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ABSTRACT Graph neural networks have become a popular technique for collaborative filtering. However,
most related work is based on user-item bipartite graphs, which can generate a large amount of noise due to
the broad and elusive interests of users. To address this problem, we propose a novel generalized insertion
framework (CGCN) that directly captures cliques in the item-item co-occurrence graph and considers them
as the basic units of the user’s higher-order semantics. The method inserts the structural information in these
item-item co-occurrence graphs as an insertionmodule into the original user-item bipartite graph propagation
process, thus providing additional useful information to learn better feature representations. By utilizing the
strong proximity relationships between different items in these cliques, the method is able to discover the
user’s potential higher-order semantics. We experimentally evaluate two improved variants of the framework
on three commonly used public datasets, and the results show significant performance improvements. The
method is able to better discover users’ latent true intentions and achieve better recommender system
performance by introducing clique information in the item-item co-occurrence graph.

INDEX TERMS Graph neural networks, clique, collaborative filtering, recommender systems.

I. INTRODUCTION
With the rapid development of e-commerce, online news, and
social media, personalized recommendation has become an
indispensable and important tool formany enterprises [1], [2],
[3], [4], [5]. The core of the personalized recommendation
task is to accurately match users with candidate items, so as
to recommend content that users are more likely to interact
with. Collaborative filtering (CF) [6], [7], [8], [9], which is
commonly used for personalized recommendation, is based
on the idea of learning the embeddings of users and items
from their historical interaction information, and computing
the scores of the two based on the pairwise similarity between
the embeddings of the user and the item, and using the scores
as the basis for recommendation [10].

Recent studies have shown that user-item relationships
can be naturally represented as graph structures, such as
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user-item bipartite graphs or item-item co-occurrence graphs.
Many recent studies have used graph neural networks
(GNNs) to learn node embedding representations of users and
items [11], [12]. GNNs can naturally handle the interaction
between users and items and learn embedding representations
of users and items by aggregating relevant neighborhood
information, thus achieving good performance gains on many
recommendation tasks [13].

Most of the current GNN-based CF models [14], [15],
[16] are directly based on the basic user-item bipartite
graph, on which different constructions of message-passing
layers are explored, including the processes of neighborhood
aggregation, message passing, and feature transformation.
However, in addition to user-item relationships, studies have
shown that other relationships (e.g., item-item relationships,
user-user relationships) are also beneficial to improve the
performance of GNN-based CF models [17], [18]. User-
item bipartite graphs based on user-item bipartite graphs
are able to implicitly learn these different relationships,
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but this often leads to noise and over-smoothing problems.
For example, the Gowalla dataset, which is widely used in
collaborative filtering work, has an average degree of the
graph of about 23. Since user nodes are alternately connected
to item nodes in a user-item bipartite graph, conveying
information about another item neighboring one item (which,
in the interpretable sense, means the user interacting with that
item, the other item with which it interacts) requires 2-hops,
and this implies introducing information about more than
500 item nodes, which will inevitably introduce noise, as well
as making it difficult to distinguish from a large number of
item nodes the neighboring nodes that are more important
to that node. To alleviate these problems, some related
works [17], [18], [19], directly use item-item co-occurrence
graphs with user-user co-occurrence graphs to explicitly learn
the interrelationships between different users and different
items, and integrate the additional information learned
from the different relationship graphs for recommendation
tasks.

However, propagating information directly in the item-
item co-occurrence graph or in the user-user co-occurrence
graph is very difficult. This is because edges in the
co-occurrence graph tend to be much denser than those in
the user-item bipartite graph. Taking Gowalla as an example,
in Gowalla’s item-item co-occurrence graph, the average
degree of each item node is about 1033, which is 45 times that
of the original graph. Too dense edges often lead to training
difficulties with over-smoothing problems. Meanwhile, for
an item node, it is unfair to treat all its neighbor nodes
equally, and in real application scenarios, there are often
a large number of episodic user-item interactions, which
will lead to much noise. On the other hand, how to fuse
information from multiple graphs is also challenging, and
related work [17], [18] tends to use complex graph encoders
and attention mechanisms for aggregation, which increases
training difficulty and leads to poor interpretability.

Graph neural networks are able to naturally capture higher-
order connectivity, and the results of different layers of graph
neural network aggregation can be interpreted as having
unique meanings [1], [20]. For example, for an item node, its
one-hop neighbor aggregation is the aggregation of all users
who have interacted with the item, and its two-hop neighbor
aggregation is the aggregation of other interacted item nodes
of users who have interacted with the node. However, there
is some clustering and structural information present in the
graph itself that cannot be captured explicitly, and which may
imply higher-order semantic information, the use of which
is often more beneficial [18], [21]. For example, a user who
has purchased a CPU, memory sticks, and motherboard may
represent the user’s true intention to purchase a computer.
Recommending other components of a computer, such as a
hard disk, to the user at this point may be more consistent
with the user’s true intent. However, traditional GNN-based
recommendation models do not utilize this higher-order
semantic information to make recommendations, but instead

FIGURE 1. Clique structures in the item-item co-occurrence graph. Our
approach introduces different cliques to reflect different real intentions
of the user, e.g., the items in a clique in the figure on the right may have
similar roles (Storage), potential use intentions (Game), or constitute a
whole (Computer).

make recommendations through other items purchased by
other users who have purchased these items.

Are there ways to learn using only one graph and skillfully
utilize the information in other graphs? Most existing
collaborative filtering recommendation models based on
graph neural networks apply graph neural networks directly
to the original user-item bipartite graph. Although powerful,
graph neural networks are able to naturally learn structural
information from graphs, there may be validity issues in this
recommender system. Unlike traditional graph neural net-
work research objects, where ordinary graph nodes and their
own neighbors belong to the same kind of nodes with similar
attributes, the two-part graph in the recommender system is
constructed by the user and the project of two different types
of nodes alternatively connected. This construction presents
significant differences in the connectivity and attributes of the
nodes.

As a consequence, the original graph structure may prove
inadequate for effectively learning user and item represen-
tations. Numerous researchers have proposed methods to
address the limitations of the original bipartite graph structure
by enhancing it. Nevertheless, determining how to enrich
the bipartite graph structure and establishing criteria for
determining whether to create new edges between nodes
appears to pose significant challenges.

In this paper, we leverage the cliques within the item-item
co-occurrence graph to identify item nodes with the highest
degrees of similarity. By directly propagating their feature
information from these cliques to the user nodes, we aim to
enhance recommendation accuracy and effectiveness.

Clique is an important structure in complex graph analysis
in different fields, such as social networks [22] and protein
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networks [23]. Many existing works in graph theory have
mentioned the properties of cliques [24], [25]. A clique can
be considered as a complete subgraph of the original graph,
i.e., there exists an edge between any two vertices in the
clique. Different sizes of cliques are widely present in the
item-item co-occurrence graph. Nodes in a clique tend to
be homogeneous in one way or another, while heterogeneity
exists between different cliques. These cluster structures
can be utilized for recommendation tasks. Specifically,
an item node can be contained in a number of different
cliques; different cliques co-occur with different sets of trait
attributions of the items and are able to express different
attributes of the items; whereas a single clique contains
multiple items, reflecting the proximity of these items in
terms of a certain attribute. Fig.1 visualizes the nature of
cliques in the item-item co-occurrence graph.

Therefore, we extract cliques from the item-item co-
occurrence graph and use the features of all the item nodes
within the clique to obtain the features of that clique. The
higher-order features of the item node are then derived by
calculating the features of all the cliques to which the item
node belongs. Finally, we combine the user’s features, the
item’s features, and the item’s higher-order features to predict
the user’s preference for the item. The inner product score
of a user’s features and an item’s features reflects the user’s
preference for that item, while the inner product score of a
user’s features and an item’s higher-order features reflects
the user’s preference for the higher-order semantics of that
item, resulting in a combined score that can be used to better
perform recommendation tasks.

The general propagation process is depicted in the upper
section of Fig.2. Here, the red node represents the target node,

FIGURE 2. Comparative graph of propagation processes. The top half is
the original propagation process and the bottom half is the new
propagation process.

while the blue, green, yellow, and gray nodes symbolize its
1-hop, 2-hop, and 3-hop propagating neighbors, respectively.
It’s observable that the information from the target node
iteratively spreads from its 3-hop neighbors.The updated
propagation process is illustrated in the lower section of Fig.2.
Here, the purple and brown nodes respectively represent
nodes within two distinct cliques. It can be observed that
in the upper part of Fig.2, the two gray nodes have been
excluded, while the two yellow nodes are retained. This
decision is based on the closer relationships between the
yellow nodes and the other blue nodes; at least, they are
connected to two blue nodes through a user node, collectively
forming two separate triangular cliques. Conversely, the gray
nodes are more likely to be incidental links stemming from
users’ broad interests and are thus excluded.Our aim is
precisely to eliminate these edges that arise from incidental
user interests and retain only those items that have closer
connections.

The main contributions of the paper are summarized as
follows:

1) We extract cliques from the item-item co-occurrence
graph and estimate the user’s preference for nodes in the
cliques by considering these cliques as the user’s hidden
higher-order semantic units. Thus, we solve a series of
problems caused by the overly dense item-item co-occurrence
graph, as well as the problems of poor interpretability and
fusion difficulties caused by the simultaneous use of multiple
graph structures.

2)We propose a concise, novel, and generalized graph neu-
ral network-based recommender system framework, CGCN,
which inserts an insertionmodule that uses cliques to estimate
the user’s higher-order semantic preferences for items
directly into the original recommender system. Thereby,
the framework indirectly uses the structural information
in the item-item co-occurrence graph while still using
only the user-item bipartite graph, which enables better
learning of the feature representations of user and item
nodes.

Given that the proposed generalized framework focuses on
improving GNN recommender systems based on user-item
bipartite graphs that are heavily deployed in reality, we select
two classic user-item bipartite graph-based recommender
system models, the NGCF [15] and LightGCN [14], as the
basic models to demonstrate the improvement. We use
the improved framework with plug-in improvements for
recommendation tasks and conduct an empirical study on
three public datasets. The results show that the improved
results using the framework significantly outperform the
original method on all datasets.

II. RELATED WORK
In this section, we briefly review some representative
GNN-based approaches and the work most relevant to the
paper.

With the development of GNNs in various machine
learning domains, GNNs have achieved remarkable success
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in recommender systems over the past few years [26], [27],
[28], [29]. Ying et al. [30] first applied graph convolutional
neural networks (GCNs) to recommender systems for large-
scale networks, proposing a method PinSage that combines
random wandering and graph convolutional method PinSage,
so that the embedding contains both structural and feature
information of the graph. Wang et al. [15] designed a
graph-based collaborative filtering framework NGCF to
propagate the embedding information in user-item bipartite
graphs, so as to utilize the higher-order connectivity infor-
mation of the user and the item to capture their collaborative
signals. He et al. [14] found that the nonlinear activation
in the NGCF and the feature transformations in NGCF
are unnecessary for collaborative filtering and even lead
to performance degradation, thus removing the nonlinear
activations and feature transformations proposed LightGCN.

Although GNN-based CF recommendation models have
achieved impressive results, however, some recent work has
found that applying GNN directly to the original user-item
bipartite graph has effectiveness problems, and the original
graph structure may not be sufficient to learn the user and
item representations [17], [31].
One solution strategy to this problem is to enrich the

original graph structure by adding edges. Multi-GCCF
proposed by Sun et al. [17] adds edges between the two
neighbors of the original graph to obtain a user-user co-
occurrence graph and an item-item co-occurrence graph, and
uses all three graphs simultaneously for the recommendation
task. The DHCF proposed by Ji et al. [8] introduces
hyperedges and constructs user-item hypergraphs to capture
explicit mixed higher-order correlations. UltraGCN proposed
by Mao et al. [18] similarly uses an item-item co-occurrence
graph to enrich the interaction information between users
and items, but they argue that the user-user co-occurrence
graph is not beneficial due to the diversity and complexity of
users’ interests. Another strategy is to represent the enriched
features of users and items by introducing virtual nodes.
Wang et al. [32] considered user-item relationships at a finer
granularity and proposed DGCF, which represents nodes
from different perspectives by introducing virtual intent
nodes and decomposing the original graph into subgraphs
corresponding to each intent. Li et al. [5] represented
nodes from different perspectives by clustering similar users
and items with the clustering centers as new nodes to
create new coarsened user-item bipartite graphs to explicitly
capture the hierarchical relationships between users and
items. Jiang et al. [33] proposed TGIN for click-through
rate prediction task by sampling triangles on item-item co-
occurrence graphs and treating these triangles as the most
basic user interest units.

Inspired by these instructive studies, in the paper, we sam-
ple cliques on the item-item co-occurrence graph, utilize
these cliques to show the hidden real intentions behind
the users, and propose a general recommendation frame-
work CGCN for better implementation of recommendation
tasks.

III. PROPOSED APPROACH
In this section, we explain the process of capturing cliques in
the item-item co-occurrence graph and how this information
can be utilized for recommendation tasks. The framework
diagram for the overall process is illustrated in Fig.3.

A. CAPTURE CLIQUES FROM ITEM-ITEM
CO-OCCURRENCE GRAPHS
To begin with, we must obtain the item-item co-occurrence
graph with weights from the user-item bipartite graph.
In recommender systems, there are typically a series of
interaction relationships between users and items. Let U be
the set of users, N be the set of items, and R ∈ RN×M be
the user-item interaction matrix, where N is the number of
users and M is the number of items. If user u has interaction
behavior with item i, then Rui = 1; otherwise Rui = 0. The
adjacency matrix A of the user-item bipartite graph can then
be expressed as:

A =
[
0 R
R⊺ 0

]
(1)

We can get the item-item co-occurrence graphG = {V ,E}
by coarsening all user nodes in the user-item bipartite graph,
however, this implies a huge time overhead. Fortunately, the
adjacency matrix of the item-item co-occurrence graph can
be obtained directly through matrix operations:

A = RTR (2)

It is important to note that, for any two points in G, the
weights of the edges between them are equal to the number
of common neighboring user nodes in the user-item bipartite
graph for those two items.

In the next step, we sort all the edges of each node in
graph G according to their weights. We then set a window
size to filter the edges of each node, keeping only those edges
with the highest weights that are connected to neighbors that
are more important to that node. To achieve this, we remove
the lowest-weighted edges in each node by randomly cycling
through them until the number of edges per node is less than
or equal to the window size. This approach has the advantage
of allowing smaller degree vertices to retain more edges for
the next step of sample cliques.

Finally, we partition the clique Kn from the item-item
co-occurrence graph G. Kn is a complete subgraph of G
with edges between any two vertices in Kn. In practice,
we sequentially sample cliques starting from a larger size up
to a sample size of 3. For a larger clique that has already been
sampled, we do not sample smaller subcliques of it. This is
because find cliques in a graph is an NP-complete problem.
Additionally, there are k − 1 k-cliques in a k-clique, which
can lead to efficiency and duplication problems. The exact
algorithmic pseudo-code steps are shown in Algorithm 1

In Fig.4, we show a case where the item-item co-
occurrence graph is first obtained from the projection, then
the edges of the item-item graph are sampled, and finally
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FIGURE 3. Framework Architecture Diagram.Most important in the diagram are the two layers intra-clique Aggregation Layer and multi-Level Interest
Fusion Layer, which together form the plug-in module. They calculate the higher-order features of items by utilizing the information in the cliques with
the features of the items.

Algorithm 1 Finding All Cliques in a Graph Gsample

Require: Simple graph Gsample, maximum clique size max,
minimum clique size min

Ensure: Collection of cliques of different sizes
{Kmax, . . . ,Kmin}

1: Nodes← out-of-order vertices from Gsample
2: p← max
3: while p ≥ min do
4: while Nodes ̸= ∅ do
5: node← select a node from Nodes
6: neighbors← gets all of node’s neighbors
7: while |neighbors| ≥ p do
8: Ki← use search algorithms to find a clique
9: neighbors← Ki \ {neighbors}
10: add Ki to Kp
11: end while
12: remove node from Nodes
13: end while
14: p← p− 1
15: end while

the cliques are obtained from the sampled item-item bipartite
graph.

B. EMBEDDING LAYER
An item may be contained in more than one clique, reflecting
the different higher-order semantics to which it belongs.
However, too many cliques can lead to efficiency problems
as well as noise, so it is necessary to keep only a certain
number of cliques for each item node. Thus, we only keep

FIGURE 4. Capture cliques from item-item co-occurrence graph.

those cliques that are important to reflect its diversity and
at the same time balance efficiency. The embedding layer
is consistent with mainstream recommendation models [7],
[14], [15].The improved framework also uses the embedding
vector eu ∈ Rd

(
ei ∈ Rd

)
to describe the features of a user

u(item i), where d denotes the size of the embedding. The
embeddings of all users can be represented as:

Eu = [eu1, · · · , euN ] (3)

where N is the number of users.Similarly, the embedding of
all items can be represented as:

Ei = [ei1, · · · , eiM ] (4)

where M is the number of items. The embedding layer setup
of our framework is consistent with the mainstream recom-
mendation model setup. There are no additional embedding
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layer parameters that need to be learned throughout the
framework, which reflects the generality of our proposed
plug-in framework.

C. MESSAGE PASSING
The main idea of GNN is to iteratively aggregate feature
information from neighbors during the propagation process
and integrate the aggregated information with its own
representation [21]. In general, the process of aggregation can
be represented as follows:

n(l)v = Aggregatorl
({
e(l)u ,∀u ∈ Nv

})
(5)

The process of Information update can be represented as
follows:

e(l)v = Updaterl
(
e(l−1)v ,n(l)v

)
(6)

where e(l)v denotes the node feature representation of node v
at layer l, n is the set of all neighbors of the node,
and Aggregatorl and Updater l denote the aggregation and
information update operation functions at layer l.
The GNN then operates by stacking different layers of

information through multiple iterations to obtain the final
representation of the nodes for the prediction task. Most
existing works [14], [15], [18], [32] focus on improving
this information propagation process and propose a large
number of excellent propagation models. The improved
plug-in framework is able to directly adapt to these excel-
lent propagation models, and the propagation process on
user-item bipartite graphs can be represented as:

(e∗u, e
∗
i ) = GNNmodel

(
e(0)u , e(0)i

)
(7)

where e∗u the final user node feature representation obtained
by propagation in the user-item bipartite graph, e∗i denotes
the final item node feature representation obtained by
propagation in the user-item bipartite graph, and GNNmodel
is the propagation model used on the user-item bipartite
graph.

D. INTRA-CLIQUE AGGREGATION LAYER
Given a set of cliques generated by relevant and varied
behaviors between users and items, we use these cliques to
represent units of interest behind the user.A clique consists
of multiple items and can be represented as follows:{

i1, · · · , ip
}
∈ Cliquej (8)

where
{
i1, · · · , ip

}
is all the items that make up Cliquej,

and p is the size of the Cliquej.After the propagation in the
previous step, the feature of item i1, · · · , ip at this point is
obtained as e∗i1, · · · , e

∗
ip.We use a simple pooling operation

to aggregate the internal information within the cliques and
generate a representation of that Cliquej.

ekj = Average
(
e∗i1, · · · , e

∗
ip

)
(9)

FIGURE 5. Intra-clique aggregation layer illustration.The figure depicts
one 5-clique and one 3-clique, formed by aggregating 5-item and 3-item
nodes, respectively.

where ekj ∈ Rd ,represents the final embedding of Cliquej,
which also representation the higher-order characteristics of
all the internal item nodes within that clique.Average denotes
the mean pooling operation, i.e., averaging the features of
all the item nodes in the clique. In addition, other pooling
operations with replacement invariance such as maximum
pooling, minimum pooling, etc. are also available to adapt
different representation needs.

It is worth noting that since cliques of different sizes
are captured during the sampling process, it is necessary
to exploit these heterogeneous cliques by sequentially
aggregating cliques of different sizes and making them all
end up having feature vectors of the same size. Finally,
after aggregating all cliques of different sizes in turn, the
embedding matrix representing all cliques is as follows:

ek = {ek1, · · · , ekl} (10)

where ek ∈ RL×d ,and l is the number of cliques.ek1, · · · , ekl
are the features of Clique1 · · ·Cliquel .

E. MULTI-LEVEL INTEREST FUSION LAYER
As mentioned earlier, different cliques represent different
user interests. An item may be contained in several different
cliques at the same time, which also represent the attributes
of each different dimension of the item. Therefore, we need
to synthesize all the different cliques to which an item node
belongs to get a higher-order feature representation of the
item. For example, item iq may simultaneously belong to
multiple different cliques.

iq ∈ Cliquen, · · · ,Cliquem (11)

where Cliquen, · · · ,Cliquem are all cliques containing
item iq. Therefore, in order to obtain the higher-order feature
representation of an item, it is necessary to derive the
final higher-order feature by pooling all clique features.
Again, we simply use a pooling operation to compute the
higher-order features of the items.

ecip = Average (ekn, · · · , ekm) (12)
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FIGURE 6. Multi-level interest fusion layer illustration. For the example in
Figure 5,the feature representations of the six item nodes are obtained by
aggregating them separately.

where ecip is the final obtained higher-order feature of item iq,
and ekn, · · · , ekm are the features of all the cliques containing
item iq. Similar to the process of mapping from item features
to clique features, other pooling operations can be used in
this step, but generally consistent with the pooling operation
in the previous step.

The final higher-order features of an item are obtained by
pooling the features of all cliques associated with it. The final
higher-order feature matrix representing all items is obtained
as follows:

eci =
{
eci1, · · · , e

c
il
}

(13)

where eci ∈ RL×d , and l is the number of items. eci1, · · · , e
c
il

are the features of i1, · · · , iq.

F. LAYER COMBINATION AND MODEL PREDICTION
In the previous two steps, we described how to compute
the higher-order features of an item using the features of
the item node. Together, they form our clique information
insertion module. Finally, we combine the learned user
features, item features, and higher-order features of items
for the recommendation task. We use the inner product to
estimate the user’s preference for the target item:

ŷ = e∗
⊺

u e∗i + αe∗
⊺

u eci (14)

where α is the combination coefficient representing the
information weight of the user’s higher-order intention to
balance its relative importance. The first part e∗

⊺

u e∗i represents
the user’s preference score for the item, and the second
part αe∗

⊺

u eci represents the user’s preference score for the
higher-order semantics of the item.

The overall preference is computed using just a simple
inner product and a constant coefficient to balance the
importance of the two parts, thus making it concise and easy
to understand. We also note that better performance might be
obtained by using some other way of integrating information,
such as the attention mechanism. More complex ways of
integrating information are explored in subsequent work.

G. OPTIMIZATION
To optimize the model parameters, related work tends to use
Bayesian Personalized Ranking (BPR) loss [34] as a loss
function. This loss function encourages observed interactions
to have higher predictive values than unobserved interactions.
The objective function is as follows:

Loss =
∑

(u,i,j)∈O
− ln σ (ŷui − ŷuj)+ λ ||2||22 (15)

where O ∈
{
(u, i, j)|(u, i) ∈ R+, (u, j) ∈ R−

}
denotes the

pairwise training data, R+ indicates the observed interac-
tions, and R− is the unobserved interactions; σ (·) is the
sigmoid function; 2 denotes all trainable model parameters,
and λ controls the L2 regularization strength to prevent
overfitting.

Since the CGCN framework uses the same propagation
model as the original method, the BPR loss function can
be used, or it can be aligned with the loss function of the
original method. If we ignore the final step of calculating
the higher-order features of the item nodes, we will find
that the propagation process under the framework is exactly
the same as the original method. So in most cases, we will
directly use the loss function of the original model. The
advantage of doing so is that we do not need to adjust
most of the hyperparameters, including the learning rate,
regularization coefficient λ, batch size, number of layers in
the propagation layer, and so on. It is entirely possible to
follow the hyperparameters of the base model work under the
improved framework.

IV. EXPERIMENTS
In this section, we apply the CGCN framework directly to
the two most classical GNN-based CF models, NGCF [15]
and LightGCN [14], and compare the results with the original
models to verify the effectiveness of the improved approach.

TABLE 1. Statistics of the datasets.

A. DATASETS AND EVALUATION PROTOCOL
To ensure the fairness and comparability of the experiments,
we follow the experimental setups of NGCF and LightGCN,
including all three datasets in the original papers, as well
as the segmentation methods for the training and validation
sets. This approach is consistent with other related work on
GNN-based CF.

For the evaluation protocol, we choose Recall@20 and
NDCG@20 as evaluation metrics because they are widely
used to measure the performance of GCN-based CF models.
We consider all items that are not interacted with users as
candidates and report the best results for all users.
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TABLE 2. Overall Performance and Improvement Comparison.

FIGURE 7. Training curves (training loss and testing recall) of LightGCN and NGCF and their three improved variants.

B. COMPARED METHODS
We use two classical models, NGCF and LightGCN,
as comparison models and apply the CGCN framework to
improve both models, resulting in the improved models
NGCF+ and LightGCN+, respectively.

NGCF [15]: utilizes graph convolution on user-item
bipartite graphs to capture collaboration signals by utilizing
the higher-order connectivity information of users and items.

LightGCN [14]: removes unnecessary nonlinear activa-
tions and feature transformations for graph convolution to
obtain better performance for recommendation.

NGCF+: an improved variant of NGCF using the CGCN
framework.

LightGCN+: an improved variant of LightGCN using the
CGCN framework.

C. HYPER-PARAMETER SETTINGS
During the experiments, we set the embedding size of all
models to 64 and used the Adam optimizer with initialization
methods consistent with the original method to ensure
consistency with NGCF and LightGCN. For the models
improved by adding the CGCN framework, we directly
obtained and used the optimal parameters of the original
method on different datasets from the original text or
the authors’ open-source code, including the learning rate,
regularization coefficient λ, batch size, and the number of
layers of the base model. Generally, there is no need to adjust
any parameters of the original model, and the parameters

that make the original model converge to the optimum can
also make the improved model using CGCN converge to the
optimum. This means that the cost overhead of applying our
improved framework is small.

In the sampling process of cliques, we set the neighbor
window of the item-item co-occurrence graph to 15, with
a maximum sampling size of 10 cliques and a minimum
sampling size of 3 cliques. Additionally, only up to 5 different
cliques are kept for each item node to equalize the diversity
and efficiency of cliques. This is because a too small neighbor
window can lead to sparse regiment nodes and thus lack of
expressive power in this process, while a too large neighbor
window can lead to additional training costs with little gain.
Since the process of finding cliques is an NP-complete
problem and very large cliques are very rare, it is usually
sufficient to start sampling from cliques of size 10.

The only aspect that requires adjustment is the combination
coefficients α. The experimental procedure searches for the
optimal parameters among the values of 0.3, 0.5, 0.7, 0.9, 1,
1.1, and 1.3. To ensure a fair comparison, we have made the
open source code and associated parameter settings available
on Github1.

D. PERFORMANCE COMPARISON
Table 2 presents the performance comparison between the
base model and the improved variants on the three datasets.
For the two base models, the results reported in the related

1https://github.com/952469119/CGCN
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TABLE 3. Comparison with state-of-the-art.

papers were directly followed in the paper since the exact
same parameter settings and datasets provided by them
were used directly in the experiments. The table shows
the best metrics that can be obtained for each variant.
It can be seen that NGCF+ vs. NGCF and LightGCN+ vs.
LightGCN achieve significant performance improvements on
all three datasets, proving the effectiveness of the improved
approach.

Fig.7 plots the curves for loss and recall@20 on the
Gowalla dataset, and the curves for the other two datasets
have a similar trend, which will not be shown repeatedly
for space reasons. Observations show that the loss of both
improved models is consistently lower than that of the
original model throughout the training process. Moreover,
the lower loss successfully translates into higher test metrics,
suggesting that the improved model has better generalization
ability.

E. COMPARISON WITH STATE-OF-THE-ART
Although the generalized framework proposed in this paper
focuses on plug-in improvements to GNN-based recom-
mender systems based on user-item bipartite graphs, which
are heavily deployed in reality, to further demonstrate the
improvement, LightGCN+ is compared with the current
state-of-the-art GNN-based recommendation models in this
section.

Among them, Deepwalk [11], LINE [26], and Node2Vec
[12] are all classical approaches based on graph machine
learning, and NGCF [15] and LightGCN [14] are the
basic models already mentioned in the previous section.
NIA-GCN [35] exploits the user-item bipartite graph by
explicitly modeling the relational information between
neighboring nodes, thus exploiting the heterogeneous
nature. LR-GCCF [27] is a generalized GCN-based model
for recommending CF. DGCF [32] considers user-item
relationships at a finer granularity of the user’s intent
and generates de-entangled user and item representations
for better recommendation performance. UltraGCNBase and

UltraGCN [18] directly approximates the limit of infinite-
layer graph convolutions with a constraint loss, which also
can take advantage of multiple negative samples.

Table 3 compares the performance of the baseline and
LightGCN+ variants across the three data sets. For the
baseline model, the results reported in the relevant literature
are directly used in this paper. The table shows the best
metrics that can be obtained for each variant.

It can be observed that LightGCN+ achieves the highest
performance on both the Gowalla and Yelp2018 datasets,
demonstrating the effectiveness of the improved method.
However, on the Amazon-book dataset, LightGCN+ still
lags significantly behind UltraGCN and UltraGCNBase,
despite achieving the greatest performance improvement
over LightGCN on all three datasets. This difference in
performance may be attributed to the negative sampling
approach and complex loss function design utilized by both
UltraGCN and UltraGCNBase.

F. EFFICIENCY COMPARISON
As mentioned in the previous section, CGCN’s task is to
extract the clique structure from the item-item co-occurrence
graph, a task efficiently handled by pre-training static. With
a reasonable neighbor size and a maximum clique size of
around 10, this process typically takes only a few minutes.
Because there is no need for recalculation at each epoch
during training, this objectively ensures the overall efficiency
of the framework.

However, CGCN introduces two new layers: the
intra-clique aggregation layer and the multi-level interest
fusion layer, on top of the original model, which necessitates
additional computational steps. Therefore, in this section,
we compare the efficiency of the improved variant with
the original model to objectively assess the efficiency of
the enhanced CGCN framework.To be more convincing,
we compare their training efficiency from two views:
• The total training time and epochs for achieving their
best performance.
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• Training them with the same time to see what perfor-
mance they can achieve.

Book with the same machine with one GeForce
RTX 3090 GPU for all compared models.We chose the
Gowalla dataset for the experiments in this section, and the
hyperparameter settings are all the same as in the previous
section.

From Table 4, it is evident that the two improved models,
LightGCN+ and NGCF+, do require more time compared to
the original model. NGCF+ takes 0.4 times longer compared
to NGCF in terms of both individual epochs and total time,
while LightGCN+ takes approximately 0.2 times longer
compared to LightGCN. This finding is consistent with
the earlier analysis, indicating that the introduction of two
additional layers unavoidably results in an increase in training
time, but maintains the same overall time complexity.

TABLE 4. Efficiency comparison from the first view.

From Table 5, it is evident that both NGCF+ and
LightGCN+ achieve better performance results within the
same training duration of 180 minutes. Despite being trained
with approximately 110 fewer epochs compared to NGCF,
NGCF+ achieves about a 5.4% improvement in perfor-
mance. Similarly, LightGCN+ achieves a 2.5% performance
improvement while being trained with 184 fewer epochs
compared to LightGCN.

TABLE 5. Efficiency comparison from the second view.All models were
trained using the same 180 minutes.

Overall, the improved variant incurs a greater time cost
compared to the originalmethod in terms of individual epochs
and overall training elapsed time. However, the training
results achieved over a given unit of time are superior to those
of the original method. Specifically, the improved variant
is capable of attaining higher performance when the total
training elapsed time aligns with the time required for the
original model to reach convergence.

G. ABLATION STUDY
To investigate whether CGCN can benefit from multiple
message passing layers, we varied the depth of the basemodel

in message passing. In particular, we searched for the number
of layers in the range 1,2,3,4. From Table 6, we can observe
some interesting results.

TABLE 6. Effect of message passing layer numbers.

The performance of the improved models using the
CGCN framework varies due to the different performance
of the underlying models with different layers. The perfor-
mance of all models after improvement shows significant
improvement. Among them, the performance of NGCF with
layers 1-4 is closer, and thus the performance of NGCF+
is also closer; while the performance of LightGCN with
layers 1-4 has a larger gap, and thus the performance of
LightGCN+ shows different differences. The base model
with higher performance always gets better performance with
its improved variants. Therefore, we believe that for base
models with better performance, only the hyperparameters
that enable them to achieve the best performance are needed
to achieve the best results in the improved variants using
CGCN.

H. HYPERPARAMETER ANALYSIS
Fig.8 illustrates the effect of the combination coefficient α

on the Gowalla dataset. In general, LightGCN+ is more
influenced by the hyperparameter combination coefficients,
with larger optimal value gaps across different datasets.
And LightGCN+ showed significant overfitting at higher α.
Choosing a lower value on dense datasets tends to yield
more desirable results, whereas selecting a higher value on
sparser datasets leads to better outcomes. On the other hand,

FIGURE 8. Hyperparameter analysis.
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NGCF+ is less sensitive to hyperparameter combination
coefficients, possibly because NGCF+ incorporates a non-
linear transformation unit, allowing it to adaptively learn the
weight balance between the two components.

Additionally, experimental variants of the combination
coefficients in this study consistently outperformed the
original model across a wide range of values. This finding
validates that introducing structural information from the
item-item co-occurrence graph can enhance the learning of
embedded representations of users and items, resulting in
improved recommendation performance.

V. CONCLUSION
In the paper, we propose a novel CGCN generalized
insertion framework for the recommendation task based
on collaborative filtering of graph neural networks. Our
approach utilizes the structural information of the graph
itself, specifically the relevant features of the clique structure
in graph theory. By utilizing the clique information in
the item-item co-occurrence graph, our approach ameliorates
the noise problem caused by propagating the embeddings
in the user-item bipartite graph and better learns the
embeddings of both users and items, leading to improved per-
formance in the recommendation task. Notably, many models
designed based on user-item bipartite graphs can run under
our proposed CGCN framework without hyperparameter
tuning.

However, this observation also indicates that the
improved model is still constrained by the learning
capacity of the original model, and it still faces challenges
related to sparse data and cold start issues. Addressing
these challenges will be the focus of future research
directions.

In addition to graph neural network-based approaches,
many other collaborative filtering-based approaches have
recently achieved impressive results using the original
user-item bipartite graph. Therefore, our next research plan
is to explore other related approaches that utilize clique
information for the recommendation task learning.
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