemplified by
the R-CNN method and its variants [17], [18], [19], [20],
typically employ selective search or a region proposal
network to generate candidate object locations and then use a
classifier to refine and categorize them. These methods usu-
ally achieve high accuracy, but they require great processing
power.

One-stage detectors, led by the YOLO series [21], [22],
skip the region proposal and directly predict objects from the
input image. They can use either predefined anchor boxes
placed across the image grid [21], [22], [23], or a feature
map [24], [25], [26] to regress the bounding boxes. These
anchor-based and anchor-free detectors have significantly
faster processing speed, but they are somewhat less accurate
than their two-stage counterparts. Recent research has tried to
bridge that gap by using various techniques to improve both
speed and precision [23], [26].

In this study, we adopt one-stage YOLOv8 [26] as
a detector for multiple traffic objects, due to its SOTA
performance in both accuracy and processing time.

71854 VOLUME 12, 2024

H.-H. Nguyen et al.: Optimizing Monocular Driving Assistance for Real-Time Processing

FIGURE 1. General feature design. There are three main modules: Lane detection, traffic object detection and
recognition, which includes four sub-modules corresponding to four traffic object categories, and scene analysis
for collision avoidance.

b: LANE DETECTION
There are generally three main approaches to lane detection.
The first approach is based on pixel-wise instance segmenta-
tion, which maps an input image to an output mask, assigning
to each pixel a label indicating whether or not it belongs to
a lane line [27], [28]. These methods are pixel-wise precise,
and they can detect infinite lanes without explicitly defining
them. However, they have very low processing speed.

Second is the anchor-based approach, which is derived
from the anchor-based object detection pipeline that regresses
the deviation (e.g., position, shape, size) of the predefined
line or curve anchors that cover potential locations in the
image, aligning them with the actual lanes [29], [30], [31].
The main advantages of these methods are their high speed,
making them suitable for real-time applications, and their
ability to handle complex lane shapes and multiple lanes.
The drawback is that their performance depends on the
optimization of the anchor design and placement on the
image.

The third approach represents the lane boundaries as a
parametric model, for example, a polynomial or a spline,
and then regresses its coefficients [32]. Methods following
this approach are robust to noise and occlusions, and they
can fit smooth and continuous lane curves at high processing
speed. However, the choice of the polynomial’s degree after
the assumption of a specific form of lane model affects the
performance andmight not capture the real shape of the lanes.

In this study, we choose to implement anchor-based Ultra
Fast Lane Detection v2 (UFLDv2) [31] as the SOTA method
for lane detection.

2) MULTI-TASK APPROACH
Themulti-task or joint-task learning approach involves simul-
taneously solving for multiple tasks, such as traffic object
detection, drivable area segmentation, and lane detection,
using a single neural network. The feature encoder is shared
among all tasks, and a set of task-specific heads produces
the final output. In addition, the overall loss function is
a weighted sum of multiple losses corresponding to the
tasks. Some examples of multi-task learning for autonomous

driving are MultiNet [33], DLT-net [34], YOLOP [35],
YOLOPv2 [36], and HybridNets [37].

This approach has several advantages over training sep-
arate networks for each task. It reduces the computational
overhead by avoiding redundant feature extraction. It also
allows the tasks to learn from one another, which potentially
improves their accuracy. Moreover, it does not require the
execution of multiple networks, which simplifies direct
deployment.

However, this approach also has some challenges. First,
it increases the complexity of the network design. Next, it can
suffer from negative transfer, that is, the gradient updates for
the different tasks can conflict with one another, or some
tasks can dominate others during training. Thus, to improve
the performance of one task, it can be easier, more effective,
and less time-consuming to train the related model separately,
so any tricks applied do not affect the other tasks, rather
than training the whole multi-task model together. Third,
resource-optimized deployment on edge devices can get
more complicated than the distributed execution of separate
networks on different computing components, particularly
the GPU and NPUs.

In our proposedmethod, we decide not to use themulti-task
approach due to the difficulty of adapting certain branches of
the network to different countries’ traffic conditions as well
as complications in optimization for edge devices. Instead,
we establish a modular framework integrating task-specific
modules with SOTA solutions, which has the advantages of
scalability, upgradability and adaptability.

B. ADAS IMPLEMENTATION
Different approaches have been proposed to implement a
multi-task ADAS. The first approach performs all ADAS
functions on a single computing system [38]. This has
some benefits, such as minimizing data transfer delays
for better responsiveness and simplifying the development
and testing process. The disadvantage is that high-speed
performance will demand high processing power, high power
consumption, and high installation costs. As reported in [10],
it requires a high power desktop-grade GPU to operate an

VOLUME 12, 2024 71855

H.-H. Nguyen et al.: Optimizing Monocular Driving Assistance for Real-Time Processing

entire ADASwith 2 to 3 tasks. Hence, these systems are quite
difficult to deploy broadly, especially on budget vehicles.

Another approach uses a distributed computing system,
with each ADAS task performed by one of several dedicated
edge devices [5]. This approach does not require a par-
ticularly high-performance system, potentially lowering the
vehicle cost. Also, the ADAS can be designed to be modular
and scalable, so it is much simpler to upgrade an existing
feature or add a new functionality to the system. However,
this requires that stable internal cross-device communication
be maintained to manage data transfer latency, quality, and
security, which adds complexity when developing the system.
As a result, real-time performance is not always guaranteed,
as demonstrated by [5]. The maintenance of multiple devices
is also relatively complicated and time-consuming.

The third approach for implementing ADAS uses a
cloud-based offloading system [12], [13], [14]. It is a hybrid
design by which low computational tasks are performed by
the onboard edge device, and computationally intensive tasks
are offloaded to a remote cloud server, which usually has
powerful resources, for processing. Such a design does not
require that a powerful embedded device be installed in
the vehicle, and cloud-based features can be updated and
improved without requiring in-vehicle hardware changes.
On the other hand, the system relies on a stable and reliable
internet connection, which might not be available in all
situations, and introduces high data latency. The experiments
in [13] and [14] show that the edge-cloud data transfer
step consume the majority of per-frame processing time.
Optimizing such communications, especially at a large-scale,
can be extremely complicated in real-world applications.

In our proposed method, by combining the first and second
approaches, we implement and optimize our system to fully
operate on a single Jetson AGX Xavier embedded platform
by utilizing all provided computing units: the CPU, GPU
and two DLA cores. This approach retains the advantages
of both approaches while eliminating the need for handling
complicated cross-device communication and data transfer.

III. PROPOSED METHOD
A. FEATURE DESIGN
Our proposed system can be divided into three main modules:
Lane Detection, Traffic Object Detection and Recognition,
and Scene Analysis for Collision Avoidance. Of these
modules, Traffic Object Detection and Recognition is the
most important. It consists of four sub-modules: Vehicle and
Pedestrian Detection, Traffic Light Detection, Traffic Sign
Detection and Recognition, and Road Marking Detection
and Recognition. These modules and sub-modules provide
information about the traffic scene that is essential for driving
assistance. Fig. 1 shows the general feature design of the
system.

1) LANE DETECTION
Road lane detection enables the car to align itself correctly on
the road and helps the driver keep in the ego-lane and monitor

FIGURE 2. System user interface. The top traffic frame has detection
results visualized. The bottom panel displays important traffic condition
information. The red, green and blue boxes are the priority regions used
in traffic light and sign detection.

TABLE 1. Traffic object classes.

lane departures. It also facilitates the recognition of relevant
road markings in subsequent stages of the system. To speed
up the processing of the UFLDv2 method, we cropped the
image and input only the lower half of the traffic frame to
the network, assuming that the upper half consists mainly
of objects irrelevant to lane detection, such as traffic signs,
traffic lights, building, and sky.

The result of lane detection is a set of lane lines:

L = {l1, l2, . . .} (1)

where each line li is presented by a set of key points:

p = (x, y) (2)

li = {pi,1, pi,2, . . .}. (3)

The ego-lane can be identified by finding the two lane lines
that are closest to the center vertical line of the camera frame,
one on each side. The center vertical line is defined as:

lC = {pC,k |xC,k = W/2} (4)

where W is the width of the traffic frame. In Fig. 2 this line
is orange.

For each li, we have:

li,left = {pi,j|pi,j ∈ li, xi,j < W/2} (5)

li,right = {pi,j|pi,j ∈ li, xi,j > W/2} (6)

where li,left and li,right are subsets of li containing points on
the left and right of the center vertical line, respectively. Thus,

71856 VOLUME 12, 2024

H.-H. Nguyen et al.: Optimizing Monocular Driving Assistance for Real-Time Processing

FIGURE 3. Examples of traffic lights’ variants.

if |li,left| > |li,right|, the lane line li is on the left of the center
vertical line, and vice versa.

The Hausdorff distance is used to estimate the distance
between each lane line and the center vertical line:

dH (li, lC) = max{ max
pi,j∈li

min
pC,k∈lC

∥pi,j − pC,k∥,

max
pC,k∈lC

min
pi,j∈li

∥pC,k − pi,j∥}. (7)

The ego-lane is then defined as:

Lego = (lego-left, lego-right)

= (argmin
li∈Lleft

dH (li, lC), argmin
lj∈Lright

dH (lj, lC)) (8)

where Lleft and Lright are subsets of L containing lines on the
left and right of the center vertical line, respectively.

2) TRAFFIC OBJECT DETECTION AND RECOGNITION
This module is responsible for detecting objects from
different categories in the traffic scene with YOLOv8.
After the detection bounding box results are obtained,
we split them into four categories: (1) vehicles and
pedestrians, (2) traffic signs, (3) traffic lights, and
(4) road markings. Each category is then fed into the
corresponding post-processing sub-module to identify the
most relevant information. Table 1 lists all of the traffic object
classes.

a: VEHICLE AND PEDESTRIAN DETECTION
It is vital for a practical driving assistance system to be
able to accurately detect the vehicles and pedestrians in the
camera field of view to prevent possible accidents. There
are six classes to be detected: car, bus, truck, motorcycle,
pedestrian, and bicycle. To further optimize processing
efficiency and focus on the most relevant information,
we keep only the bounding boxes from the lower two-thirds of
the captured frame. This targeted approach effectively filters
out extraneous detections of objects outside the designated
road region because they are unlikely to be part of the
immediate traffic situation.

FIGURE 4. Examples of traffic signs.

b: TRAFFIC LIGHT DETECTION
Fig. 3 shows the different states of two variants of traffic lights
in the KATECH dataset, with and without an arrow signal.
At certain parts of the road, especially at intersections, it is
possible to have several traffic lights in the camera’s field of
view that are responsible for different lanes and directions.
Four constraints are applied to identify the correct traffic
light.

• First, only a traffic light detected within the top half of
the camera’s view is processed, with the assumption that
the system should detect the light as soon as possible
while it is still relevant, and the bottom half of the
traffic frame contains mostly vehicles, pedestrians, and
the road region. This choice also speeds the processing
time.

• Second, the upper half of the traffic frame is split
horizontally into three regions with a predefined ratio,
determined from the analysis of traffic sign position in
the complete training dataset, following [40]. In Fig. 2,
the red, green, and blue boxes represent the correspond-
ing left, middle, and right regions, respectively. There
are three priority levels, with the middle region having
the highest priority, followed by the right region and
then the left region. The priority levels are set to identify
which traffic light is relevant to the current vehicle.
To determine which region a traffic light bounding box
belongs to, we determine whether its center point is
within the region:

bboxlight,i = (xi,min, yi,min, xi,max, yi,max) (9)

centeri = (xi,c, yi,c)

= (
xi,min + xi,max

2
,
yi,min + yi,max

2
) (10)

regionj ∈ {regionleft, regionmiddle, regionright} (11)

centeri ∈ regionj (12)

• Third, inside each region, the priority of traffic lights
decreases vertically from top to bottom because, as a
traffic light gets closer to the vehicle, it appears higher
in the captured traffic image; and the closer the light is
to the vehicle, the more relevant it is.

• Fourth, to reduce ambiguous cases such as occlusion
causing incorrect identification, only traffic lights that

VOLUME 12, 2024 71857

H.-H. Nguyen et al.: Optimizing Monocular Driving Assistance for Real-Time Processing

FIGURE 5. Examples of arrow road markings.

FIGURE 6. Examples of non-arrow road markings.

are fully visible are considered, especially those that are
detected at the edges of the traffic frame.

Therefore, the dominant traffic light can be defined as:

prioritylight,i = (priorityregionj,centeri∈regionj , priorityyi,c)

(13)

bboxlight,main = argmax prioritylight,i. (14)

c: TRAFFIC SIGN DETECTION AND RECOGNITION
Different countries have unique designs for traffic signs.
In the KATECH dataset, we classify Korean traffic signs into
two main classes: speed limit and other. The speed limit signs
are usually circular with a red border and a large number
in the center, indicating the maximum speed allowed on
the next section of the road. The other signs, with varied
shapes and colors, are used to give warnings, prohibitions,
and mandatory instructions. Fig. 4 depicts the traffic signs
contained in the dataset.

The process starts by applying the same four constraints
as in the previous subsection (III-A2b) to identify the traffic
sign with the highest priority:

bboxspeedsign,i = (xi,min, yi,min, xi,max, yi,max) (15)

centeri = (xi,c, yi,c)

= (
xi,min + xi,max

2
,
yi,min + yi,max

2
) (16)

regionj ∈ {regionleft, regionmiddle, regionright}

(17)

priorityspeedsign,i = (priorityregionj,centeri∈regionj , priorityyi,c)

(18)

bboxspeedsign,main = argmax priorityspeedsign,i. (19)

For other signs, the detection bounding boxes are suf-
ficient. For the speed limit signs, we apply the LPRNet

model [41], pretrained on Korean data, on their cropped
region of interest (ROI) to recognize the upcoming maximum
speed limit that the vehicle needs to follow. This network
was chosen for its high performance in both accuracy and
processing speed. It was also verified by NVIDIA to work
well on different Jetson models [42].

d: ROAD MARKING DETECTION AND RECOGNITION
Road markings are another important part of the traffic scene
because they provide guidance and direction to the vehicle
driver. The proposed system focuses on main arrow road
markings, which indicate the direction of the lane they are
painted on: straight, left, right, straight left, straight right,
u-turn, and other. Crosswalk, number, and character road
markings are also detected and localized by the system.
Similar to speed limit traffic signs, number road markings
show the maximum speed limit allowed in a particular lane.
Likewise, character lane markings provide guidance such as
upcoming school zone or children/elderly’s protection zone,
so the vehicle driver can adjust their driving appropriately.
The markings are shown in Fig. 5 and Fig. 6.

To identify the road markings relevant to the vehicle,
we keep only those that belong to the ego-lane, that is, those
whose center point stays within the region created by the left
and right ego-lane lines:

bboxroadmarking,i = (xi,min, yi,min, xi,max, yi,max) (20)

centeri = (xi,c, yi,c)

= (
xi,min + xi,max

2
,
yi,min + yi,max

2
) (21)

centeri ∈ regionego-lane. (22)

This constraint will also help reduce the computational cost
of the post-processing step.

Next, the priority of road markings decreases vertically
from bottom to top. It is because as a road marking gets closer
to the vehicle, it appears lower in the captured traffic image;
and the closer the road marking is to the vehicle, the more
relevant it is:

bboxroadmarking,main = argmax priorityroadmarking,i

= argmax priorityyi,c = argmax yi,c.

(23)

To recognize the speed limit in the detected number road
markings, we feed their cropped ROI to the same LPRNet
model mentioned in the previous subsection (III-A2c).

3) SCENE ANALYSIS FOR COLLISION AVOIDANCE
As the system’s final stage, this module synthesizes all
the results from previous modules and sub-modules and
analyzes the possibility of different scenarios. Then it
provides the driver with a visual display of the lane and traffic
object detection results, as well as information about traffic
conditions, using five properties:

71858 VOLUME 12, 2024

H.-H. Nguyen et al.: Optimizing Monocular Driving Assistance for Real-Time Processing

FIGURE 7. Example results of traffic scene analysis.

• Lane direction shows the direction of the current lane,
which can be either straight by default or indicated by
an arrow road marking.

• Speed limit shows the maximum speed limit for the
current lane, which can be either 60 km/h by default or
specified by a speed limit sign or number road marking.

• Traffic light indicates the state of a traffic light detected
in the camera’s view.

• Character road marking displays the guidance obtained
from the character road markings.

• Driving condition informs the user about the current
driving condition as analyzed by the system, which can
be normal, warning, or danger. Normal indicates safe
driving condition. The warning state means that the
driver should be alert to possible obstacles on the road.
The danger state indicates a high risk of collision with
obstacles in close proximity in the ego-lane.

Fig. 2 shows the ADAS interface for displaying the all of that
information.

The module determines the driving condition by checking
different scenarios:

• Pedestrian check: In Korean traffic, pedestrians and
bicycles often have similar moving paths, unlike motor-
cycles and other vehicles. It is important to distinguish
pedestrians and bicycles from other vehicles due to their
higher priority. The module checks two scenarios for
these classes.
The first scenario determines whether any pedestrian
or bicycle is in the upcoming crosswalk or within the
ego-lane region in front of the current vehicle:

pedestrian-checkdanger
= IoU(bboxpedestrian, bboxcrosswalk)

∪ IoU(bboxbicycle, bboxcrosswalk)

∪ IoU(bboxpedestrian, regionego-lane)

∪ IoU(bboxbicycle, regionego-lane)

> ϵpedestrian-danger. (24)

The second scenario determines whether any pedestrian
or bicycle is within other lane regions:

pedestrian-checkwarning
= IoU(bboxpedestrian, regionall-lane)

∪ IoU(bboxbicycle, regionall-lane)

> ϵpedestrian-warning (25)

where IoU(,) is the intersection-over-union score
between two polygons, ϵpedestrian-danger and ϵpedestrian-warning
are the decision thresholds.

• Vehicle check: This module also checks two scenarios:
The third scenario determines whether any other vehicle
is within the lower one-third of the traffic frame, which
indicates close proximity to the current vehicle:

bboxvehicle = bboxmotorcycle ∪ bboxcar
∪ bboxbus ∪ bboxtruck (26)

bboxvehicle,i = (xi,min, yi,min, xi,max, yi,max)

(27)

vehicle-checkdanger = yi,max >
2H
3

(1 + ϵvehicle-danger).

(28)

The fourth scenario determines whether any other
vehicle is within the lower one-half of the traffic frame,
which indicates moderate proximity to the current
vehicle:

vehicle-checkwarning = yi,max >
H
2
(1 + ϵvehicle-warning)

(29)

where H is the height of the traffic frame, and
ϵvehicle-danger and ϵvehicle-warning are the decision thresh-
olds.

If any of those scenarios is true, the module will change
the driving condition flag to the corresponding state. Fig. 7
presents some example outputs of the scene analysis module.

B. SYSTEM DESIGN
The proposed system is designed to run on a single Jetson
AGX Xavier, while still achieving real-time performance.
To do this, the multithreading framework leverages different
computing components on the Jetson embedded system,
specifically the GPU and two DLA cores for deep learning
tasks and the multi-core CPU for non–deep learning tasks.
The system has sixmain threads, as shown in Fig. 8, which are
the (1) Control thread, (2) Signal thread, (3) Lane Detection
thread, (4) Traffic Object Detection thread, (5) Speed Limit
Recognition thread and (6) Scene Analysis thread.

1) CONTROL THREAD
The Control thread oversees the creation and operation of the
other functional threads within the system. It also monitors

VOLUME 12, 2024 71859

H.-H. Nguyen et al.: Optimizing Monocular Driving Assistance for Real-Time Processing

FIGURE 8. General system design on Jetson AGX Xavier. There are six main threads, with lane
detection, traffic object detection and speed limit recognition threads are responsible for performing
deep learning tasks on either the GPU or one of the two DLA cores.

TABLE 2. Device specifications.

each thread’s lifecycle and handle their termination and
re-creation in response to error signals. In addition, the
Control thread controls the flow of buffered data among the
functional threads and ensures that they are in chronological
order according to the frame index. This thread runs
exclusively on the CPU.

2) SIGNAL THREAD
The Signal thread acts as the bridge between the system and
the monocular camera system, establishing and maintaining
a steady connection to capture traffic scenes. It receives
traffic frames from the camera and stores them in a data
buffer, which then serves as the input for the other functional
threads. The Signal thread also attempts to solve by itself any
connection or buffer issues that might arise before reporting
an error signal to the Control thread. This thread operates only
on the CPU as well.

3) LANE DETECTION THREAD
The Lane Detection thread is responsible for finding the
boundary of the ego-lane and its left and right adjacent lanes

that are within the camera’s field of view. It receives the input
traffic frame from the Control thread and feeds the cropped
lower half to the network model that runs on the first DLA
core of the edge device. Then, it examines the network’s
output to identify the lanes and returns that result back to the
Control thread. Both the pre-processing and post-processing
steps are executed on the CPU.

4) TRAFFIC OBJECT DETECTION THREAD
The Traffic Object Detection thread uses the GPU, the
Jetson board’s most powerful component, to execute a single
YOLOv8 model for comprehensive traffic object detection,
as explained in Section III-A2. This provides flexibility in
the network model adjustment to optimize the system’s most
demanding task. The traffic frame, which is obtained from
the data buffer and transferred here by the Control thread,
is input to the network model. The output bounding boxes are
then split into four groups, based on the four main categories
of traffic objects. Each group is subjected to designated
constraints to keep only the bounding boxes of interest within

71860 VOLUME 12, 2024

H.-H. Nguyen et al.: Optimizing Monocular Driving Assistance for Real-Time Processing

TABLE 3. Model complexity and baseline inference throughput.

FIGURE 9. TensorRT inference throughput of UFLDv2 models with respect
to GPU/DLA and quantization settings. -Pytorch suffix indicates baseline
performance without using TensorRT framework.

specific regions of the traffic scene. After the post-processing
steps on the CPU, the grouped bounding boxes are returned
to the Control thread for further processing and analysis.

5) SPEED LIMIT RECOGNITION THREAD
Following the detection processes, the Control thread for-
wards the extracted ROIs of the speed limit traffic signs and
number roadmarkings to this Recognition thread to transform
their content into text. Themodel is set up to run on the second
DLA core of the embedded device, because it is not a heavily
computational task. After that, the results are sent back to the
Control thread before being transferred to the Scene Analysis
thread with the other information to be analyzed.

6) SCENE ANALYSIS THREAD
The Scene Analysis thread runs only on the CPU, similar
to the Signal thread and Control thread. It receives all
the result data generated by the detection and recognition
threads, as forwarded by the Control thread, and performs the
scenario analysis for collision avoidance. This thread is also
responsible for providing the synthesized information to the
vehicle driver via a visual display.

7) OPTIMIZATION ON THE JETSON AGX XAVIER
The Jetson AGX Xavier was selected to be the main target
embedded device for our system because it is the first device

FIGURE 10. TensorRT inference throughput of YOLOv8 models with
respect to GPU/DLA and quantization settings. -Pytorch suffix indicates
baseline performance without using TensorRT framework.

FIGURE 11. TensorRT inference throughput of LPRNet model with respect
to GPU/DLA and quantization settings. -Pytorch suffix indicates baseline
performance without using TensorRT framework.

to feature both tensor cores and two DLA cores, and it is
capable of high performance at high power efficiency, rela-
tively affordable, and well-supported by the Jetpack software
development kit. A tensor core is a specialized processing
unit in an NVIDIA GPU since the Volta architecture, and
is designed to accelerate convolutions and matrix operations
in deep learning and high-performance computing by using
lower-precision formats [39]. The NVIDIA DLA is an open
hardware architecture designed for deep learning inference
with high power efficiency. It can work as an additional
accelerator in parallel with the GPU. Table 2 shows the
theoretical performance of the edge device. The utilization of
the two DLA cores and the GPU, accelerated by the Tensor
cores, and Nvidia’s TensorRT optimization technology and
the post-training quantization technique allow us to make use
of all the processing power available on the hardware.

To achieve that goal, we conducted extensive benchmarks
on the three deep learning tasks in the system, the UFLDv2
lane detection, YOLOv8 object detection, and LPRNet
character recognition, to measure their inference throughput
and find the best arrangement for the tasks on the device’s

VOLUME 12, 2024 71861

H.-H. Nguyen et al.: Optimizing Monocular Driving Assistance for Real-Time Processing

TABLE 4. Comparison of traffic object detection AP50 accuracy (%).

TABLE 5. Comparison of scene analysis accuracy (%).

computing units. At first, we set the power profile to the
highest setting at 30W, which we consider reasonable for
ADAS, to enable full-capacity horsepower and disabled the
dynamic voltage and frequency scaling governor to ensure
the device always had that state of processing power. Then,
with each task executed on either the GPU or a DLA
core, we implemented a network inference pipeline based
on the TensorRT framework for device-specific throughput
and latency optimization. In addition, we applied post-
training quantization to further improve network speed. For
the experiments we used different network model variants
with three precision modes: non-quantized single-precision
floating-point (FP32), half-precision floating-point (FP16),
and 8-bit fixed-point (INT8). On the DLA core, we could
only use the latter two modes, as it does not support FP32
precision.

The baseline inference throughput with the number of
parameters (Params) and floating-point operations per second
(FLOPs) of the models are presented in Table 3. Params
and FLOPs, which respectively indicate space and time
complexities, do not precisely reflect a model’s processing
speed on a specific device. While complexity indicators
can provide a rough idea of relative performance between
different network variants or networks sharing similar
architecture, their actual performance can only be accurately
measured through benchmarking. The optimization level of
both hardware and the framework significantly impacts deep
learning operations and overall network performance.

The benchmark results in Figs. 9, 10, and 11 show that
the TensorRT only marginally improved processing speed on
the power-constrained device. The only exception was the
lightweight LPRNet model, which achieved a 402% boost.
The throughput of the UFLDv2, YOLOv8, and LPRNet
models was increased significantly by quantizing to the FP16
precision (up to 210%, 215%, and 32%, respectively) and by
quantizing to the INT8 precision (up to 75%, 68%, and 3%,

respectively). This pattern did not always apply to the DLA
core, where performance of the simpler UFLDv2 and LPRNet
models improved by up to 79% and 11%, but the that of the
YOLOv8 models worsened by up to 32% when comparing
INT8 to FP16 throughput. Moreover, FP16 throughput on
the DLA core was substantially slower (up to 3.9 times)
than on the GPU. This is, to some extent, consistent with
the theoretical performance provided by Nvidia (Table 2).
Nonetheless, several model variants on the DLA core still
achieved real-time processing speed.

From the inference throughput comparison between tasks,
we determined that object detection was the most computing-
intensive, and that lane detection and character recognition
tasks could run relatively well on the DLA core. Based on
this, we arranged the tasks as described above in previous
subsections (III-B1 to III-B6). From the components that
individually satisfy real-time performance, we set up seven
configurations for whole-system performance evaluation
including one FP16 system and six INT8 systems. The
FP16 system consisted of the UFLDv2-res18, YOLOv8m-
640 × 640, and LPRNet models, all quantized to FP16
precision. The six INT8 systems used different combinations
of INT8-quantized UFLDv2-res18 or UFLDv2-res34 for lane
detection models, YOLOv8m-640 × 640, YOLOv8l-640 ×

640 or YOLOv8s-1280 × 1280 for object detection, and
LPRNet for character recognition.

IV. EXPERIMENTS
A. EXPERIMENT SETUP
The KATECH Korean dashcam traffic dataset [15], [16]
was used for training and validating the performance of
the proposed ADAS. The dataset consists of more than
160,000 traffic frames at a resolution of 1280 × 720,
1280 × 672, or 1920 × 1080. The frames are from
24 traffic sequences captured in different lighting andweather
conditions: daytime, dawn, nighttime, sunny, overcast, and
rainy. For the detection task, we split the dataset into training
and validation sets with an 80:20 ratio.

We measured the accuracy of the traffic object detection
task on the validation set using AP50 following the COCO
detection evaluation metrics, which is the average precision
at an IoU threshold of 50%. For scene analysis for collision
avoidance task, we used 10,000 images with added annota-
tions about the traffic condition properties, including six lane
directions, five traffic light states, speed limits from 30 to
150 km/h, and three driving conditions [5]. We used the

71862 VOLUME 12, 2024

H.-H. Nguyen et al.: Optimizing Monocular Driving Assistance for Real-Time Processing

TABLE 6. Comparison of whole system throughput (FPS) on different hardware.

accuracy metric to measure the performance of the proposed
ADAS in analyzing traffic conditions in this subset:

Accuracy =
Number of correct predictions
Total number of predictions

(30)

where a prediction is considered correct if it accurately
identifies lane direction, traffic light, speed limit or driving
condition. The overall accuracy is the average of the
accuracies across these four properties. The results of the task
should reflect the overall performance of the entire driving
assistance system. We compared both results to the system
in [5] because that system and ours have a similar collection
of tasks.

Processing time performance is the most important eval-
uation criterion, as the focus of this study. We measured
the whole system throughput of the aforementioned seven
configurations on three different platforms: Jetson AGX
Xavier, Jetson AGX Orin at the same 30W power profile and
at its full 60W power profile, and a workstation system with
a single Nvidia Geforce Titan Xp GPU. Table 2 presents the
detailed system specifications of the platforms.

To ensure reliability, the throughput was measured over
a 2000-frame period, excluding the initial warm-up stage.
Furthermore, each experiment was conducted three times,
and the measurements were averaged to obtain the final
result.

B. EXPERIMENTAL RESULTS AND DISCUSSION
Table 4 shows the traffic object detection performance of
the proposed system’s configurations. All three YOLOv8
models performed better than DLT-Net [34] and YOLOP [35]
in every category, and better than the model in [5] in most
categories. The exception was traffic light detection, where
YOLOv8m-640 × 640 and YOLOv8l-640 × 640 had lower
accuracy than Scaled-YOLOv4-1280× 1280 in [5]. This can
be attributed to several factors. First, the model in [5] was
specialized to traffic light detection only, instead of being
trained to detect all traffic object classes. Second, traffic
lights are usually smaller than other traffic objects, as seen
in Fig. 7a. Third, the selected YOLOv8m and YOLOv8l
models were trained with a smaller input size than the Scaled-
YOLOv4 model, which affected their ability to detect small
objects. TheYOLOv8smodel, whichwas trainedwith 1280×
1280 input size, did not have this problem and outperformed
the Scaled-YOLOv4 model.

The scene analysis performance of the proposed system is
shown in Table 5, and it is consistent with the traffic object
detection accuracy results. The three testing configurations
of the proposed system performed better than [5] in
lane direction, speed limit, and driving condition analysis.
However, traffic light analysis depended on traffic light
detection results, so the configurations using YOLOv8m-
640× 640 and YOLOv8l-640× 640 for object detection also
had lower accuracy, while the configuration with YOLOv8s-
1280 × 1280 had the highest accuracy.

Table 6 lists the throughput, of the whole system for each
of seven testing configurations on different hardware. Several
observations could be made regarding their performance
on the Jetson AGX Xavier. The FP16 system barely
reached 25 FPS, while the INT8-quantized configurations
exceeded 30 FPS. The system was constrained by the
performance of the lane detection model on the DLA core.
Switching from the res34 variant to the simpler res18 notably
improved overall performance, which was then limited
only by the performance of the object detection model.
Next, system throughput was much lower than individual
module throughput for several reasons. First, the DLA has
a limited number of supported layers, and some of those
layers have restricted parameters. The unsupported layers
fall back to be processed by the GPU, adding overhead
to the computation. Second, the GPU and the two DLA
cores share the same system memory pool. If the parallel
workload is too bandwidth-intensive, both will be slowed
down by memory access. Despite this, the proposed system
comfortably satisfied the real-time processing requirement,
proving its viability for real-world applications.

Next, we compared system performance on two Jetson
boards at the 30W power profile. The AGX Orin performed
worse than the AGX Xavier. This was because at 30W, the
frequency of both the GPU and the DLA cores decreased
by 50% and 12.5%, respectively. This caused the system
to be bottlenecked by the object detection model on the
GPU most of the time. Changing the lane detection variants
had little effect on performance. The seventh configura-
tion, with the UFLDv2-res34 and YOLOv8s-1280 × 1280,
was too demanding and caused performance degradation.
Furthermore, the second version of the DLA core on the
AGX Orin was better optimized for INT8 using a FP16
performance trade-off, which resulted in 24% higher FPS
in the first INT8 configuration and 57% lower FPS in the
FP16 configuration. This showed that the Jetson AGXXavier

VOLUME 12, 2024 71863

H.-H. Nguyen et al.: Optimizing Monocular Driving Assistance for Real-Time Processing

was more suitable for ADAS implementation when using the
same power profile.

System performance improved greatly when we increased
the AGX Orin’s power to its highest 60W, with FPS increas-
ing by 131% to 237%. This was due to the new Ampere GPU
and DLAv2 optimized for INT8. At the expense of higher
installation cost and power consumption, this provides the
option to scale up the modular system design by employing
more complex, higher performance network models, adding
more input sensors or more advanced functionalities to fully
exploit the processing capacity. However, the FP16 system’s
FPS only improved by 15% compared to its performance at
30W, and remained 51% lower than the AGX Xavier.

The Titan Xp workstation is much more powerful than the
Jetson AGX Xavier, as it can run all ADAS functions on
the GPU with up to 3.4-fold higher FPS. However, installing
a desktop system in a vehicle for driving assistance is not
practical, as the GPU alone already consumes 250W of
power. Moreover, the Jetson AGX Orin, which is five years
newer, has higher performance than the Titan Xp in most
testing configurations with only one-fourth of the power
consumption. However, the Jetson AGX Xavier is still a
versatile option considering its affordability, efficiency and
capability to deliver real-time ADAS performance.

Finally, compared to the distributed computing system
in [5], which shares similar set of features and achieves
19.61 FPS, our solution significantly increases processing
speed while maintaining comparable performance. Notably,
our implementation operates substantially more efficient on
a single Jetson AGX Xavier, in contrast to a cluster of five
separate edge devices. The cloud-based offloading systems
in [12], [13], and [14] have a different feature set, but may
achieve higher task-specific throughput due to their powerful
remote cloud servers. However, their overall performance
suffers from high edge-cloud data transfer latency (at least
2 seconds/image), failing to meet the real-time requirement.
Lastly, MTSan, which has a multi-task network running
entirely on the Jetson AGX Xavier’s GPU without any
optimization, achieves inferior performance at 10 FPS. This
demonstrates the effectiveness of our system design and
optimization.

V. CONCLUSION
This study presents a real-time driving assistance system
implemented entirely on an edge device that performs
lane detection, traffic object detection and recognition, and
scene analysis for collision avoidance. We leverage the
full processing power of the NVIDIA Jetson AGX Xavier,
particularly the DLA cores; and we optimize the system with
multithreaded processing, the NVIDIA TensorRT inference
framework, and post-training quantization to satisfy the
real-time requirement. Based on a modular architecture,
the system is scalable, upgradable and adaptable to dif-
ferent traffic regulations and conditions. The experimental
results demonstrate the system’s effectiveness, efficiency,
and capability for real-world deployment. This research

offers valuable insights into the potential and advantages of
Nvidia DLA on the Jetson platform and NPUs in general in
developing highly efficient deep learning solutions. As part
of our future work, we plan to explore advanced optimization
approaches, e.g. those proposed in [43] and [44], to further
improve the computation time and overall performance of our
framework.

REFERENCES
[1] K. Muhammad, A. Ullah, J. Lloret, J. D. Ser, and V. H. C. de Albuquerque,

‘‘Deep learning for safe autonomous driving: Current challenges and
future directions,’’ IEEE Trans. Intell. Transp. Syst., vol. 22, no. 7,
pp. 4316–4336, Jul. 2021.

[2] J. Jhung, H. Suk, H. Park, and S. Kim, ‘‘Hardware accelerators for
autonomous vehicles,’’ in Artificial Intelligence and Hardware Acceler-
ators. Cham, Switzerland: Springer, 2023, pp. 269–317.

[3] E. Talpes, D. D. Sarma, G. Venkataramanan, P. Bannon, B. McGee,
B. Floering, A. Jalote, C. Hsiong, S. Arora, A. Gorti, and G. S. Sachdev,
‘‘Compute solution for teslas full self-driving computer,’’ IEEE Micro,
vol. 40, no. 2, pp. 25–35, Feb. 2020.

[4] N. P. Jouppi, G. Kurian, S. Li, P. Ma, R. Nagarajan, L. Nai, N. Patil,
S. Subramanian, A. Swing, B. Towles, C. Young, X. Zhou, Z. Zhou,
and D. Patterson, ‘‘TPU V4: An optically reconfigurable supercomputer
for machine learning with hardware support for embeddings,’’ 2023,
arXiv:2304.01433.

[5] D. N. Tran, L. H. Pham, H.-H. Nguyen, T. H. Tran, H.-J. Jeon, and
J. W. Jeon, ‘‘Universal detection-based driving assistance using a mono
camera with Jetson devices,’’ IEEE Access, vol. 10, pp. 59400–59412,
2022.

[6] P. Azevedo andV. Santos, ‘‘Comparative analysis of multiple YOLO-based
target detectors and trackers for ADAS in edge devices,’’Robot. Auto. Syst.,
vol. 171, Jan. 2024, Art. no. 104558.

[7] X. Yu, L. Qin, X. Chen, L. Wu, and B. Zhang, ‘‘Research on optimization
of neural network model deployment for edge devices,’’ in Proc. 4th Int.
Conf. Comput. Eng. Intell. Control (ICCEIC), Oct. 2023, pp. 1–12.

[8] K. Podbucki, J. Suder, T. Marciniak, and A. Dabrowski, ‘‘Evaluation of
embedded devices for Real- time video lane detection,’’ in Proc. 29th
Int. Conf. Mixed Design Integr. Circuits Syst. (MIXDES), Jun. 2022,
pp. 187–191.

[9] S. Zheng, Y. Xie,M. Li, C. Xie, andW. Li, ‘‘A novel strategy for global lane
detection based on key-point regression and multi-scale feature fusion,’’
IEEE Trans. Intell. Transp. Syst., vol. 23, no. 12, pp. 23244–23253,
Dec. 2022.

[10] G. Tatar and S. Bayar, ‘‘Real-time multi-task ADAS implementation on
reconfigurable heterogeneousMPSoC architecture,’’ IEEE Access, vol. 11,
pp. 80741–80760, 2023.

[11] S. Miraliev, S. Abdigapporov, J. Alikhanov, V. Kakani, and H. Kim, ‘‘Edge
device deployment of multi-tasking network for self-driving operations,’’
2022, arXiv:2210.04735.

[12] J. Tang, S. Liu, L. Liu, B. Yu, and W. Shi, ‘‘LoPECS: A low-power
edge computing system for real-time autonomous driving services,’’ IEEE
Access, vol. 8, pp. 30467–30479, 2020.

[13] M. J. Khan,M. A. Khan, S. Turaev, S. Malik, H. El-Sayed, and F. Ullah, ‘‘A
vehicle-edge-cloud framework for computational analysis of a fine-tuned
deep learning model,’’ Sensors, vol. 24, no. 7, pp. 1–9, 2024.

[14] Y. Yuan, S. Gao, Z. Zhang, W. Wang, Z. Xu, and Z. Liu, ‘‘Edge-
cloud collaborative UAV object detection: Edge-embedded lightweight
algorithm design and task offloading using fuzzy neural network,’’ IEEE
Trans. Cloud Comput., vol. 12, no. 1, pp. 306–318, Jan. 2024.

[15] Korea Automotive Technology Institute. Accessed: Jan. 25, 2024. [Online].
Available: http://www.katech.re.kr/eng

[16] D. N. Tran, H.-H. Nguyen, L. H. Pham, and J. W. Jeon, ‘‘Object detection
with deep learning on drive PX2,’’ in Proc. IEEE Int. Conf. Consum.
Electron., Nov. 2020, pp. 1–4.

[17] K. He, G. Gkioxari, P. Dollár, and R. Girshick, ‘‘Mask R-CNN,’’ in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2980–2988.

[18] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
‘‘Feature pyramid networks for object detection,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Honolulu, HI, USA, Jul. 2017,
pp. 936–944.

71864 VOLUME 12, 2024

H.-H. Nguyen et al.: Optimizing Monocular Driving Assistance for Real-Time Processing

[19] Z. Cai and N. Vasconcelos, ‘‘Cascade R-CNN: Delving into high
quality object detection,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Jun. 2018, pp. 6154–6162.

[20] A. Pramanik, S. K. Pal, J. Maiti, and P. Mitra, ‘‘Granulated RCNN and
multi-class deep SORT for multi-object detection and tracking,’’ IEEE
Trans. Emerg. Topics Comput. Intell., vol. 6, no. 1, pp. 171–181, Feb. 2022.

[21] C.-Y. Wang, A. Bochkovskiy, and H. M. Liao, ‘‘Scaled-YOLOV4: Scaling
cross stage partial network,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pat-
tern Recognit. (CVPR), Nashville, TN, USA, Jun. 2021, pp. 13024–13033.

[22] C.-Y. Wang, I.-H. Yeh, and H. Liao, ‘‘You only learn one representation:
Unified network for multiple tasks,’’ J. Inf. Sci. Eng., vol. 39, no. 3,
pp. 691–709, 2023.

[23] C.-Y. Wang, A. Bochkovskiy, and H.-Y.-M. Liao, ‘‘YOLOV7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors,’’ in
Proc. IEEE/CVFConf. Comput. Vis. Pattern Recognit. (CVPR), Vancouver,
BC, Canada, Jun. 2023, pp. 7464–7475.

[24] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, ‘‘YOLOX: Exceeding YOLO
series in 2021,’’ 2021, arXiv:2107.08430.

[25] C. Li, L. Li, H. Jiang, K. Weng, Y. Geng, L. Li, Z. Ke, Q. Li, M. Cheng,
W. Nie, Y. Li, B. Zhang, Y. Liang, L. Zhou, X. Xu, X. Chu, X. Wei,
and X. Wei, ‘‘YOLOV6: A single-stage object detection framework for
industrial applications,’’ 2022, arXiv:2209.02976.

[26] J. Terven, D.-M. Córdova-Esparza, and J.-A. Romero-González, ‘‘A
comprehensive review of YOLO architectures in computer vision:
From YOLOV1 to YOLOV8 and YOLO-NAS,’’ Mach. Learn. Knowl.
Extraction, vol. 5, no. 4, pp. 1680–1716, Nov. 2023.

[27] T. Zheng, H. Fang, Y. Zhang, W. Tang, Z. Yang, H. Liu, and D. Cai,
‘‘RESA: Recurrent feature-shift aggregator for lane detection,’’ in Proc.
AAAI Conf. Artif. Intell., vol. 35, no. 4, May 2021, pp. 3547–3554.

[28] H. Abualsaud, S. Liu, D. B. Lu, K. Situ, A. Rangesh, and M. M. Trivedi,
‘‘LaneAF: Robust multi-lane detectionwith affinity fields,’’ IEEERobotics
Automation Letters, vol. 6, no. 4, pp. 7477–7484, Oct. 2021.

[29] L. Tabelini, R. Berriel, T. M. Paixão, C. Badue, A. F. De Souza, and
T. Oliveira-Santos, ‘‘Keep your eyes on the lane: Real-time attention-
guided lane detection,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Nashville, TN, USA, Jun. 2021, pp. 294–302.

[30] Z. Qin, H. Wang, and X. Li, ‘‘Ultra fast structure-aware deep lane
detection,’’ in Computer Vision. Cham, Switzerland: Springer, 2020,
pp. 276–291.

[31] Z. Qin, P. Zhang, and X. Li, ‘‘Ultra fast deep lane detection with hybrid
anchor driven ordinal classification,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 46, no. 5, pp. 2555–2568, 2022.

[32] L. Tabelini, R. Berriel, T. M. Paixão, C. Badue, A. F. De Souza, and
T. Oliveira-Santos, ‘‘PolyLaneNet: Lane estimation via deep polynomial
regression,’’ in Proc. 25th Int. Conf. Pattern Recognit. (ICPR), Jan. 2021,
pp. 6150–6156.

[33] M. Teichmann, M. Weber, M. Zöllner, R. Cipolla, and R. Urtasun,
‘‘MultiNet: Real-time joint semantic reasoning for autonomous driving,’’
in Proc. IEEE Intell. Vehicles Symp. (IV), Jun. 2018, pp. 1013–1020.

[34] Y. Qian, J. M. Dolan, and M. Yang, ‘‘DLT-Net: Joint detection of drivable
areas, lane lines, and traffic objects,’’ IEEE Trans. Intell. Transp. Syst.,
vol. 21, no. 11, pp. 4670–4679, Nov. 2020.

[35] D. Wu, M.-W. Liao, W.-T. Zhang, X.-G. Wang, X. Bai, W.-Q. Cheng, and
W.-Y. Liu, ‘‘YOLOP: You only look once for panoptic driving perception,’’
Mach. Intell. Res., vol. 19, no. 6, pp. 550–562, Dec. 2022.

[36] C. Han, Q. Zhao, S. Zhang, Y. Chen, Z. Zhang, and J. Yuan,
‘‘YOLOPV2: Better, faster, stronger for panoptic driving perception,’’
2022, arXiv:2208.11434.

[37] D. Vu, B. Ngo, and H. Phan, ‘‘HybridNets: End-to-end perception
network,’’ 2022, arXiv:2203.09035.

[38] C.-Y. Lai, B.-X. Wu, V. M. Shivanna, and J.-I. Guo, ‘‘MTSAN: Multi-task
semantic attention network for ADAS applications,’’ IEEE Access, vol. 9,
pp. 50700–50714, 2021.

[39] A. Mishra, P. Yadav, and S. Kim, Artificial Intelligence Accelerators, in
Artificial Intelligence and Hardware Accelerators. Cham, Switzerland:
Springer, 2023, p. 152.

[40] A. Avramovic, D. Sluga, D. Tabernik, D. Skocaj, V. Stojnic, and N. Ilc,
‘‘Neural-network-based traffic sign detection and recognition in high-
definition images using region focusing and parallelization,’’ IEEE Access,
vol. 8, pp. 189855–189868, 2020.

[41] S. Zherzdev and A. Gruzdev, ‘‘LPRNet: License plate recognition via deep
neural networks,’’ 2018, arXiv:1806.10447.

[42] Jetson Benchmarks. NVIDIA Developer. Accessed: Jan. 25, 2024.
[Online]. Available: https://developer.nvidia.com/embedded/jetson-
benchmarks

[43] M. Mollajafari and H. S. Shahhoseini, ‘‘A repair-less genetic algorithm
for scheduling tasks onto dynamically reconfigurable hardware,’’ Int. Rev.
Comput. Softw., vol. 6, no. 3, 2011, Art. no. 206212.

[44] M. Negahban, M. V. Ardalani, M. Mollajafari, E. Akbari, M. Talebi,
and E. Pouresmaeil, ‘‘A novel control strategy based on an adaptive
fuzzy model predictive control for frequency regulation of a microgrid
with uncertain and time-varying parameters,’’ IEEE Access, vol. 10,
pp. 57514–57524, 2022.

HUY-HUNG NGUYEN received the B.S. degree
in computer science and the M.E. degree in infor-
mation technology management from Interna-
tional University—Vietnam National University,
Vietnam, in 2014 and 2017, respectively. He is
currently pursuing the Ph.D. degree in electrical
and computer engineering with Sungkyunkwan
University, Suwon, South Korea. His research
interests include computer vision, image process-
ing, and deep learning.

DUONG NGUYEN-NGOC TRAN (Member,
IEEE) received the B.S. degree in computer sci-
ence and the M.S. degree in information technol-
ogy management from International University,
Ho Chi Minh City, Vietnam, in 2014 and 2018,
respectively, and the Ph.D. degree in electrical
and computer engineering from Sungkyunkwan
University, Suwon, South Korea, in 2023. He is
currently a Postdoctoral Researcher with the
Automation Laboratory, Sungkyunkwan Univer-

sity. His current research interests include computer vision, image process-
ing, and deep learning.

LONG HOANG PHAM (Member, IEEE) received
the B.S. degree in computer science and the M.S.
degree in information technology management
from International University, Ho Chi Minh City,
Vietnam, in 2013 and 2017, respectively, and the
Ph.D. degree in electrical and computer engi-
neering from Sungkyunkwan University, Suwon,
South Korea, in 2021. He is currently a Postdoc-
toral Researcher with the Automation Laboratory,
Sungkyunkwan University. His current research

interests include computer vision, image processing, and deep learning.

JAE WOOK JEON (Senior Member, IEEE)
received the B.S. and M.S. degrees in electron-
ics engineering from Seoul National University,
Seoul, South Korea, in 1984 and 1986, respec-
tively, and the Ph.D. degree in electrical engi-
neering from Purdue University, West Lafayette,
IN, USA, in 1990. From 1990 to 1994, he was
a Senior Researcher with Samsung Electronics,
Suwon, South Korea. Since 1994, he has been
with Sungkyunkwan University, Suwon, where he

was an Assistant Professor with the School of Electrical and Computer
Engineering and is currently a Professor with the School of Information and
Communication Engineering. His current research interests include robotics,
embedded systems, and factory automation.

VOLUME 12, 2024 71865

