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ABSTRACT Beamforming and massive multiple-input-multiple-output (mMIMO) technologies are key
features of base stations (BSs) in the fifth-generation (5G) of mobile networks. This technology is
used to focus more radio frequency (RF) energy towards actively connected users to improve their
connection/performance, resulting in high variations in the radio frequency electromagnetic fields (RF-
EMFs). This paper proposes a newmethodology for modelling the RF-EMF exposure for 5G new radio (NR)
mMIMOBS bymeans of a physics-informedmachine learning (ML) approach using empirical measurement
data. More precisely, the main focus of our work is to develop a suitable traceable RF-EMF exposure
prediction tool in the context of 5G mMIMO BSs that can serve multiple mobile users (i.e. multiple-
user MIMO (MU-MIMO)) within realistic real-world environments and scenarios. Our RF-EMF prediction
tool relies on empirical measurement data acquired via a user-controllable mMIMO beamforming testbed
and traceable RF-EMF measurement capability, where both indoor and outdoor RF-EMF measurement
campaigns have been carried out. During the measurement campaigns various factors such as number of
users, position of users and data duty cycles were considered. Using an ensemble of gradient boosted decision
trees, we show that a physics-informed approach can improve predictive performance of RF-EMF compared
with a purely data-driven approach, with the ability to extrapolate values of RF-EMF exposure to larger
distances. Results show a coefficient of determination value of 0.86 on a 10-fold cross-validated experimental
dataset. We also compare the sensitivity of RF-EMF exposure to various factors in the model, and show that
model predictions become isotropic for large numbers of beam configurations, simplifying the exposure
measurement methodology of 5G systems.

INDEX TERMS 5G new radio (NR), beamforming, electromagnetic field (EMF) exposure, experimental
measurements, machine learning, massive multiple-input-multiple-output (mMIMO).

I. INTRODUCTION
Fifth-generation (5G) networks promise to deliver high data
rate, low latency, and seamless connectivity between trillions
of devices serving billions of people. However, when it
comes to 5Gmobile network deployment, the radio frequency
electromagnetic field (RF-EMF) exposure limits (in terms
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of field strength) have become a critical concern. This is
mainly because 5G new radio (NR) base stations (BSs) rely
on the beamforming massive multiple-input-multiple-output
(mMIMO) technology [1], [2], [3], [4]. This technology is
capable of adaptively forming narrow directional beams,
allowing transmission of more information towards different
desired users on the same frequency/time resource, i.e.
focusing more radio frequency (RF) energy actively on
connected users, resulting in high spatio-temporal variations
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of the RF-EMF strength. This is quite different from previous
generations of mobile networks and BSs, where RF power
was assumed to radiate approximately uniformly in all
directions.

Consequently, the conventional measurement of RF-EMF
exposure from third-generation (3G) and fourth-generation
(4G) BSs at the exclusion zone (a compliance boundary
around the BS with no access to the general public),
is currently not fit for purpose since it leads to non-realistic
large exclusion zone areas when the beamforming technology
is used to focus more RF energy in the direction of a specific
mobile user [5]. In turn, this non-realistic information can
make the deployment of 5G mMIMO BSs problematic for
operators, especially on sites with pre-existing 3G and 4G
BSs, or in countries, regions, and even cities, where RF expo-
sure compliance regulation goes beyond the guidelines set out
by the International Commission on Non-Ionizing Radiation
Protection (ICNIRP) [6], [7]. For example, in Poland, Italy
and Switzerland, different regulations have been put in place
where the current RF-EMF exposure limits are 7 V/m, 6
V/m and 4 V/m, respectively, which is much stricter than
the ICNIRP guidelines at 61 V/m [8]. This more stringent
exposure limit has had an impact on 5G network rollout
and deployment. Furthermore, different contributions have
already demonstrated that the old compliance methodology
is not suitable for 5G BSs [5], [9]. Regulators, operators
and 5G equipment suppliers all require reliable and rig-
orous assessment of RF-EMF exposure levels to support
consistent and effective 5G regulation and network design.
Scientific arguments and effective RF-EMF measurements
on a mMIMO system are needed to support this vision.
Furthermore, various factors such as number of users,
position of users and data duty cycles need to be considered
as they increase the measurement uncertainty in RF-EMF
exposure evaluation.

In 5G systems, the RF-EMF exposure is considered to
be more statistical/stochastic than with its evaluation done
by using data from the synchronisation signal block (SSB)
IEC 62232:2022 [10]. More specifically, the exposure level
is extrapolated from the received signal reference power
(RSRP), which is itself obtained through the SSB. The
literature on 5G RF-EMF exposure generally acknowledges
that statistical approaches should form the basis of RF-EMF
exposure assessment in systems employing mMIMO and
beamforming to ensure that high power user service beams
are only transmitted on a need-to basis [5], [9], [11]. Theoret-
ical statistical models of 5G BS exposure have been proposed
in [5] and [9], which explore how the statistical dependency
of RF-EMF on factors such as beam angle and distance from
BS can impact existing EMF regulations. Following this theo-
retical work, the IEC has laid the foundation for developing a
practical model-based method to evaluate and extrapolate the
EMF exposure of in-situ 5G BSs based solely on measuring
the strength of SSB of 5G BS signalling information [4],
[12]. The principles of 5G exposure measurements based

on the measurement of SSB signals have been presented in
different contributions [13], [14]. Furthermore, in practice,
one envisages that BSs are not always operated with 100 %
data payloads (i.e. they do not transmit at full power in
each millisecond) and when multiple users are served by
a BS, the power is split among different directions even
with spatial multiplexing. Different contributions tend to
demonstrate that the traditional approach for designing the
compliance boundary might be over-conservative [9], [15].
In particular, [9] shows that using a statistical approach for
assessing the actual transmission power in more realistic
scenarios by taking into account mMIMOBS operations (e.g.
deployment scenarios and channel models), the compliance
boundary turns out to be actually smaller when compared
to the one computed with the conservative traditional
method. More recently, [16] worked on refining this practical
method by either considering a more comprehensive set of
parameters to extrapolate the RF-EMF exposure from the
SSB measurements or defining a robust procedure mixing
both classic field strength and SSB power measurements.

The authors of [2] and [4] carried out empirical studies
of the statistical and stochastic nature of RF-EMF exposure
from a fully reconfigurable mMIMO testbed system within
a real-world indoor and outdoor environment with different
complex operating scenarios. The aim was to focus on trace-
ability establishment and development of suitable RF-EMF
measurement methods in the context of 5G mMIMO BSs
serving different numbers of mobile users with different
data traffic profiles within realistic real-world environments
and scenarios. This empirical measurement work was useful
in establishing the relevant empirical statistical model.
However, the definition and validity of an effective model
is still an open problem for such complex operations. More
work needs to be done to fully understand how RF-EMF
exposure generated by a 5G mMIMO BS fluctuates as
a function of the environment, such as spatial variation,
user traffic profile and number as well as positions of the
users.

Machine learning (ML) is a data-driven approach to
modelling which has become extremely popular in wireless
communication systems in recent years due to the abundant
availability of data. ML has an advantage over traditional
modelling approaches in its ability to learn complex systems
with relatively low computational cost. This has led to numer-
ous applications of ML in understanding different wireless
communication phenomena, including various aspects of the
physical layer in 5G wireless technology [17], [18]. For
example, ML related work has been explored in the study of
channel propagation [19], [20], [21], and beamforming [22].
The application of ML in the specific field of RF-EMF
exposure is rapidly gaining interest. For example in [23], [24],
[25], and [26], various neural networks are used to predict
RF-EMF exposure by considering different input parameters
under various conditions. Although neural networks tend to
give more accurate predictions, they are less interpretable,
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and lack the ability to predict outside the range of training
data.

Due to the complex and stochastic nature of 5G mMIMO
beamforming, and the abundance (in number of measure-
ments and number of varying operational conditions) of
empirical real-world data presented in [2] and [4], we propose
a supervised learning approach using a physics-informed
gradient-boosted ensemble of decision trees for modelling
and predicting 5G RF-EMF strength exposure. This has
the advantage over neural network approaches in that
one can analyse the predictor importance (a measure of
sensitivity) of the various factors affecting RF-EMF exposure
(see section III-B). Also, by incorporating physical laws
(namely the Friis formula [27]) into the model training
(see section III-C), we show how the model can accurately
interpolate and extrapolate the RF-EMF predictions to
distances from the BS not present in the real-world data. Both
indoor and outdoor environments, under various operational
conditions are considered, with focus on developing a
relevant and generic ML model to predict 5G RF-EMF
exposure in many useful deployment scenarios.

In section II we describe the real-world experiments
from which the RF-EMF was measured. In section III we
present the methods used to train the ML model of RF-
EMF exposure. We show that a physics-informed model is
able to give more accurate predictions of RF-EMF exposure
in spatial regions not measured in the experimental data.
In section IV we present the results of the physics-informed
model predictions, and analyse the dependency of RF-EMF
on various factors. We show that the physics-informed model
has high predictive performance on unseen test data, with
a cross-validated R2 value of 0.86, and exhibits isotropic
RF-EMF exposure behaviour for a high number of users.
Finally, in section V, we provide our conclusions of the work
presented, and directions for future research.

II. EXPERIMENTAL DESIGN
This section explains how the data set of 5G RF-EMF
exposure has been gathered through various measurement
campaigns (reported in [1], [2], [3], [4]) by means of a
5G compliant mMIMO testbed. All the measurements (both
indoor and outdoor) were performed around the 5G/6G
Innovation Centre (5GIC) building at the University of
Surrey [28], with the details of the testbed and experimental
settings provided below.

A. mMIMO BEAMFORMING TESTBED
ThemMIMO testbed used in [1], [2], [3], and [4] to gather 5G
RF-EMF exposure data includes a user-controllable mMIMO
beamforming system with up to 128 channels connecting
to a transmit antenna array and a RF-EMF measurement
system.The mMIMO beamforming system itself consists of:

1) A BEE7 synchronization and trigger generator;
2) AMegaBEE transceiver module (eachmodule contents

four input/output RF ports and could support up to
4 channels of IQ);

3) A White Rabbit time distribution system;
4) A transmitting antenna array with 128 (16 × 8) patch

antenna elements.
The mMIMO testbed can perform phase-coherent, after
over-the-air (OTA) mMIMO phase coherency calibration,
and time synchronized MIMO baseband processing with
user-programmable, reconfigurable, and real-time signal
processing field-programmable gate arrays (FPGAs)-based
software defined radio (SDR) capabilities. For downlink
communications, up to 128 channels could be used simulta-
neously at the transmitting end by using all the 32 transceiver
modules whereas, at the receiving end, up to 32 channels can
be used.

The synchronization of the mMIMO testbed is controlled
by the BEE7 synchronization and a trigger generator.
The signal generation and analysis are all implemented
using the MegaBEE transceivers. The clocking network
that achieves sub-nano second time synchronization between
channels is derived from the White Rabbit time distribution
system, which synchronizes a reference clock to each of
the MegaBEE transceiver modules over an optical fibre link
using SFP+ (Small Form-factor Pluggable Plus) network
adaptors. Note that optical fibers are employed for both data
transport and the clocking network. Fig. 1(a) depicts the
mMIMO beamforming system with the following MIMO
downlink configuration features:

• RF operating frequency centric at 2.63 GHz
• CP-OFDM (Cyclic Prefix Orthogonal Frequency Divi-
sion Multiplexing) waveform matching a 5G NR
configuration

• Data frame generation with pilot signals
• 40 MHz instantaneous data bandwidth per channel
• Subcarrier spacing of 15 kHz in time division duplex
(TDD) mode

• Symbolmodulation formats: QPSK, 16-QAM, 64-QAM
• Flexible Massive MIMO as Tx (transmitting end)
configuration for 16 up to 96 Antennas

• Flexible Receiver system as Rx (receiving end) config-
uration for up to 20 Antennas

• MATLAB baseband processing, algorithmic evaluation
and zero-forcing beamforming

• Receive antennas separated by several wavelength
distance

• Capable of MIMO precoding at Tx and channel
estimation with receive pilots at Rx

• Transmission rate at 61.44 MSps for a fixed length of
65536 samples (i.e. 216)

The RF-EMF measurement system (also referred to as RF-
EMF receiver) consists of up to five sets of 4-dipole-element
receiving antenna arrays each connected to a MegaBEE
receiver (see Fig. 1(b)). The measured traceable RF-EMF
exposure is evaluated by converting the amplitude of the
received signal at each of the receiver antennas into exposure
information via the following equation

ε = VCLAFCAG, (1)
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FIGURE 1. Photos of the: (a) mMIMO beamforming system; (b) RF-EMF
measurement systems.

where V is the received signal voltage measured at each
antenna of the receiver, CL accounts for the cable loss, AF
is the antenna factor to account for the field in the air, such
that AF = E/V , with E being the plane wave electric field
(E-field). CAG is the corrective factor that accounts for the
automatic gain control that is implemented in eachMegaBEE
transceiver module. The values ofCL , AF , andCAG have been
obtained through calibration and validated by ensuring that
the EMF values obtained by each antenna of each receiver
well-match EMF theoretical values [4].

B. EXPERIMENTAL SETTINGS
In the various experiments undertaken in [1], [2], [3],
and [4], the mMIMO BS operated with 96 active transmitting
antennas, while each RF-EMFmeasurement system operated
as a receiver with four dipole receiving antennas. Each
antenna was used as an RF-EMF probe to measure the RF
exposure at the location they were placed whilst the mMIMO
BS was not necessarily transmitting/steering a beam towards
them in order to acquire more measurements and, hence, get a
better statistical view of the RF-EMF exposure. The RF-EMF
exposure was measured by using five RF-EMF receivers
fixed in place at different locations within a well-defined grid,
as it is depicted in Fig. 2 for both the indoor and outdoor
scenarios. Thus, 20 RF-EMF strength measurements were
taken for each set of operational settings. The exact locations
of all antennas are shown in Table 1.
While the mMIMO Tx system was in operation, its

associated RF-EMF was measured when considering the
combination of the following varying factors:

• Number of virtual active users: Up to 4 (i.e. generate up
to 4 beams)

• Direction of virtual active users (VUs): Up to 19 beam
directions

• Data traffic pattern of frame (NRB): Up to 4 different
data rates for each user (e.g. 25%, 50%, 75%, 100%)

FIGURE 2. Diagrams showing the configuration of BS and receiving
antenna for both indoor and outdoor scenarios. Rx # is a label indicating
the receiver number.

TABLE 1. Table of antenna positions on the five receivers for both indoor
and outdoor scenarios shown in Fig. 2. The x and y coordinates are taken
to be the parallel and perpendicular distances from the centre of the BS,
respectively.

• The modulation coding scheme (MCS): Up to 29 differ-
ent indices (0-28)

• The number of transmission antennas: Up to 3 different
amounts (32, 64 and 96).
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FIGURE 3. Illustrative diagrams showing virtual beamforming scenarios
for different number of users, user data rate, and user location: (a) one
active user with beam pointing towards surrey Rx1; (b) one active user
with beam pointing towards surrey Rx2; (c) two active users; (d) four
active users.

During the measurement campaign, various single-user (SU)
and multiple-user (MU) MIMO downlink communication
beamforming scenarios were considered, with different
combinations of active beams and data traffic loading to
mimic the performance of a realistic 5G BS. Fig. 3 shows
some illustrations on how many beams were formed to
transmit towards a virtual active user by considering the
aforementioned varying factors. In Fig. 3, virtual users (red
dot) do not have a real receiver at that point, the beams are
pre-computed and loaded/transmitted in a static way to the
field of interest for the duration of the measurement. Also, the
static beams are computed taking account of different traffic
profiles and numbers of virtual users. Note that the RF-EMF
systems have been calibrated to ensure that the measured
results could be used for cross validation.

In this measurement campaign, fully compliant 5G NR
waveforms were used to transmit the data. The 5G NR
beamforming baseband signals were generated by using the
Keysight PathWave System Design platform (also known
as SystemVue) [29]. This software can be used to generate
up to 19 potential beam directions equally spaced every
5◦ between ± 45◦ in azimuth angle with an elevation
of 0◦. Each generated beam contains a physical downlink
shared channel with a configurable data payload that is
transmitted within a 1-ms period. The data rate of each
beam payload can be controlled by adjusting the modulation
coding scheme, i.e. QPSK (Quadrature Phase-Shift Keying),
16-QAM (Quadrature Amplitude Modulation), 64-QAM,
as well as the number of allocated resource blocks (NRBs)
used in the transmission. In the experiment, up to 216 NRBs
were used per beam and up to 4 out of the 19 beams are
active simultaneously to mimic a mMIMO BS beamforming
data transmission towards up to 4 active users at the
same time. Note that up to 864 total NRBs were used

for 4 simultaneously active beams and the power level of
the mMIMO Tx system was not normalized. The carrier
frequency of the downlink transmission was 2.63 GHz with a
bandwidth of 38.88MHz, and a subcarrier spacing of 15 kHz.

One envisages that the variations of the beam profiles and
data rates are useful for assessing the spatial variation of
RF-exposure surrounding themMIMO testbed. In order to get
insights into the effect of the stochastic nature of RF-exposure
generated by non-ideal mMIMO beamforming operation due
to potential hardware impairments and/or other factors (i.e.
the beams may not be well defined and may not steer
in the expected direction) in the studied environment, tens
of thousands of electric field (E-field) measurements were
acquired, after the multi-channel OTA calibration [3], [4]
had been performed, with uniformly independently sampled
numbers of active beams, beam directions, NRBs, MCSs
and number of transmitters. In the measurement campaigns,
a total of 65,980 and 87,880 measurements of E-field data
were recorded for indoor and outdoor scenarios, respectively.
The relevant RF-EMF is then evaluated using (1).

III. MACHINE LEARNING MODELLING
Since our goal in this paper is to predict the RF-EMF, which is
a continuous variable, we need to solve a regression problem
where, given a set of inputs, X , we wish to determine a
function, f , which well approximates the output RF-EMF, y,
as follows

y ≈ f (X ). (2)

A. DATA PREPARATION
Prior to determining f via our proposed physics-informedML
algorithm, we first needed to process the measurement data to
identify the key input features/variables which influence the
RF-EMF.

As was observed in [4], the peak E-field is measured by
the antenna when the beam is directed at the receiver. Thus,
the E-field strength depends on the angle of the beam θbeam
relative to the position of the receiving antenna θant , which
we denote as the relative angle

1θ = θbeam − θant , (3)

where θant = arctan (x/y) can be calculated using the receiver
locations shown in Table 1.
According to the Friis transmission formula [27], the peak

E-field also depends on the distance, d , between the BS
and each receiver, in the form E ∝ 1/d (since the power
available at the receiving antenna is proportional to 1/d2 and
the E-field strength E (RF-EMF) is proportional to the square
root of the channel power at a distance d from the E-field
source). The distance from the BS for each measurement can
be determined according to d =

√
x2 + y2, using the receiver

locations shown in Table 1. Fig. 4 illustrates how 1θ and d
were calculated for a specific receiving antenna.

To confirm that the acquired RF-EMF exposure data have
the correct/expected dependence on d , the peak E-field
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FIGURE 4. Diagram showing the relative angles and distance of one
antenna RF-EMF measurements for two active beams.

FIGURE 5. Plot showing the dependency of peak electric field of receiver
with distance from BS d . A least-squares 1/d fit is also plotted.

strength (based on the measurements for which 1θ is
between −10◦ and 10◦) is plotted against d in Fig. 5.
By performing a least-squares quadratic fit:E = a+b(1/d)+
c(1/d)2 + ϵE , we verified that the data follows the correct
1/d behaviour. The p-values for the null hypothesis that the
coefficients a and c are zero are much greater than 0.05
(pa = 0.25 and pc = 0.83 for the coefficient t-statistic,
respectively), but the b coefficient rejects the null hypothesis
with pb < 10−4. The maximum range of |1θ | for which there
is a significant 1/d dependency (p < 0.05), but no significant
constant or 1/d2 term (p > 0.05) for our measurement
dataset is (0◦, 14◦). This is confirmed by numerical results
in Fig. 6, where we see that for angles beyond this range, the
signal of the transmitted beam is lost to the environmental
noise. Thus to properly model the signal behaviour, for which
the correct 1/d dependency holds, and avoid environmental
boundary effects due to the placement of the antennas, the
observed measurements were restricted to the range |1θ | ≤

14◦ for all beams, corresponding to 18,774 (out of 162,939)

FIGURE 6. Plot of average RF-EMF for 1θ1 with bin widths of 1◦. The 95
% confidence interval in the mean RF-EMF is also shown, as well as
threshold values |1θ | = 14◦.

TABLE 2. Description of input variables. Nbeams and Ntrans are the
number of beams and transmitters respectively. The subscripts 1-4 for the
variables indicate the beam number as represented in Fig. 4.

measurements (observations) in total. We also observe from
Fig. 6 symmetry in the E-Field exposure measurements about
1θ1 = 0◦, as expected from physical intuition. To ensure
symmetry of the model predictions, we take the absolute
value |1θi| as input to training the model (see Table 2), so that
model predictions for −1θi will be equivalent to +1θi.
We found that similar predictive performance of RF-EMF
is obtained when symmetry is not enforced, and so this
symmetry requirement does not significantly reduce model
performance.

Along with the key features previously mentioned (i.e.
angle, distance), there are in total 16 input variables to our
ML model, with their type and range reported in Table 2. All
other environmental variables that could affect the RF-EMF
exposure, such as walls, bushes, obstacles, sunlight, are taken
as noise in the ML model.

B. METHODOLOGY
The choice of ML model to obtain f in (2) depends on the
nature of the input variables. Since we have continuous, dis-
crete, and categorical variables, a binary regression tree [30]
can be a suitable choice as it can handle varying types of
inputs, as well as providing a high level of interpretation of
the model.
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A binary regression tree works on the principle of nested
binary partitions of the observations. All partitions are based
on single predictors and at each node in the tree a partition
is selected which optimises some metric designed to promote
similarity of predictions within each of the two child nodes.
Intuitively, a good split is one which maximally reduces
the variance of the child nodes, and for regression prob-
lems this is often captured by the residual sum-of-squares
metric.

However, binary regression trees are weak learners and
suffer from over-fitting, and so we instead use a model
consisting of an ensemble of decision trees, an approach
which is often shown to improve predictive performance [31].
Ensembles of decision trees can be used to directly interpret
(compared with deep neural networks) the influence of
each predictor on RF-EMF predictions by using feature
importance. This is crucial for understanding the individual
influence that each predictor has on RF-EMF exposure.
Ensembles of decision trees also have a faster computational
training speed than deep neural networks, with the latter
typically requiring GPUs for model training.

In this work, we use a least-squares gradient boosting
algorithm to create the ensemble, which has been shown
to improve prediction accuracy compared with random
forests [32]. For every new tree in the ensemble, the
least-squares boosting algorithm minimises the expression

1
N

N∑
i=1

(yi − ηfens(Xi))2 , (4)

where Xi, yi are the input and output training data of
observation i, withN observations in total. fens is the predicted
output from the current ensemble, and η is the learning rate.
Thus each new tree uses the weights of the previous trees to
improve the model fit. The branches and nodes of each tree
were determined using the standard CART algorithm [30].
The model has two key hyperparameters which control the

bias-variance trade-off in the ML model:
1) The learning rate, η, controls the boosting speed, and

ranges from 0 (no boosting, high bias), to 1 (maximal
boosting, high variance).

2) The minimum leaf size, lmin, which is a parameter of
fens, determines theminimum number of measurements
that a leaf of a tree in the ensemble fens can contain.
This ranges from 1 (high variance) to half the number
of observations (high bias).

To determine the optimal hyperparameters of the model,
the data was first split into a training set (containing
80 % of the measurements), and a test set (containing the
remaining 20 %). The split was performed through random
sampling, whilst ensuring a similar distribution of indoor and
outdoor configurations in both sets. A Bayesian optimisation
algorithm was performed over the hyperparameters on the
training set to minimise the 5-fold cross-validated mean
squared error (MSE) in the model. The optimisation proce-
dure consists of a Gaussian process regression (GPR) model

FIGURE 7. Bayesian optimisation of the ML model hyperparameters,
using a GPR model fitted over 30 observed points in hyperparameter
space, resulting in optimal hyperparameters (η, lmin) = (0.10, 67).

of the MSE using an automatic relevance determination
(ARD) Matérn 5/2 kernel with Gaussian noise [33]. New
observed points are determined by maximising an acquisition
function based on the posterior distribution of the GPR
model. The acquisition function avoids local minima by
modifying the kernel function when the standard deviation
of the posterior objective function becomes too small at
the observed point (implemented in Matlab R2023a using
bayesopt, Statistics & Machine Learning Toolbox). The
optimisation performed on the training data is illustrated
in Fig. 7. We observe that there is a unique and smooth
global minimum of the GPR model, which implies that the
boosted ensemble model accuracy is less sensitive to choice
of hyperparameters, and is thus a good choice of ML model
for this data.

The boosted ensemble of trees was trained (implemented
in Matlab R2023a using fitrensemble, Statistics &Machine
Learning Toolbox) using 100 trees with the optimal hyperpa-
rameters calculated in Fig. 7. To interpret the behaviour of the
model predictions, the predictor importance estimates [34],
which determines how much influence each input variable
has on the predicted RF-EMF, were calculated (implemented
in Matlab R2023a using predictorImportance, Statistics
& Machine Learning Toolbox) for each input variable
of the trained model. The algorithm computes the node
importance nii for each branch node i using the following
equation

nii = piϵi − pl(i)ϵl(i) − pr(i), ϵr(i) (5)

where pi is the probability that a training observation reaches
node i, ϵi is the MSE of node i, and l(i) or r(i) are the
left or right child node of the branch node i. The predictor
importance, pij for predictor j is then determined by averaging
the node importance across all nodes in the ensemble which
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FIGURE 8. Partial dependency plot of ML model predictions of RF-EMF
with distance d on the test dataset, by averaging over all the other
variables in Table 2.

splits on that predictor, that is

pij =

∑
i:node i splits on predictor j nii∑

i nii
. (6)

C. PHYSICS-INFORMED MACHINE LEARNING
We know from section III-A and especially from Fig. 5 that
RF-EMF is dependent on the distance from the BS to any
receivers. However, our method outlined in section III-B to
train a ML model does not correctly predict the expected 1/d
dependency (see Fig. 8) when used directly on the held-out
test data. Indeed, the boosted ensemble model predictions
have no dependency on distance for distance intervals for
which there is no training data, since the ML model only
learns from the data available. This inhibits the ability of
such models to interpolate or extrapolate the value of the
exposure when there is no available training data. One
method to solve this issue is to incorporate the distance
dependency into the ML training procedure. Incorporating
physical laws into machine learning algorithms is an active
area of current research, with the main focus on incorporating
partial differential equations (PDEs) describing physical
systems into neural networks [35], [36], [37]. Given that we
have a much simpler physical law (E ∝ 1/d) in our case,
we can take a simpler, but effective approach to adapt the
training procedure.

In general, given a set of input variables Xphys for which
the output y depends on a given physical law, and a remaining
set of input variables Xstat = X \ Xphys for which there is a
complex dependency on the output y, one can model such a
system as a function composition

y = gXphys (f (Xstat )) , (7)

where f (Xstat ) represents the unknown coefficients of the
physical law y = gXphys . If there exists an inverse g−1

Xphys over
the range of y, which holds for all values of Xphys, then we

TABLE 3. A comparison of R2 values computed using (10). The model
hyperparameters were for data-driven: (η, lmin) = (0.10, 67); and
physics-informed: (η, lmin) = (0.28, 170).

can rewrite (7) as

g−1
Xphys(y) = f (Xstat ), (8)

and train the ML model f̂ . We can then predict new values of
y through ŷ = gXphys

(
f̂ (Xstat )

)
.

In our particular example, the physics-informed model is
given by

E = gd (f (Xstat )) = f (Xstat )/d, (9)

which is invertible for d > 0 to give Ed = f (Xstat ), where
Xstat consists of all input variables described in Table 2 except
d (which is treated as an independent input). By following the
same methodology as in section III-B, the model dependency
on distance is shown in Fig. 8. It is clear that by integrating
the physical dependency of E on d , our modified model now
predicts the correct 1/d dependence, and improves the results
of the purely data-driven model for distance intervals where
there is no training data. In essence, our physics-informed
ML model does a better job at interpolating/extrapolating the
measured exposure data than the purely data-driven model.

In order to formally evaluate and compare the overall
predictive performance of both purely data-driven and
physics-informed models, we computed the coefficient of
determination, defined as,

R2 = 1 −

∑N
i=1

(
yi − ŷi

)2∑N
i=1 (yi − ȳ)2

, (10)

on the training set, 10-fold cross-validated set, and the
held-out test set. In (10), yi, ŷi, and ȳ are the measured,
predicted and mean measured RF-EMF values of observa-
tion i, respectively. An R2 value of 1 corresponds to a perfect
prediction, whereas a value of 0 would indicate that the model
is no better than a constant model. Table 3, which includes the
R2 results for both models and each type of data set, points
out that even though the physics-informed model is more
constraining than the purely data-driven model, it exhibits
similar predictive performance.

Fig. 9 compares the predictive performance of data-driven
and physics-informedmodels when performing extrapolation
and interpolation. In both cases, we divide the data into a
training data set and a test set, based on the distance dthresh.
For extrapolation, each observation i with distance, di, such
that di < dthresh, is placed in the training set, while the others
are part of the test set. For interpolation, meanwhile, a training
observation i belongs to the training set if |di − 5| > dthresh,
with the remaining observations belonging to the test set.
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FIGURE 9. A comparison of extrapolation and interpolation performance
between purely data-driven and physics-informed ML models. The
R2 values are calculated using (10) on test data. 1d̄ is the average
distance of all the test data points to their closest training data point.

The distance dthresh is then varied to determine how the
the accuracy of the interpolation/extrapolation changes with
distance. We see from Fig. 9(a) that the physics-informed
model is more robust at extrapolation than its purely data-
driven counterpart, especially for larger 1d̄ distances, since
the latter exhibits a steep drop-off in R2 performance in
this case. For interpolation in Fig. 9(b), a similar trend
can be observed, where the predictive performance of the
physics-informed model is either equal to, or greater than that
of the purely data-driven model for larger 1d̄ .

IV. RESULTS
It is clear from Section III-C that the physics-informed ML
model is preferable to a purely data-driven approach, so in this
section, we report the performance of our physics-informed
model in terms of RF-EMF exposure predictions when
trained on all of the data prepared in section III-A

FIGURE 10. Cross-validated predictions of the physics-informed ML
model against the original measured RF-EMF values, along with a perfect
fit line.

(i.e. no splitting of the data as in Table 3), with
its hyperparameters optimised accordingly. Overall, the
physics-informed model has a resubstitution R2 of 0.92 and a
10-fold cross-validated R2 of 0.86 for RF-EMF predictions,
when using the optimal hyperparameters (η, lmin) =

(0.35, 175). The model predictions shown in Fig. 10 show
that there is good predictive performance for RF-EMF values
up to 1.5 V/m (which contains the bulk of the data), but the
model tends to underestimate the RF-EMF for larger values,
where there is less training data available.

One of the key advantages of our mMIMO beamforming
testbed compared to commercial 5G BSs measurements is
the fact that it can measure RF-EMF exposure for various
varying factors, as already explained in Section III-B. Fig. 11
determines the importance of each factor/input variable
in predicting RF-EMF exposure. The results show that,
as expected, the number of beams, beam angle, and number of
transmit antennas are the most important factors influencing
RF-EMF exposure. This is a useful validation that the model
predictions follow physical intuition. However, the predictor
ranking gives additional insights that are less expected. The
choice of modulation scheme in each beam is of similar
importance to the number of resource blocks in determining
RF-EMF exposure. It also shows that indoor and outdoor
environments, and proximity of different receiving antennas,
have far less impact on RF-EMF exposure than the other
variables under consideration.

To analyse the sensitivity of the RF-EMF exposure to
variation in a subset of the input variables, we compute the
partial dependence as defined in (11). Let XS be a subset of
the whole predictor variable set X , and XC be its complement
set, i.e. XC = X \ XS , then, the partial dependence f̂ S using
observed data is given by

f̂ S
(
XS

)
≈

N∑
i=1

f̂
(
XS ,XCi

)
, (11)
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FIGURE 11. Normalised predictor importance scores calculated using (8),
with variable descriptions given in Table 2. The predictor importance
scores for 1θ , MCS and NRB are averaged over the scores for each beam.

when assuming that each observation i = 1, . . . ,N is equally
likely, and where f̂ is the trained physics-informed ML
model. Note that the data used to compute (11) is generated by
uniformly sampling each predictor variable over the ranges
given in Table 2.
Fig. 12 and 13 depict the partial dependence of RF-EMF

over two variables at a time. We observe an expected clear
peak in RF-EMF exposure when |1θ1| = 0◦ (where all
other beam angles are averaged), as well as an increase
in RF-EMF exposure with NRB and Nbeams. However,
Fig. 13(b) and 13(c), also show opposing effects of NRB and
Nbeams with beam angle. Namely that for small |1θ1| values,
i.e. when the receiver is in the general direction of a beam, RF-
EMF exposure is more dependent on NRB than the number
of beams, whereas for larger |1θ1| values, it is the other way
round.

The benefit of the physics-informed ML model described
in section III-C is the ability to predict RF-EMF exposure
outside the range of training data. This enables a spatial map
to be generated of RF-EMF exposure under different beam
configurations. In Fig. 14 we show heatmaps of the average
exposure predictions for different number of uniformly
sampled input variables (beam configurations). The heatmaps
can be interpreted as a time-average of RF-EMF exposure
for varying number of users, resource blocks, modulation
scheme etc. We see that for small numbers of configurations,
the directions of the beams have a large impact on average
exposure variation with direction, whereas for large numbers
of configurations, the RF-EMF exposure predictions become
isotropic (uniform in direction). This isotropy is built in to
the ML model through considering |1θ | (and not θant ) as
model input. However, the high predictive performance of
the model on the test data shown in Table 3 suggests that the
original experimental data was close to isotropic, and so the
heatmaps in Fig. 14 also validate that the ML model is giving
the expected predictions.

FIGURE 12. Partial dependence plots of model predictions of a variable
against distance from BS d , using (11).

Even though the the RF-EMF exposure is considered to
be more statistical/stochastic in 5G, Fig. 14(d) indicates
that the exposure becomes more deterministic, as in 4G,
when we look at its spatial-temporal average. This could
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FIGURE 13. Partial dependence plots of model predictions for two
variables, using (11). d = 1 m in all cases.

have an impact on the definition of the BS exclusion zone,
which was traditionally based on the effective isotropic
radiated power (EIRP). For instance, based on the results of

FIGURE 14. Heatmaps of average RF-EMF exposure using ML model
predictions on a random sample of input variables. The mMIMO BS is
located at (0,0) m. Input values for |1θ | and d are calculated for each grid
point using (3). Grid points are spaced every 0.2 m in x and y directions.

Fig. 14(a) and 14(d), the radiated power within the single
beam in Fig. 14(a) is more than two times larger than the
radiated power averaged over multiple beams in Fig. 14(d).
Given that the BS exclusion distance is based on the
square-root of the EIRP, it can result in a difference of more
than 40 % if this distance is set according to Fig. 14(a)
and 14(d). In that sense, by using our ML method in
conjunction with measurement data, we can predict the
spatial-time average exposure around a BS and, it turn, use
this data to define a less stringent BS exclusion zone.

V. CONCLUSION
In this paper we propose a novel interpretable and general-
isable physics-informed ensemble of decision trees model,
trained on real-world experimental data, for evaluating the
RF-EMF exposure of 5G BSs. The physics-informed model
exhibits high predictive performance, with a cross-validated
R2 of 0.86, which is comparable in accuracy to other ML
models presented in the literature, even though the model
is more constrained by the physical law. The model has
the additional ability to extrapolate beyond the training data
to predict the level of exposure at distances further from
the BS. Such a model architecture could also be used for
predicting the RF-EMF exposure of 6G systems, by taking
into account other propagation aspects related to higher
frequency transmission.

The model predictions show that the number of transmit-
ters, beam angle, and number of virtual users have the greatest
effect on RF-EMF exposure. The predictions also show that
number of resource blocks and modulation scheme have
less influence on RF-EMF exposure, with the environmental
setting having the least influence. Model predictions also
show that as the number of beam configurations becomes
large, the RF-EMF exposure becomes isotropic (due to
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statistical averaging of large numbers), essentially following
the Friis formula in all directions. This can help to simplify
the exposure measurement methodology of 5G systems.
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