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ABSTRACT When analyzing screening mammography images, radiologists compare multiple views of
the same breast to help improve the detection rate of lesions and reduce the incidence of false-positive
results. Therefore, to make the deep learning-based mammography computer-aided detection/diagnosis
(CAD) system meet the radiologists’ requirements for accuracy and generality, the construction of deep
learning models needs to mimic manual analysis and consider the correlation between different views of
the same breast. In this paper, we propose the Local Cross-View Transformers and Global Representation
Collaborating for Mammogram Classification (LCVT-GR) model. The model uses different view images to
train in an end-to-end manner. In this model, the global and local representations of mammogram images
are analyzed in parallel using the global-local parallel analysis method. To validate the effectiveness of our
method, we conducted comparison experiments and ablation experiments on two publicly available datasets,
Mini-DDSM and CMMD. The results of the comparison experiments show that our method achieves better
results compared with existing advanced methods, with greater improvements in both AUC-ROC and AUC-
PR assessment metrics. The results of the ablation experiments show that our model architecture is scientific
and effective and achieves a good trade-off between computational cost and model performance.

INDEX TERMS Deep learning, mammogram classification, multi-view, cross-view transformers, global-
local analysis.

I. INTRODUCTION
According to the WHO (World Health Organization), breast
cancer has surpassed lung cancer as the most frequent cancer
and the fifth largest cause of cancer mortality worldwide.
Globally, there will be 2.3 million cases of breast cancer in
women alone in 2020, and 685,000 people will pass away
from the disease [1]. Breast cancer mortality has decreased by
40% in high-income countries since regular mammography
screening was introduced by health authorities in the 1980s
for age groups deemed to be at risk, in contrast to the situation
in low- and middle-income countries [2]. Therefore, reducing
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breast cancer mortality globally requires early diagnosis and
treatment of the disease. Since the pathogenesis of breast
cancer is still unknown and there are currently no proven
preventativemeasures, early diagnosis is still the best medical
course of action [3].

Currently, the early diagnosis of breast cancer requires
specialized radiologists and mammologists, which makes
mammography screening programs costly to implement and
can be more difficult to implement in countries with low
incomes and a shortage of radiologists [2]. A few false
positives can result from mammography screening, which
can cause patients and their families unneeded worry and
anxiety, additional imaging tests, and occasionally needle
biopsies [4]. In contrast, deep learning-based AI-assisted
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technology can streamline radiologists’ evaluation of screen-
ing mammography images, increasing their effectiveness and
precision. Because of this, deep learning has become a com-
mon technique for creating mammography computer-aided
detection/diagnosis (CAD) schemes [5].

Two views of each breast are typically obtained during a
mammogram: a top-down view known as craniocaudal (CC)
and a lateral view known as mediolateral oblique (MLO).
Radiologists search for certain abnormalities on mammo-
grams to determine whether they are abnormal, the most
frequent ones being masses, calcifications, structural defor-
mities, and asymmetric densities [6]. The radiologist will
refer to as many views as possible when looking for abnor-
malities to determine if a suspicious lesion is present. Figure 1
shows an example of a benign and malignant breast lesion,
where the border features of a malignant breast lesion are
distinctly different from those of a benign breast lesion.
Most of the benign lesions have smooth, lobulated borders,
whereas the malignant lesions have irregular, burr-like bor-
ders [7]. Comparing multiple views of the same breast can
help improve the detection rate of lesions and reduce the inci-
dence of false positive results [8], [9]. Therefore, we consider
the correlation between different views of the same breast
and construct a global-local analysis method with different
views.

FIGURE 1. Examples of benign and malignant breast lesions.

The global-local analysis method combines features of
the whole image with features of small localized blocks
for classification. Global analysis helps to detect abnormal-
ities such as distortion and asymmetric denseness of breast
structures, and local analysis helps to detect abnormalities
such as masses and calcifications. There are two mainstream
global-local analysis methods, one is to extract global fea-
tures from the whole image, and local features from within
the region of interest, and then combine the extracted global
and local features for classification [10], [11]. The other
is to first train a patch classifier and later fine-tune it for
the whole mammogram image classification [12]. Although
the performance demonstrated by these two methods has
been comparable to that of medical experts, there are still
some shortcomings. The local features are too dependent
on the accuracy of the region of interest localization, which
may result in obtaining suboptimal solutions. In response,
many scholars have proposed improved global-local analysis

methods. Petrini et al. [13], [14] proposed an architecture
consisting of multiple CNN (convolutional neural network)
paths, where each path extracts features from different views,
and then the output of the features from all paths are stitched
together and finally sent to the fully connected layer for
classification. Chen et al. [15] proposed a pure transformer
model with local and global blocks to learn the dependencies
between different views of the mammary gland. Although
the improved model described above uses the complemen-
tary information of different views to learn the dependencies
between different views, it does not explore the cross-view
information. In our opinion, the global features of the same
mammary gland are similar and the local features should
differ. When extracting local features, making cross-attention
between different view features is beneficial to find the
interrelationship between lesions and extract more effective
characterization information.

Cross-attention of different views can be achieved by cross
transformers. The cross-attention mechanism of the cross
transformer can guide the transformer to learn the associ-
ation information of different features during the training
process and achieve the effective fusion of different fea-
tures [16]. Currently, cross transformers have been widely
used in many fields. In the time-domain speech enhance-
ment task, Wang et al. [16] used cross transformers to fuse
local features extracted by local transformers and global
features extracted by global transformers to obtain a better
contextual feature representation, where the Q(Query) and
K(Key), V(Value) input to the cross transformer are from
different features. In a few-sample target detection task, Han
et al. [17] achieved asymmetric batch cross-attention across
branches by aggregating K and V from different features.
In hyperspectral and multispectral image fusion tasks, Wang
et al. [18] added the cross-attention idea to the traditional
transformer self-attention mechanism to achieve information
fusion between two modalities by exchanging K from differ-
ent modal features. In the face recognition task, Li et al. [19]
used cross transformers, which can remove the noisy infor-
mation due to race while retaining useful identity features by
exchanging V from different features.

In this paper, we propose the Local Cross-View Trans-
formers and Global Representation Collaborating for Mam-
mogram Classification (LCVT-GR) model. The model uses
different view images to train in an end-to-end manner.
In this model, the global representation and local repre-
sentation of mammogram images are analyzed in parallel
using the global-local parallel analysis method. In gener-
ating the local representation, a cross-view transformer is
used to achieve information exchange between different view
features. Finally, the classifier fuses the local representation
and the global representation for the final prediction. The
innovations of this paper are:

1) An improved global-local parallel analysis method for
multi-view mammography images is proposed to ana-
lyze the global representation and local representation
of the mammary gland in parallel.
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2) A new local cross-view transformer is proposed to learn
the dependencies between different views and achieve
the information fusion between different views.

II. MATERIALS AND METHODS
A. DATA COLLECTION
Two open-source digital mammography image datasets, the
MiniDigital Dataset for Screening Mammography (Mini-
DDSM) [20] and the Chinese Mammography Database
(CMMD) [21], were used in this study. The Mini-DDSM
included 3904 breasts (1952 patients) from multiple centers,
1342 breast biopsies were confirmed benign, 1358 breast
biopsies were confirmed malignant, and 1204 breasts were
normal. The CMMD includes 2601 breasts (1775 patients)
from multiple centers, 556 breast biopsies were confirmed
benign, 1316 breast biopsies were confirmed malignant, and
729 breasts were normal. Each breast in both open-source
datasets has paired images for both CC and MLO views,
resulting in a total of 7808 mammogram images for the
Mini-DDSM dataset and 5202 mammogram images for the
CMMD dataset. Figure 2 and Figure 3 shows examples
of four views of a patient’s left and right breast in the
Mini-DDSM dataset and CMMD dataset, respectively. In
this study, the mammogram images from the above two
open-source datasets were classified, with normal and benign
breasts considered positive cases and malignant breasts con-
sidered negative cases.We divided each dataset into a training
set and a test set in the ratio of 80:20, and the results of the
division of the number of images and the number of breasts
in each dataset are given in Table 1.

The Mini-DDSM used in this study was derived from kag-
gle’s processed Mini-DDSM’s 16-bit PNG (portable network
graphics) images. For the CMMD dataset, we converted all
raw DICOM images to lossless 8-bit JPEG (joint photo-
graphic experts group) images for subsequent processing.

TABLE 1. Summary of the number of images and the number of breasts
in each dataset and subset.

B. DATA PRE-PROCESSING
This section provides a detailed introduction to the data pre-
processing process and the required visualization.

1) BREAST REGION SEGMENTATION
The size of the open source dataset Mini-DDSM is
(495-2746) × (1088-3481) and the size of CMMD

is 1914 × 2294. Although the higher resolution of mam-
mogram images contains more information, training deep
learning models with high-resolution original images, the
following challenges still exist:

1) Since the original mammogram images are too large,
direct resizingmay lose information about some lesions, lead-
ing to models that are unable to learn from these lesions [22].

2) As shown in Figure 2, the Mini-DDSM dataset’s origi-
nal mammogram images frequently contain undesirable view
label information, which will certainly reduce the classifica-
tion accuracy.

3) As shown in Figure 3, the CMMD dataset’s original
mammogram images contain a significant amount of redun-
dant regions. The lesions are only present in the mammary
region, which still accounts for less than half of the mam-
mogram images. In addition to being useless for categorizing
lesions as benign or malignant, redundant regions also inter-
fere with model training and raise computing costs [23].

FIGURE 2. Four views for the right and left breast mammography images
from the public datasets of Mini-DDSM.

FIGURE 3. Four views for the right and left breast mammography images
from the public datasets of CMMD.

To solve the above problem, we use the BRS (breast region
segmentation) module to pre-process the original mammo-
gram images. Figure 4 shows the processing process of this
module on theMini-DDSMdataset. Themodule first replaces
the pixel values larger than 254 with 0, and then detects
the edges of the tissue to obtain the coordinates of the four
corners of the ROI (region of interest) box. Based on the coor-
dinates of the four corners of the ROI box, the breast region
is obtained by cropping on the original image. Finally, the
mammary region is resized to a fixed size of 640×640 pixels
and used as the input to the model. The module processes
the CMMD dataset similarly to the Mini-DDSM dataset, the
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only difference is that the CMMDdataset does not have white
areas and does not need to replace pixel values larger than
254 to eliminate the effect of white areas on the detection of
breast tissue.

FIGURE 4. Processing of the BRS module on the Mini-DDSM dataset.
(a) The original image; (b) ROI rectangle; (c) The cropped image;
(d) The resized image.

2) DATA AUGMENTATION
To improve the robustness and generalization of the model,
we enhanced the training set images with four data augmen-
tation methods, all with probability values set to 0.5. The four
data augmentation methods were a) flipping the images in
the vertical direction; b) flipping the images in the horizontal
direction; c) affine transformation with a rotate value of 20,
a translate_percent value of 0.1, a shear value of 20, and a
scale value of 0.8 to 1.2; d) elastic transformation with an
alpha value of 10 and a sigma value of 15. And all images
of the dataset were normalized. Each training image in the
final dataset is eight times larger than it was before aug-
mentation. Following augmentation, 49,952 training images
of Mini-DDSM and 33,312 training images of CMMD were
obtained. Figure 5 depicts an example of enhanced mammog-
raphy images for these four data enhancement methods.

C. PROPOSED LCVT-GR OVERALL ARCHITECTURE
The overall architecture of LCVT-GR is shown in Figure 6.
The input of the model is the images of two views of the
breast (CC view and MLO view). The input images are first
extracted from the features UCC and UMLO of these two views
by a backbone model, here the backbone model used in this
study is tf_efficientnetv2_s. Then, the features extracted from
the backbonemodel are passed through the Local Cross-View
Transformers Module (LCVTM) and Global Representation
Module (GRM) in parallel to generate the local and global
representations. Finally, the local and global representations
are concatenated into theMLP (Multi-Layer Perception) clas-
sification layer to generate the prediction results.

D. LOCAL CROSS-VIEW TRANSFORMERS MODULE
LCVTMmodels the local semantic relationship between two
views to generate a local representation. To better learn the
dependencies between the two views, LCVTM uses the idea

FIGURE 5. Sample augmented images from different augmentation
methods. (1–2): Image flipping in both vertical and horizontal
direction, (3–7): Affine transformation with a value of scale from
0.8 to 1.2, (8): Elastic transformation.

of cross transformers. Where the attention mechanism of the
transformer follows the cross-shaped window self-attention
method in CSWin [24]. Since our model LCVT-GR inputs the
information of two views, in order to achieve the interaction
of UCC and UMLO information, we design a Cross-View
Attention Module (CVAM).

1) CROSS-SHAPED WINDOW SELF-ATTENTION
Transformer uses a self-attention mechanism to model con-
textual information in order to capture long-range dependen-
cies. However, this pixel point pair-based modeling approach
necessitates a significant amount of computation, often
the quadratic power of the input feature size [25]. There-
fore, the computational cost consumption can be very high
when the input feature map resolution is relatively high.
Swin et al. [26] recommended the usage of local windows
self-attention to broaden the field of perception through
shift windows in order to solve this issue. However, this
still does not address the issue of the token’s constrained
attention area within the transformer block. To expand
the attention area more effectively, CSWin [24] proposed
the cross-shaped window self-attention mechanism, which
implements self-attention by forming horizontal and vertical
stripes of the cross-shaped window, which results in a wider
receptive field for the token within each transformer blocks
with stronger contextual modeling capabilities.

The schematic diagram of cross-shaped window self-
attention is shown in Figure 7. Cross-shaped window
self-attention is based on a multi-head self-attention
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FIGURE 6. The overall architecture of our proposed model LCVT-GR.

mechanism by first linearly projecting the input feature
X ∈R(H×W)×C onto K heads ({h1, . . . ,hK}), and then dividing
the K heads equally into two parallel groups, each with the
number of channels C/2. The two groups of heads apply
different ways of self-attention, with the first group of heads
performing horizontal striped self-attention and the second
group of heads performing vertical striped self-attention,
both in parallel. Finally, the outputs of these two groups are
connected. Unlike the cross-shaped window self-attention
method, we utilize the CVAM to perform cross-attention
on the information of the two views (UCC and UMLO) of
the input LCVTM. The horizontal CVAM exchanges the Q
generated by the first group ofUCC headers and the first group
of UMLO headers, and the vertical CVAM exchanges the Q
generated by the second group of UCC headers and the second
group of UMLO headers. CVAM implements cross-attention
of two views by exchanging the Q generated by horizontal
stripe self-attention and the Q generated by vertical stripe
self-attention of both views. CVAM achieves cross-attention
by referring to the local co-occurrence module proposed in
the paper [27], both by exchanging Qs generated by different
features to achieve information interaction. Assuming that
after CVAM, the output of UCC is A and the output of UMLO
is B, the output of LCVTM can be defined as:

LCVTM (UCC,UMLO) = Concat (GAP (A) ,GAP (B)) (1)

A = Concat(A1, . . . ,Ak, . . . ,AK)WOk = 1, . . . ,K (2)

B = Concat(B1, . . . ,Bk, . . . ,BK)WOk = 1, . . . ,K (3)

WO
∈RC×C denotes the projection matrix and the output

dimension is set to C. GAP stands for global average pooling
and LN stands for layer normalization.

FIGURE 7. The diagram of cross-shaped window self-attention.

2) CROSS-VIEW ATTENTION MODULE
For the cross attention of both UCC and UMLO views, UCC is
uniformly divided into non-overlapping equal high horizontal
stripes

[
U1
CC, . . . ,Um

CC, . . . ,UM
CC

]
and non-overlapping equal

wide vertical stripes
[
U1
CC, . . . ,Uz

CC, . . . ,UZ
CC

]
, and UMLO

performs the same operation. Sw is the dynamic stripe width
when dividing the stripes, and sw can be adjusted to balance
the learning ability and computational complexity of the
model.[

U1
CC, . . . ,Um

CC, . . . ,UM
CC

]
= UCC,Um

CC∈R(sw×W)×C,M =H
/
sw (4)
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FIGURE 8. The diagram for calculating Ak.

[
U1
CC, . . . ,Uz

CC, . . . ,UZ
CC

]
= UCC,Uz

CC∈R(sw×H)×C,Z =W
/
sw (5)[

U1
MLO, . . . ,Um

MLO, . . . ,UM
MLO

]
= UMLO,Um

MLO∈R(sw×W)×C,M = H/sw (6)[
U1
MLO, . . . ,Uz

MLO, . . . ,UZ
MLO

]
= UMLO,Uz

MLO∈R(sw×H)×C,Z = W/sw (7)

Assuming that the projection Q(query), K(key) and
V(value) dimensions of the kth head are dk, the output of the
kth head of UCC after cross attention is defined as:

Ak =



H − CAttnk (UCC,UMLO)

=

[
A1
k, . . . ,A

m
k , . . . ,AM

k

]
k = 1, . . . ,K/2

V − CAttnk (UCC,UMLO)

=

[
A1
k, . . . ,A

z
k, . . . ,A

Z
k

]
k =

K
2

+1, . . . ,K

(8)

Am
k = CVAM(Qm

MLO,Km
CC,Vm

CC) (9)

Az
k = CVAM(Qz

MLO,Kz
CC,Vz

CC) (10)

Qm
MLO = Um

MLOW
Q
k ,Km

CC = Um
CCW

K
k ,Vm

CC = Um
CCW

V
k

(11)

Qz
MLO = Uz

MLOW
Q
k ,Kz

CC = Uz
CCW

K
k ,Vz

CC = Uz
CCW

V
k

(12)

WQ
k ∈ RC×dk ,WK

k ∈RC×dk ,WV
k ∈RC×dk denote the pro-

jection matrix of Q, K and V of the kth head, respectively.
dk denotes the channel dimension of the kth head with the
value C/K. The output of cross-attention of horizontal stripes
to the kth head is noted asH − CAttnk(X1,X2), and the output
of cross-attention of vertical stripes to the kth head is noted as
V − CAttnk(X1,X2). The Q and K, V of CVAM come from
the features of different views, respectively, and the CVAM
is calculated as:

CVAM
(
Qm
MLO,Km

CC,Vm
CC
)

= softmax

(
Qm
MLO

(
Km
CC

)T
√
dk

)
Vm
CC (13)
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TABLE 2. Testing results show breast-level estimates of AUC-ROC and AUC-RP on Mini-DDSM and CMMD.

Figure 8 shows how the output Ak of the kth head of UCC
after cross-attention is obtained, and the output of the kth head
of UMLO after cross-attention can be derived similarly.

3) GLOBAL REPRESENTATION MODULE
Although LCVTM adopts CSWin’s cross-shaped window
self-attentionmethod, which effectively expands the attention
region, LCVTM lacks the global information of the image.
Therefore, we designed the GRM component to extract the
global information of the image. GRM combines the features
UCC and UMLO of the two views extracted by backbone and
performs feature dimensionality reduction by GMP (general-
ized mean pooling).

GRM (UCC,UMLO) = GMP (Concat(UCC,UMLO)) (14)

The global representation information generated by GRM,
which is extracted from the whole image, can compensate
for LCVTM’s lack of global information extraction. The
efficiency of the GRM component will be demonstrated in
the ablation experiment section.

III. RESULTS AND DISCUSSION
A. IMPLEMENTATION DETAILS
We use AdamW optimizer [28] to train the models to mini-
mize the binary cross-entropy (BCE) loss with a learning rate
of 0.0001 and a weight decay of 0.01. The batch size is 8 for
the multi-view model and 16 for the single-view model, and
all models are trained for 20 epoch. We use OneCycleLR to
dynamically control the learning rate reduction based on BCE
loss during model training, where the maximum learning rate
is 0.0001 and the proportion of the learning rate increase
is 0.1. All experiments are implemented using PyTorch and
performed on an NVIDIA GTX 1080 Ti GPU (12GB).

B. EVALUATION METRICS
We refer to the paper [14], [27] to evaluate the classification
results based on two metrics: the area under the receiver

operating characteristic curve (AUC-ROC) and the area under
the precision-recall curve (AUC-PR). The AUC-ROC and
AUC-PR are common metrics used to assess the performance
of radiologists, enabling the assessment of model perfor-
mance and the comparison of differences between models.
The AUC-ROC reflects the balance between the model’s
TPR (true positive rate also called recall) and FPR (false
positive rate) at different probability thresholds. The higher
the AUC-ROC value of a model, the better its ability to
distinguish between positive and negative cases. The TPR and
FPR are evaluated as:

TPR =
TP

(TP + FN)
(15)

FPR =
FP

(FP + TN)
(16)

where the letters TP, FN, FP, and TN stand for the corre-
sponding totals of true positive, false negative, false positive,
and true negative samples. The AUC-PR reflects the balance
between the model’s recall and precision (positive predictive
value) at different probability thresholds. The precision is
defined as:

Precision =
TP

(TP + FP)
(17)

C. RESULTS AND DISCUSSIONS
Table 2 shows the results of comparing our model with
several two-view mammogram image classification models
as well as traditional CNN classification models on the test
datasets of Mini-DDSM and CMMD. When training com-
peting models, our batch size is no longer 8 or 16, but is set
as large as possible to make full use of the GPU memory.
In Table 2, we give the values of the batch size settings for
the model during training. PHResNet18 [10] is a two-view
breast cancer classification method based on parameterized
hypercomplex neural networks proposed by Lopez et al.
PHResNet18 uses ResNet18 as a backbone to model the
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FIGURE 9. The ROC curves of comparison results of different models on different datasets. (a) Mini-DDSM; (b) CMMD.

FIGURE 10. The PR curves of comparison results of different models on different datasets. (a) Mini-DDSM; (b) CMMD.

correlations that exist between different views using hyper-
complex algebraic properties. The breast-wide-model [14] is
a two-branch, two-view breast cancer classification model
with ResNet22 as the backbone, as proposed by Wu et al.
The model extracts features from different views for each
branch and finally aggregates the extracted features for the
final prediction. Two-views-classifier [13] is a two-view
breast cancer classification model based on three-time migra-
tion learning proposed by Petrini et al. The model first
trains the patched classifier on natural images, then trains
the one-view classifier using the patched classifier weights,
and finally trains the two-view classifier using the one-view
classifier weights. Since in the experimental part we only
compare the network structure of the two-views-classifier,
the migration learning method mentioned in the paper is not
used.

We used bootstrap resampling (2000 bootstrap repetitions)
to estimate the 95% CI (confidence interval) in our tests and
give the mean, lower, and upper values of the 95% CI for
both AUC-ROC and AUC-PR metrics in Table 2. In addition,
as shown in Fig. 9 and Fig. 10, we plotted the ROC curves and
PR curves of this paper’s model and the competing models on
the Mini-DDSM and CMMD datasets, respectively, to visu-
alize the classification performance. From the test results,
we can see that this paper’s model significantly outperforms
the competing models. On the Mini-DDSM test dataset,
AUC-ROC reaches 85.85% and AUC-PR reaches 65.76%,
with an average improvement of 9.24% in AUC-ROC and
20.6% in AUC-PR. On the CMMD test dataset, AUC-ROC
reached 87.12% and AUC-PR reached 89.03%, with an aver-
age improvement of 6.58% in AUC-ROC and 6.99% in
AUC-PR.
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FIGURE 11. TSNE plots of the (a) Mini-DDSM training set; (b) Mini-DDSM
test set; (c) CMMD training set; (d) CMMD test set.

The variability of features can be assessed qualitatively
using TSNE (t-distributed stochastic neighbor embedding)
[29] plots. For each pair of training and test samples from
the Mini-DDSM and CMMD datasets, we plotted the fea-
tures from both local and global analysis using TSNE plots.
As shown in Fig. 11, our model can extract discriminative
features with discrepancies for classification.

D. ABLATION STUDIES
By comparing LCVT-GR with several two-view mammo-
gram image classification models as well as traditional CNN
classification models, we demonstrate that LCVT-GR has the
best classification performance, which likewise proves that
our strategy of using the global-local parallel analysis method
to mimic the manual analysis is effective. Besides, to validate
the soundness of the LCVT-GR design, we also discuss the
structure of LCVT-GR, for which we perform three ablation
experiments.

1) KEY COMPONENTS
To evaluate the effectiveness of the model components,
we conducted ablation experiments on each component of
LCVT-GR, and Table 3 shows the results of the ablation
experiments on both Mini-DDSM and CMMD datasets.
LTM indicates that in the LCVTM module, no interac-
tion between the two views is performed. On the Mini-
DDSM dataset, single-view classification prediction using
the backbone network (tf_efficientnetv2_s) achieves 84.04%
AUC-ROC and 61.5% AUC-PR (shown in the first row
of Table 3).
As can be demonstrated in the second and third rows

of Table 3, the AUC-ROC or AUC-PR of the test results
is improved using Backbone+LCVTM or Backbone+GRM

for multi-view classification prediction, indicating that
the LCVTM and GRM components are effective. Thus,
when Backbone+LCVTM+GRM (LCVT-GR) is used for
multi-view classification prediction, the boosting effect of
the two components adds up to an increase in AUC-ROC
to 85.85% and AUC-PR to 65.76% (shown in the sixth row
of Table 3). In addition to this, comparing the fourth, fifth,
and sixth rows of Table 3 shows that making the two views
cross-attention when extracting local representation informa-
tion improves the AUC-ROC by 1% and the AUC-PR by
1.05%. Using the multi-view classificationmodel gives better
predictions than using the single-view classification model,
with a maximum improvement of 1.99% in AUC-ROC and
3.09% in AUC-PR. Looking at the results of the ablation
experiments for both the Mini-DDSM and CMMD datasets,
we found that they have the same pattern. Therefore, we con-
clude that all components of LCVT-GR are effective and that
the structure of LCVT-GR is optimal.

2) DYNAMIC STRIPE WIDTH
In Table 4, we examine the trade-off between stripe width
(sw) and model performance on the Mini-DDSM dataset.
We find that the computational costs (FLOPs) increase as the
stripe width increases, but the performance of the model does
not increase with it. We come to the conclusion that when sw
is set to 1, better model performance can be attained with the
least amount of computational expense.

3) NUMBER OF HEADS
In Table 5, we also examine the trade-off between the number
of heads (K) and the model performance on the Mini-DDSM
dataset. We find that the performance of the model improves
significantly at the beginning as K increases and decreases
when K is large enough. The value of K affects the perfor-
mance of the model but does not change the computational
costs (FLOPs). We believe that when sw is set to 1, K is
set to 4, which leads to the optimal performance of the
model. Based on the results of this ablation experiment, the
LCVT-GR model for all experiments in this paper is set to
sw = 1 and K = 4 by default.
In summary, the first ablation experiment demonstrates

that a) the key components of LCVT-GR are all valid, b) the
classification results are better with two views of information
interacting than without, and c) the structure of two views
performs better than the structure of a single view. This
is in line with our initial assumptions. The images of two
views of a breast often contain complementary information,
so the classification performance of the two-view model is
better than that of the single-view model. The information
interaction between the two views can learn more dependen-
cies, which is important for improving the detection rate of
lesions. In the second and third experiments, we ablated two
variables of the model, sw and K, respectively, and finally
determined that the model achieves a good trade-off between
computational cost and performance when sw= 1 and K= 4.
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TABLE 3. Ablation study of key components of our LCVT-GR model.

TABLE 4. Ablation on stripe width (sw) in the Mini-DDSM dataset.

TABLE 5. Ablation on the number of heads in Mini-DDSM dataset.

With these three ablation experiments, we demonstrate that
the structure of LCVT-GR is scientific and effective.

IV. CONCLUSION
In this paper, we propose a new multi-view mammography
image classification method that uses a two-view global-
local parallel analysis method to extract global and local
information about mammography images. Global analysis
helps to detect abnormalities such as distortion and asymmet-
ric denseness of breast structures, and local analysis helps
to detect abnormalities such as masses and calcifications.
In order to better learn the dependencies between two views
and realize the information exchange between different view
features, we employ the cross-transformer concept while
extracting local information.

To validate the effectiveness of our method, we conducted
comparison experiments and ablation experiments on two
publicly available datasets, Mini-DDSM and CMMD. The
results of the comparison experiments show that our method
achieves better results compared with existing advanced
methods, with greater improvements in both AUC-ROC and
AUC-PR assessment metrics. The results of the ablation

experiments show that our model architecture is scientific
and effective and achieves a good trade-off between compu-
tational cost and model performance.

Our proposed method will help to build high-performance
and robust deep learning-based mammography CAD systems
to improve efficiency and reduce cost in the early diagnosis
of breast cancer. Since the public dataset used in this study
experiment is still relatively small, we will further validate
our model on a larger dataset in future work.
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