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ABSTRACT This study introduces a hierarchical key assignment scheme (HKAS) based on the closest
vector problem in an inner product space (CVP-IPS). The proposed scheme offers a comprehensive solution
with scalability, flexibility, cost-effectiveness, and high performance. The key features of the scheme include
CVP-IPS based construction, the utilization of two public keys by the scheme, a distinct basis set designated
for each class, a direct access scheme to enhance user convenience, and a rigorous mathematical and
algorithmic presentation of all processes. This scheme eliminates the need for top-down structures and
offers a significant benefit in that the lengths of the basis sets defined for classes are the same and the
costs associated with key derivation are the same for all classes, unlike top-down approaches, where the
higher class in the hierarchy generally incurs much higher costs. The scheme excels in both vertical and
horizontal scalability due to its utilization of the access graph and is formally proven to achieve strong key
indistinguishability security (S-KI-security). This research represents a significant advancement in HKAS
systems, providing tangible benefits and improved security for a wide range of use cases.

INDEX TERMS Hierarchical key assignment, access control, closest vector problem, inner product space,
access graph, strong key indistinguishability.

I. INTRODUCTION
Access control involves the authorization and restriction of
assets based on business and security objectives. Access
control processes refer to the need to control subject-to-object
access. The access control problem arises from problems
with authorized users accessing critical data. Hierarchically,
users are organized into different groups (classes) to mediate
access between subjects and objects. Some subjects have
more privileges than others, and some objects contain more
critical data, thus requiring increased security measures.
For example, in the context of database access, consider a
scenario involving two distinct roles: Database Administrator
and Marketing Analyst. The Database Administrator, rep-
resented by X , has extensive permissions for the financial
database. X possesses both read and write access to all tables,
allowing him to retrieve data and change them as needed
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when generating financial reports. However, the situation
differs for Y , a Marketing Analyst. Y ’s role is limited to
marketing-related tasks and responsibilities. Consequently,
she has been assigned read-only access specifically to
marketing-related data in the database. This access restriction
prevents her from accessing any financial data or generating
financial reports.

Implementing and managing access control mechanisms
involves establishing and overseeing systems that regulate
user access to objects based on defined policies. This
process ensures that only authorized entities are granted
appropriate permissions to access specific objects or perform
certain actions. Effective implementation and management of
authorization mechanisms are crucial for maintaining secu-
rity and controlling data integrity within an organization’s
information systems.

Themain objective of an access control system is to protect
system resources from access by unauthorized users. This
is achieved by implementing policies and technologies that
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restrict access to systems and resources to those authorized
to do so. This is critical to maintaining the confidentiality,
integrity, and availability of sensitive information. Access
control systems can range from simple password-based
mechanisms to more complex solutions with biometric
authentication and cryptographic key management. They are
an essential part of an organization’s security framework,
helping to prevent data breaches, protect against insider
threats, and ensure compliance with various regulatory
requirements. By effectively managing who can access which
resources and under what conditions, access control systems
play an important role in securing an organization’s digital
and physical assets.

Hierarchical key assignment schemes are a crucial compo-
nent of access control, aiming to offer a secure and efficient
method of managing keys in a structured environment.
By implementing hierarchical key management, we ensure
the confidentiality, integrity, and availability of data in a
manner that is both stringent and adaptable. This approach
allows only authorized individuals to access the data,
effectively safeguarding it.

HKASs involve defining public information for the entire
scheme, along with private information specific to each class
within the hierarchy. Utilizing this blend of private and public
information, a user in a given class can effectively compute
their own unique secret key and the keys for classes at
lower levels in the hierarchy. This structure ensures controlled
access while maintaining the integrity of the hierarchical
access model.

In particular, hierarchical key assignment schemes play a
vital role in various fields where access control is of utmost
importance, and hierarchical structures naturally exist. This
includes domains like cloud computing, organizational data
access, healthcare systems, multilevel databases, the Internet
of Things (IoT), and the coordination of drone swarms.
For instance, in the context of cloud computing, due to
the inherently multi-tiered structure of cloud access and the
diverse responsibilities of cloud users and administrators,
employing a hierarchical key assignment method is well
suited. Hierarchical key assignment schemes offer specific
advantages tailored to cloud computing, such as scalability,
enhanced security, efficient key management, and adaptable
access delegation. This comprehensive approach ensures that
the data is protected effectively and efficiently.

This work introduces a comprehensive generic hierarchical
key assignment scheme that is applicable to cloud computing
environments and emphasizes scalability, flexibility, cost-
effectiveness, and high performance. If implemented for the
cloud, it can address critical concerns related to data access
policy integration, potentially offering a valuable solution
for organizations considering the transition to cloud-based
storage services.

II. RELATED WORKS
The study by Akl and Taylor [2] proposed a crypto-
graphic method to manage access control within hierarchical

structures. This approach organizes users into distinct, non-
overlapping classes, denoted asC1,C2, · · · ,Cn, and arranges
these classes in a partially ordered set (poset), assigning
specific security levels to each class. Within this poset,
users belonging to a particular class are granted access to
data controlled by users in the same or lower-level classes.
Importantly, the scheme’s design effectively prevents users at
lower security levels from accessing data in classes of higher
security levels, thereby ensuring a secure access control
mechanism. Despite its advantages, the scheme presents
certain challenges. Users at higher levels must manage
numerous cryptographic keys, leading to complicated key
management problems. Furthermore, the model cannot solve
broader security problems at multiple levels, such as the
protection and management of classified information.

Following the seminal work of Akl and Taylor, numerous
hierarchical key assignment schemes have been proposed.
These include [3], [4], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [17], [18], [19], [21], [22], [24], [25], [26], [29],
[30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [41].
Our analysis places particular emphasis on a select group
of schemes deemed especially significant, which are [22],
[26], [29], [30], [31], [32], [33], [34], [35], [36], [37], [39],
and [41]. These schemes are integral to our comparison
table and are thoroughly and comparatively analyzed in
subsection V-C.

In addition, in the following, brief summarizing informa-
tion will be provided about some other schemes selected from
those referenced above but not included in the comparison
table. These additional details will contribute significantly
to understanding the wide diversity in the literature and
assessing the originality of our work.

In [10], a novel heuristic algorithm for cryptographic
key allocation in tree structures is introduced, improving
multilevel data security and minimizing key sizes. In this
scheme, which employs a top-down approach, user groups
are represented through a tree structure [11]. The scheme
requires further development to enable the addition of new
users with minimal key changes. The study in [11] allows
the algorithm introduced in [10] to be used alongside a
poset structure, enhancing its application beyond the original
tree-based framework. In this scheme, higher-level users can
derive keys of lower-level users from their own cryptographic
keys; however, the reverse is not allowed. Both approaches
effectively address the collusion (collaborative/key recovery)
attacks, a prevalent issue in many past HKASs. According
to [28], both schemes have trade-offs between the amount of
public and private information and the complexity of the key
derivations.

The work by [13] introduced a time-bound HKAS based
on a poset for hierarchical structures, and also presented two
practical applications for this scheme. The first application,
secure broadcasting, entails broadcasting data exclusively to
authorized users, ensuring that each recipient can access only
the information designated for them. The second application,
cryptographic key backup, involves creating a cryptographic
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key backup system, which refers to the secure method of
keeping cryptographic keys so that they can be recovered
in case the original keys are lost, damaged, or otherwise
compromised.

In this study, each class Ci is assigned a series of distinct
keys for different time periods, denoted as Ki,t . This implies
that a user will have access to the keys of their class or
its subclasses during a specific period of time. Furthermore,
it allows users to join a class for a designated duration. A user
belonging to class Ci can compute Ki,t in the time period
specified by the start (t1) and the end (t2). Similarly, a user
can also compute Kj,t if Cj ≤ Ci and t1 ≤ t ≤ t2. The
size of the private information that needs to be stored to
derive class keys is independent of both the total number of
classes and the size of the time period. However, the scheme
is computationally inefficient because it involves expensive
public key computation (operations) to derive class keys [18].
The work by [18] is based heavily on [13] and utilizes

a tamper-resistant device for its construction. The number
of public parameters, the computational complexity required
for key derivation, and the implementation cost used by [18]
have been significantly improved compared to [13]. Within a
specified time period, a user from a higher class can derive
the key of the lower classes from their own key. In [18],
the cost of the key derivation is highly dependent on the
complexity of the hash operations, while in [13], the cost
of the key derivation increases directly proportional to the
complexity of modular exponentiation and the calculations of
the Lucas function. The studies [13] and [18] are considered
insecure against collusion attacks according to [16] and [20]
respectively.

The schemes designed in studies [21], [24], and [25] are
based on elliptic curve cryptography (ECC), which generally
offers similar security levels with smaller key sizes and
lower computational cost compared to classic public-key
cryptography such as RSA and others [21]. According
to [30], the key derivation cost of the scheme [21] is lower
than [25], and the scheme [21] is not secure against a
compromising attack. The scheme in [24] is time-bound and
the number of encryption keys is determined by the number of
access control policies. Similar to [18], scheme incorporates
a tamper-resistant device. In addition, according to [27],
scheme is insecure against collusion attacks. As the number
of classes in the hierarchy increases, the number of public
keys used by [24] will be greater than those used by [13]
and [18], and the scheme of [24] is slower than [18].

Our proposed scheme makes significant contributions to
the literature in the following ways.
• We introduce and utilize the CVP-IPS as an extension
of the standard CVP (CVP-Lattice). One of the most
important advantages of the presented scheme is its
effectiveness and the ability to be implemented on small
devices such as mobile phones, smart cards, etc.

• There are two public keys pub=(f1, f2) for the entire
scheme, and the dynamic update procedures KeyRe-
vocate, KeyRollover, ClassReInitialize, ClassInsertion,

ClassDeletion, UserInsertion, UserDeletion (see
Algorithm 4) do not require changing the public keys.

• In our scheme, we define different basis sets of the same
length for each class. Additionally, no public or private
information is defined for the edges that constitute the
access graph.

• A user who is a member of a class within the hierarchy
can access both the secret keys of their own class and
those of other classes below it in the hierarchy with a
single lightweight computation (direct access scheme).

• All processes included in the scheme are fully presented
mathematically and algorithmically.

A crucial aspect of our proposed scheme is its robust
vertical and horizontal scalability, due to the access graph
utilized. With a formal security proof, the suggested tech-
nique also achieves strong key indistinguishability security
(S-KI-security).

III. PRELIMINARIES
A. INNER PRODUCT SPACE
An inner product space V is a vector space over a field F ,
where F can be real numbers R or complex numbers C. The
space is equipped with an inner product, which is a function
< u, v >: V × V → F that maps each pair of vectors
u, v ∈ V to a scalar in F . This function must satisfy certain
properties, including linearity in the first and the second
arguments, conjugate symmetry, and positive definiteness.
An inner product allows discussion of the orthogonality of
vectors, projections, and other geometric concepts within a
space [41].

The inner product space currently serves as the foundation
for various cryptographic algorithms and protocols. It pro-
vides a useful mathematical framework for the development
of cryptographic protocols and is a crucial instrument
to ensure the security of contemporary communication
systems. Inner product space-based cryptographic schemes
that are widely researched include inner product encryption
(IPE), inner product functional encryption (IPFE), inner
product signature (IPS), linearly homomorphic encryption,
cryptographic hash functions, bilinear pairings, public key
encryption, attribute-based encryption, and so on.

B. CLOSEST VECTOR PROBLEM (CVP)
The Closest Vector Problem (CVP) is a computational
problem in lattice-based cryptography. A lattice is a geo-
metric structure consisting of points in an n-dimensional
Euclidean space that are organized in a periodic and repeating
pattern [15]. The CVP has several versions (variants) that
arise depending on the constraints introduced, including
search, optimization (or approximative), and decision CVP.
Within any constant factor or even some slowly increasing
subpolynomial function of dimension n, CVP is known
to be approximately NP-hard to solve [1], [15]. Many
cryptographic systems rely on CVP and its variants because
of its hardness, including lattice-based public-key encryption,
digital signatures, fully homomorphic encryption (FHE),

70570 VOLUME 12, 2024



I. Celikbilek et al.: HKAS: A Unified Approach for Scalability and Efficiency

identity-based encryption (IBE), attribute-based encryption
(ABE), post-quantum key exchange, etc.

CVP-IPS can be viewed as an extension of a specific
instance of CVP-Lattice. It is important to note that with
CVP-IPS, unlike the standard form of CVP-Lattice, the basis
set is not open to the public.
Definition 1 (CVP-IPS): Let V be an inner product space,

preferably of infinite dimension, and let W be a subspace
of V , without any specified basis. Given a vector f ∈ V such
that f ̸∈ W , finding a unique vector f ∗ ∈ W that is closest
to f ∈ V is called CVP-IPS, which provides information-
theoretic security.

Given a basis B = {w1,w2, · · · ,wn} for the subspace W ,
the Gram-Schmidt algorithm can be employed to convert B
into an orthogonal basis B′ (also an orthonormal basis B′′).
For given f and B′′, we can always find a unique f ∗ ∈ W
closest to f ∈ V . The unique vector is calculated by the
projection of f onto the subspaceW ;

f ∗ = projW (f ) =
n∑
i=1

⟨f ,w′′i ⟩w
′′
i

where ⟨, ⟩ inner product. On the other hand, if no basis set
of the subspace W is known, we can not find f ∗. It can be
shown that CVP-IPS provides information-theoretic security
since obtaining the subspace W with only partial knowledge
(without all members of the basis set) is computationally
infeasible.

IV. THE PROPOSED SCHEME
In this section, the general structure, mathematical basis,
symbols, syntax, and phases of the hierarchical key assign-
ment scheme are explained in detail.

A. GENERAL STRUCTURE AND DEFINITIONS
Assume that a system’s users fall into a number of distinct sets
(groups), and each group will be referred to as a class. Let the
set of classes be C =

⋃c
i=1 Ci with c = |C| ≥ 1 and C1 be

the most privileged (root) class in the hierarchical access
structure.

In our scheme, a partially ordered set (poset) is used as
the representation of the hierarchy. Assume that (C,≥) is a
poset and the meaning of Ci ≥ Cj in (C,≥) is that Ci one
of the ancestor classes of Cj, the users in Ci have a security
clearance (classification) level higher than or equal to those
in Cj. Any poset (C,≥) can be represented by an access graph
G = (C,E), where each class in C corresponds to a vertex in
G. From the point of view of the access graph, there can be
one or more directed paths from Ci to Cj, but the length of
each directed path must be equal. For example (see Figure 1),
there are two directed paths (C1,C2,C5),(C1,C3,C5) from
C1 to C5 with the same length. In terms of our access graph,
the notation Ci ≥ Cj means that there is at least one directed
path from Ci to Cj.
Let us assume that an access graph is demonstrated in

Figure 1. Each vertex (node) represents a distinct class Ci,

FIGURE 1. Access graph based on partially ordered set (poset).

which has a unique secret key Ki. In the access graph, the
depth of a class Ci is its distance from C1, and classes with
the same depth have the same security level. We define two
functions [26] Anc(Ci), Desc(Ci), the set of ancestors and
descendants classes of Ci, as follows.

Anc(Ci) = {Cj ∈ C|Cj ≥ Ci}
Desc(Ci) = {Cj ∈ C|Ci ≥ Cj}

Let V be an inner product space, preferably of infinite
dimension, over R. Given that there are uncountably many
n-dimensional subspaces in V , we can generate a unique
subspace Wi = span(Bi) with dim(Wi) = |Bi| = n for each
class Ci. Let us define B =

⋃c
i=1 Bi,W =

⋃c
i=1Wi such that

Bi = P ∪ Si, Wi = span(Bi). We note that Bi ̸= Bj, Wi ̸= Wj
for all i ̸= j and Wi ⊂ V for i : 1, · · · , c. The length of each
basis set Bi ∈ B is the same, that is, |Bi| = n for i : 1, · · · , c.
This is due to the fact that it guarantees that the method
we provide is scalable and efficient, unlike top-down key
assignment schemes. Additionally, the computational cost
of key derivation remains constant regardless of how many
classes there are in the hierarchy.

Each basis set Bi ∈ B is a union of two subsets Bi = P∪Si
where |Si| = s, |P| = n−s, Si ̸= Sj, Si∩Sj = {}, for all i ̸= j.
It can be stated that the linear independence of all vectors in
the set Bi and S =

⋃c
i=1 Si holds true. If descendants classes

of Ci or other classes that are at the same security level as
Ci collaborate to gain access Ki, they would have to learn
a unique Si that belongs to Ci which is a computationally
infeasible task.

Let 0 be a set of access graphs corresponding to partially
ordered sets (hierarchies); a hierarchical key assignment
scheme can be defined as follows.
Definition 2: A hierarchical key assignment scheme for

0 consists of two polynomial-time algorithms (Gen, Der)
such that:

1) Gen(1ρ,G) is a probabilistic information generation
algorithm, executed by the data owner. It takes as input
a security parameter 1ρ(i.e., written in unary) and a
graph G = (C,E) ∈ 0 and produces:
• For each class Ci ∈ C
– a private information Bi = P ∪ Si
– a key Ki ∈ {0, 1}ρ
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• A public information pub = (f1, f2)

The output of Gen(1ρ,G) is denoted as (B∗,K∗, pub),
where B∗ represents private information, and K∗ is a
secret key.

2) Der(1ρ,G,pub,

uix−secrets︷ ︸︸ ︷
Bi,∪Cj∈Desc(Ci)Sj) is deterministic

key derivation algorithm, executed by uix (x th user of
Ci). It takes as input 1ρ(the security parameter), a graph
G, public information pub, and a user uix ∈ Ci. The
last parameter of the algorithm is optional. The return
values of the algorithm are as follows.

Der(1ρ,G, pub,Bi) = Ki
Der(1ρ,G, pub,Bi, Sj) = Ki,Kj iff Ci ≥ Cj
Der(1ρ,G, pub,Bi, Sj) =⊥ (rejection), others.

The scheme we suggest assumes that group users will
receive private key components in a secure manner. In this
study, we focus on how uix ∈ Ci in a hierarchical structure can
securely and effectively calculate both the Ki and the Kj (iff
Ci ≥ Cj). In this respect, the algorithm for the distribution of
key components to relevant users is not included in the formal
definition of our HKAS.

B. SYSTEM-PREPARATION AND DISTRIBUTION PHASE
The preparation and distribution processes for the system are
thoroughly described in Algorithm 1. In addition, Figure 2
offers a concise overview of the preparation and distribution
phase. The data owner (u11) is a member of class C1 (root,
most privileged) and all operations in Algorithm 1 can only
be executed by u11. Public information, consisting of two
vectors, pub=(f1, f2) produced by Algorithm 1 (stat. 10,
procedure fVector) is set to public for all users in the access
hierarchy (u∗∗). The scheme we propose does not include any
key distribution center (KDC) or trusted third party (TTP).

To create the set P , Algorithm 1 randomly picks (n − s)

linearly independent vectors from V (syntax:
$
←−−−
(n−s)

), see

Algorithm 1 (stat. 3).
For each class Ci ∈ C, see Algorithm 1 (stat. 5-9):

• A unique basis set Bi is constructed (stat. 5,6) and
securely distributed to all users of the Ci (ui∗)(stat. 8).

FIGURE 2. Illustration of algorithm 1, SPD: system preparation and
distribution.

• A unique Si is securely distributed to users of the classes
in the Anc(Ci), see Algorithm 1 (stat. 9, procedure
DistributeSecret).

At the end of the distribution process, each user of class Ci
has the sets Bi(P, Si) and

⋃
Cj∈Desc(Ci) Sj. Furthermore, since

u11 ∈ C1 and C1 ≥ Ci for all i : 2, · · · , c, u11 will have P ,
S =

⋃c
i=1 Si. Let us symbolize the set S owned by u11 as

Su11 to use in Algorithm 4 (dynamic update process).

Su11 = {C1 : S1,C2 : S2, . . .},Su11 [Ci] = Si

where Su11 is a dictionary (or mapping), that is, Su11 is an
unordered set that maps Ci(key) to Si(value).

Algorithm 1 System-Preparation and Distribution
Processes
Input:

1 G = (C,E) s.t C =
⋃c

i=1 Ci and u∗∗
2 V, n, s = 1(default)
Proc DistributeSecret(Ci):

for Cj in Anc(Ci) do
distribute securely Si→ uj∗

Proc fVector():
(f1, f2)

$
← V , (f1, f2 /∈ W1, · · · ,Wc)

publish (f1, f2)
Initialization:

3 P $
←−−−
(n−s)

V

4 for i = 1 to c do

5 Si
$
←−
s
V

6 Bi = P ∪ Si
7 Wi← span{Bi}
8 distribute securely Bi(P, Si)→ ui∗
9 DistributeSecret(Ci)

10 fVector()

C. KEY DERIVATION PHASE
The key derivation process, which involves a concise set
of linear operations, is described in detail in Algorithm 2
(and see Algorithm 3) and is illustrated in Figure 3. Initially,
a set of vectors Bi is transformed into an orthonormal set B⊥i
using the Gram-Schmidt procedure. Subsequently, the first
public vector f1 is projected onto the subspace Wi, yielding
a resultant vector f ∗(1,i). The key derivation is completed by
computing the inner product of f ∗(1,i) with the second public
vector f2, thus producing the unique key Ki. The key Ki is not
a vector in the subspaceWi; rather, it is a scalar value derived
without revealing any properties ofWi, which we aim to keep
secret. This ensures that the key itself does not disclose any
information about the subspaceWi.

Any user uix ∈ Ci can execute Algorithm 2 (and
Algorithm 3) and effectively derive Ki, see Algorithm 2 (stat.
3,4,5,12). Besides, if Cj ∈ Desc(Ci) then uix can also derive
Kj, see Algorithm 2 (stat. 7-10). If Cj /∈ Desc(Ci) then uix
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FIGURE 3. Illustration of algorithm 2, KD: key derivation.

unable to derive Kj due to the lack of Sj, see Algorithm 2
(stat. 11). Since V contains infinite subset of length |Sj|(or s),
it is computationally impossible to obtain Sj. This is where the
security of the key assignment scheme we propose is based.

Algorithm 2 Key Derivation Process
Input:

1 a user uix ∈ Ci : Bi(P, Si),
⋃

Cj∈Desc(Ci) Sj
2 public information pub= (f1, f2)
Key Derivation:

3 B⊥i ← [Algorithm 3].GramSchmidt(Bi)
4 f ∗(1,i)← [Algorithm 3].Projection(f1,B⊥i )
5 Ki← ⟨f ∗(1,i), f2⟩
6 if Cj ∈ Desc(Ci) then
7 B⊥j ← [Algorithm 3].GramSchmidt(P ∪ Sj)
8 f ∗(1,j)← [Algorithm 3].Projection(f1,B⊥j )
9 Kj← ⟨f ∗(1,j), f2⟩
10 return (Ki,Kj)

else
11 return (Ki,⊥)

12 return Ki

Algorithm 3 GramSchmidt and Projection Procedures

1 : Proc GramSchmidt(B∗):
#B∗ = {w1,w2, . . . ,wn}
w′1 = w1; w′′1 =

w′1
∥w′1∥

for i = 2 to n do

w′i = wi −
∑i−1

j=1

〈
wi,w′j

〉
〈
w′j,w

′
j

〉w′j
w′′i =

w′i
∥w′i∥

return B⊥∗ =
{
w′′1,w

′′

2, . . . ,w
′′
n
}

2 : Proc Projection(f1,B⊥∗ ):
return

∑n
i=1⟨f1,w

′′
i ⟩w
′′
i

D. DYNAMIC UPDATE PHASE
In this section, we discuss the properties of dynamic
key management, including key revocation, key rollover,
adding/deleting new/existing classes, and users in the hierar-
chical structure. The most important feature of our scheme

is that it performs all dynamic update operations, which
is presented in Algorithm 4, with minimum computational
complexity and space requirement by providing forward and
backward secrecy properties. It is important to note that all
the procedures in Algorithm 4 can only be executed by u11.

The ClassReInitialize procedure (in Algorithm 4), which
comprises a call statement 3.1 and a compound statement 3.2,
is defined to reinitialize an existing class (calculating new
Si,Bi forCi). Statement 3.1 initiates the revocation procedure
forKi of classCi. With statement 3.2, Si,Bi are created for the
class Ci to be reinitialized, and Wi is constructed. Bi is then
securely distributed to ui∗.

1) KEY REVOCATION
Key revocation is the process of invalidating or deactivating a
cryptographic key (or key components) and is a crucial com-
ponent of a hierarchical key assignment scheme. A class’s
secret key may need to be revoked for a number of reasons:
compromise, end of lifecycle, policy changes, change in
access control, or other reasons.

In our proposed scheme, Algorithm 4 includes the
KeyRevocate procedure for the key revocation process.
The discussion will not focus on the method of revocating the
class key (see Algorithm 4 stat. 1.1), as it is directly related
to the implementation of the scheme.

2) KEY ROLLOVER
The process of generating and using a new key instead
of an existing one is known as key rollover (or rotation).
A lightweight key rollover process is required to maintain
the security and integrity of a hierarchical key assignment
scheme. The KeyRollover procedure is part of Algorithm 4
with two statements (2.1, 2.2), which are call statements that
execute the ClassReInitialize and [Algorithm 1]. DistributeS-
ecret procedures, respectively, for Ci. With statement 2.2, the
Si is distributed securely to the users of all classes in Anc(Ci).
Operations on classes or users and key rollover do not

require modification of the public information pub=(f1, f2).
If the pub must be modified for some reason, the
[Algorithm 1].fvector() proceduremust be executed. It should
be noted that in this scenario, all Ki for i : 1, · · · , c will be
changed.

3) ADDING A NEW CLASS OR USER
The ClassInsertion and UserInsertion procedures, respec-
tively, in Algorithm 4 allow the addition of a new class or user
to the hierarchical structure. The ClassInsertion procedure
consists of 3 statements (4.1, 4.2, 4.3). With compound
statement 4.1, Si,Bi are created for the class Ci to be newly
created, andWi is constructed. Bi is then securely distributed
to ui∗. With statement 4.2, Si is distributed securely to users
of all classes in Anc(Ci). Finally, with statement 4.3, Sj sets of
all classes in Desc(Ci) are obtained and distributed securely
to ui∗.
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Let us consider Figure 1 and add the new class Ci to the
hierarchy as follows.

[Algorithm 4].ClassInsertion(Ci,

Anc(Ci)︷︸︸︷
{C1} ,

Desc(Ci)︷ ︸︸ ︷
{C2,C4,C5})

The UserInsertion procedure consists of two compound
statements (6.1, 6.2). With statement 6.1, Si is distributed
securely to the user uix to be added to the Ci class. In the
following for statement (6.2), Sj of each Cj ∈ Desc(Ci) is
obtained and distributed to uix securely.

4) DELETING AN EXISTING CLASS OR USER
Similarly, Algorithm 4 includes the ClassDeletion and
UserDeletion procedures, respectively, to delete an existing
class or user from the hierarchy. There are recursive call
statements in both procedures (see stat. 5.2, 5.3, 7.3, 7.4).
For example, the 5.2 recursive call statement means that
the ClassReInitialize procedure will be executed for each
Cj ∈ Desc(Ci). On the other hand, ClassInsertion and Class-
Deletion procedures require updating the access graphG. For
readability and simplicity, the update of the access graphG is
not included in the relevant procedures.

Algorithm 4 Dynamic Update Procedures

1 : Proc KeyRevocate(Ci):
1.1 revocate Ki

2 : Proc KeyRollover(Ci):
2.1 ClassReInitialize(Ci)
2.2 [Algorithm 1].DistributeSecret(Ci)

3 : Proc ClassReInitialize(Ci):
3.1 KeyRevocate(Ci)
3.2 Algorithm 1 stat. : 5-8

4 : Proc ClassInsertion(Ci,Anc(Ci),Desc(Ci)):
4.1 Algorithm 1 stat. : 5-8
4.2 [Algorithm 1].DistributeSecret(Ci)
4.3 for Cj in Desc(Ci) do

distribute securely Su11 [Cj]→ ui∗
5 : Proc ClassDeletion(Ci):

5.1 KeyRevocate(Ci)
5.2 ClassReInitialize∗(Desc(Ci))
5.3 [Algorithm 1].DistributeSecret∗(Desc(Ci))

6 : Proc UserInsertion(uix ,Ci):
6.1 distribute securely Su11 [Ci]→ uix
6.2 for Cj in Desc(Ci) do

distribute securely Su11 [Cj]→ uix
7 : Proc UserDeletion(uix ,Ci):

7.1 ClassReInitialize(Ci)
7.2 [Algorithm 1].DistributeSecret(Ci)
7.3 ClassReInitialize∗(Desc(Ci))
7.4 [Algorithm 1].DistributeSecret∗(Desc(Ci))

V. EXPERIMENTAL RESULTS
We implemented the proposed hierarchical key assignment
scheme on a computer running Macintosh OS Ventura,

equipped with a 3.2 GHz 6-Core Intel Core i7 processor
and 16GBof 2667MHzDDR4memory. The implementation
was done using the C++ programming language in the
Xcode IDE (version 14.3). Below is a brief description of the
algorithms.

Algorithm 1. The system-preparation and distribution
processes. The inputs of Algorithm 1 (in the implementation)
are selected as (V = Rm, n, s = 1) with m > n and the
dot product is used as the inner product. Algorithm 2. Key
derivation process, Algorithm 3. Gram-Schmidt and Projec-
tion procedures, Algorithm 4. Dynamic update process.
In this section, the results of the performance and

security analysis and comparison with other schemes are
given. The experimental results show that the proposed
scheme is scalable, flexible, and cost-effective in terms of
key-derivation and dynamic update phases.

A. PERFORMANCE ANALYSIS
As with many other cryptographic schemes, the efficiency
of a hierarchical key assignment scheme is evaluated based
on the public-private storage need and the computational
complexity of the key derivation and key rollover processes.

In our scheme, all vectors, including (f1, f2), are all
elements of V (equivalent to Rm) and have m components,
namely ∀w∗, f1, f2 ∈ Rm. To comprehensively convey
the requirements for both public and private storage and
to facilitate precise comparisons with other schemes, let’s
assume that all vectors in the scheme are represented by ρ

(security parameter, see Definition 2) bits, just like the secret
keys of classes.

1) PUBLIC STORAGE

There are two public keys f1, f2
$
← V , (f1, f2 /∈ W1, · · · ,Wc)

for the entire scheme (see [Algorithm 1].fvector procedure).
Therefore, the public storage need of our scheme is 2ρ bits.

2) PRIVATE STORAGE
Each user uix ∈ Ci must keep the basis Bi and

⋃
Cj∈Desc(Ci) Sj

as private. Let’s assume that |Bi| = n, |Si| = s, |P| =
n − s, |Desc(Ci)| = α, the number of vectors to be stored
secretly/privately by each uix is n+α∗s. If the default value of
1 is used for the parameter s, the result is the need for private
storage (n+ α). As a result, the bit length of the private data
that each user should keep secret is (n+ α)ρ.

3) KEY DERIVATION TIME COMPLEXITY
Since ∀Bi ∈ B, |Bi| = n, the cost of key derivation will be
the same for all users, regardless of the class of a user within
the hierarchy. In other words, the computational cost of the
key derivation depends on the n (and also m) rather than the
hierarchy’s number of classes (namely c) or the security level
(depth in G) of the classes.

The key derivation process, Algorithm 2, requires
Gram-Schmidt orthogonalization ([Algorithm 3].Gram-
Schmidt), orthogonal projection ([Algorithm 3].Projection)
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FIGURE 4. System-preparation time cost consumed by u11, default
value(s): m = 280 (V = R280) and s = 1.

procedures, and ultimately, the computation of the inner
product. The sum of the complexity of these three steps
creates the time complexity of the key derivation for any Ci.
Let’s denote the total number of multiplications with M ,

the number of divisions with D and the number of inner
products with I .

M :
n∑
i=2

(i− 1)+ n =
n(n+ 1)

2
multiplications,

D : 1+
n∑
i=2

i =
n(n+ 1)

2
divisions,

I : 1+
n∑
i=2

(2(i− 1)+ 1)+ n+ 1 = n2 + n+ 1

inner products.

In conclusion, for a user uix ∈ Ci, key derivation
complexity of one of Ki or Kj, iff Cj ∈ Desc(Ci), is O(n2).

The results of the implementation (or simulation) were
derived from the scenarios shown in Figures 4 and 5.
The first scenario (Figure 4) illustrates the relationship
between the number of classes (c), the length of the basis
sets (n), and the time (measured in milliseconds) required
for system preparation—referred to as the generation of
all keys. The time necessary for the distribution process,
as described in Algorithm 1 (stat. 8,9), was not studied.
This is because it largely depends on the specific imple-
mentation of the scheme, especially in terms of distribution
methods.

Figure 5 (the second scenario) shows how the length of the
basis sets (n) and (m) such that V = Rm affects the cost of
the key derivation procedure. The cost of key derivation is
a crucial consideration for HKA schemes. When examining
the simulation results, we conclude that our proposed scheme
can be applied effectively in real-time HKA applications,
including cloud computing, secure communication in IoT,
healthcare data protection, and others, with regard to system
preparation and key derivation time costs (and also space
requirements).

4) KEY ROLLOVER TIME COMPLEXITY
The time complexity of the key rollover process (pro-
cedure) is approximately equal to the complexity of the

FIGURE 5. Key derivation time cost, consumed by uix , default value(s):
s = 1.

[Algortihm 1].DistributeSecret procedure, see Algorithm 4
stat. 2.2. The complexity required to change theKi for a given
Ci is O(|Anc(Ci)|).

B. SECURITY NOTIONS AND ANALYSIS
In this section, we show through formal and informal security
analysis that the proposed scheme is secure against a variety
of attacks [28], [34], [35]. Several of the initial schemes
did not have a formal security analysis. However, this
deficiency has been progressively resolved, starting with the
research conducted by Atallah et al. [26]. They introduced
two distinct security notions: security against key recovery
(KR-security) and security in terms of key indistin-
guishability (KI-security). The strengthened version of
KI-security, termed strong key indistinguishability security
(S-KI-security), was proposed by Freire et al. [34].

1) KR-security
It is computationally impossible for one or more users,
namely a coalition of users, from the set

FCi = ∪u∗ /∈Ci∧u∗ /∈Anc(Ci)u∗

to derive Ki. Since Algorithm 1 provides precise and rigorous
definitions Si ̸= Sj, Si ∩ Sj = {} iff i ̸= j and V contains
infinite subset of length |Si|(or s), any subset of FCi cannot
derive (or recover) Ki.
Assuming that users in FCi combined their privates S∗,

since Si ̸⊂ ∪u∗∈FCiS∗ and all vectors in the set S are
linearly independent, it is computationally infeasible to get
(or recover) Si (and also Ki, see Algorithm 2) from given
(or combined) information. Therefore, our scheme is secure
against key recovery (collusive) attacks.

2) KI-security
In this security model, the adversary lacks knowledge of
the secret key Ki and cannot differentiate Ki from a random
string of equivalent length. In our scheme, for each class Ci,
the secret key Ki is represented as a number without
any additional patterns or properties, providing KI-security.
It is important to note that KI-security inherently implies
KR-security, meaning that if a system is KI-secure, it is also
KR-secure.
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3) RESISTANCE TO PRIVILEGE CREEP PROBLEM
In our scheme, for each class Ci ∈ C, Bi is stored secretly
by users ui∗ and Si is stored secretly by

⋃
u∗∈Anc(Ci) u∗,

not stored elsewhere. The dynamic update procedures Key-
Rollover, ClassReInitialize, ClassDeletion, and UserDeletion
in Algorithm 4 call the KeyRevocate procedure directly or
indirectly. Since it is not possible for a revoked key Ki or key
component Si to be in use or reused for another class, our
scheme is secure against the problem of resistance to privilege
creep.

4) S-KI-security
We perform a formal security analysis, supported by a
security proof, with the S-KI-security model that implies
both KI-security and KR-security. Since the S-KI-security
model is polynomially equivalent for both static and dynamic
(adaptive) adversaries, we examine the security model with
respect to a static adversary Astat [26], [28], [34], [35].
For a given access graph G = (C,E), consider a static

adversary Astat , who wants to attack a class Ci ∈ C. Using the
Gen algorithm on the access graphG, the security experiment
generates (B∗,K∗, pub). The adversary is then given two
functions CorruptCi (B∗) and KeyG,Ci (K∗) as follows.

CorruptCi (B∗) = {Bj ∈ B|(Cj ̸= Ci) ∧ (Cj ̸∈ Anc(Ci))}

KeyG,Ci (K∗) = {Kj|Cj ∈ Anc(Ci)}

Astat can corrupt all users in FCi by CorruptCi (B∗) function
and gain access to the keys associated with ancestor classes
by using KeyG,Ci (K∗). During the challenge phase, Astat is
provided with the secret keyKi or a random string of the same
length {0, 1}ρ , with the purpose of distinguishing between
the two cases. The following is the formal definition of S-
KI-security.
Definition 3 ([S-KI-ST]): Let 0 be a set of access graphs

corresponding to partially ordered sets (hierarchies), let G =
(C,E) ∈ 0, let (Gen,Der) be a HKAS for 0, and let Astat
be a static adversary which attacks a class Ci. Consider the
following experiment:
Experiment ExpS−KI−STG,Astat (1ρ)
Ci← Astat (1ρ,G)
(B∗,K∗, pub)← Gen(1ρ,G)
β

r
← {0, 1}

If β = 1 then T ← Ki else T
r
← {0, 1}ρ

d ← Astat (1ρ,G, pub,CorruptCi (B∗),KeyG,Ci (K∗),T )
return d

For a given G ∈ 0, the advantage of Astat in the experiment
can be defined as:

AdvS−KI−STG,Astat (1ρ) = 2|Pr[ExpS−KI−STG,Astat (1ρ) = β]− 1/2|

[34] If we symbolize ExpS−KI−ST ,λ
G,Astat (1ρ) with λ ∈ {0, 1},

β = λ we get

AdvS−KI−STG,Astat (1ρ) =
∣∣∣Pr[ExpS−KI−ST ,1

G,Astat (1ρ) = 1]

−Pr[ExpS−KI−ST ,0
G,Astat (1ρ) = 1]

∣∣∣

The hierarchical key assignment scheme is said to be
secure in the sense of strong key indistinguishability (S-KI-
ST)with respect to a static adversaryAstat , ifAdv

S−KI−ST
G,Astat (1ρ)

is negligible for each G ∈ 0 and Ci ∈ G. Namely, it is
impossible for any Astat to do better than succeeding with
probability 1/2 by outputting a random guess for S-KI-ST.
In conclusion, clearly, Astat with functions CorruptCi (B∗)

and KeyG,Ci (K∗) cannot distinguish a secret key Ki from any
Kj iff i ̸= j (or generally {0, 1}ρ), so the scheme provides
S-KI-security.

Finally, let us now discuss the security of our proposed
scheme with respect to the difficulty of the CVP-IPS. Recall
that we are dealing with an adversary Astat whose objective
is to compromise a specific class Ci. If Astat is outside the
hierarchy, Astat has no access to any vector of the basis Bi.
However, if Astat is inside the hierarchy but is not a member
of the classes {Ci,Anc(Ci)}, Astat knows the subset P .
To explore a more generalized form of the second scenario,
let’s delve into the following selective security game.

[Setup]
- Let V be an infinite-dimensional inner product space,
and letWi be a subspace of V with dim(Wi) = n.

- The challenger (u11 by default) runs the Gen(1ρ,G)
algorithm for Ci and generates (Bi,Ki, pub). The chal-
lenger then randomly chooses r vectors {w1,w2, · · · ,wr },
where r ≤ n − 1, from Bi and sends them to Astat with
(V, n).

[Challenge]
- The Astat ’s challenge is to select n− r additional vectors
{w′r+1,w

′

r+2, · · · ,w
′
n} from V to complete Bi.

[Adversary’s Goal]
- Astat succeeds in the game if Astat can correctly
choose the remaining n − r vectors such that
{w1,w2, · · · ,wr ,w′r+1,w

′

r+2, · · · ,w
′
n} forms a com-

plete, linearly independent basis forWi.
The game demonstrates the difficulty for an adversary Astat
in correctly guessing or computing the remaining vectors to
complete the basis set Bi given the limited initial knowledge.
Given the infinite-dimensional nature of V , this probability is
expected to be negligible.

P

 n∧
j=r+1

(
w′j ∈ Wi ∧ w′j ̸∥ {w1,w2, . . . ,wr }

) = negl(η)

where
∧

is the logical AND operator, used here to indicate
that all conditions in the sequence must be satisfied. w′j ̸∥
{w1,w2, . . . ,wr } denotes that the vector w′j is linearly
independent of the set of vectors, and negl(η) represents a
negligible function in terms of the security parameter η.

C. COMPARISON WITH OTHER SCHEMES
Table 1 compares our scheme with other well-known HKA
schemes in the literature. In our detailed comparison table,
public storage (information) is measured for the entire access
scheme ([22], [26], [29], [30], [31], [32], [33], [34], [35], [36],
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[37], [39], [41], our scheme), private storage (information) is
measured per class ([22], [26], [29], [30], [31], [32], [33],
[34], [35], [36], [37], [41]), or per user (our scheme). The
scheme proposed in [39] the requirement for private storage
is stated for the entire scheme. In the comparison, various
parameters are considered, and their respective notations are
found at the bottom of Table 1.
In their papers [22] and [26], Atallah et al. presented

two different HKA schemes. The first one is based on
PRF, while the second one is based on a combination of
PRF and CPA-secure symmetric encryption scheme. The
first scheme provides KR-security, while the second one
offers KI-security. Each class in both schemes has only one
defined private key. In the first scheme, the amount of public
information is directly related to the number of edges. In the
second scheme, the amount of public information increases in
proportion to the number of classes and edges in the access
hierarchy. Both schemes utilize symmetric operations for key
derivation, with the derivation cost increasing linearly with
the number of levels between classes.

In [29], D’Arco et al. proposed KI-secure scheme based on
the KR secure Akl and Taylor scheme [2] and the Goldreich
and Levin hard-core bit (GL bit) [5] with RSA security
assertion. Given that the key derivation and public storage
(roughly) are determined by ℓ, their design is suboptimal.

In [30], Lin et al. proposed a secure HKAS based on elliptic
curve cryptosystems. From a complexity standpoint, their
scheme is inefficient due to large public storage requirements
which depend on multiple parameters (c, ki, ρ), and key
derivation complexity determined by the time-consuming
subprocess.

In [31], De Santis et al. introduced methods rooted in
CPA-secure symmetric encryption and public-key broadcast
encryption. The former assigns one private key to each class,
and the public storage demand increases proportionally to the
number of classes and edges in the graph. The key derivation
time depends roughly on h symmetric decryption. As the
directed path between classes lengthens, key derivation costs
rise.

Ateniese et al. proposed two time-bound key assignment
schemes that achieveKI-security [33]. The first method, Two-
Level Encryption-Based Construction (TLEBC), relies on a
symmetric encryption scheme and operates under the IND-
P1-C0 security assumption. The second method, Two-Level
Pairing-Based Construction (TLPBC), is based on bilinear
maps with the BDDH security assumption. Unlike the
previous schemes that we have analyzed, the key derivation
process involves only one decryption in the first scheme
and one pairing evaluation in the second scheme, making it
highly efficient. The key derivation does not depend on the
number of classes in the hierarchy, the number of edges, or the
distance between the classes. However, both schemes have
a significant drawback, which is the very large amount of
public storage requirement. Besides, another disadvantage of
the second scheme is that the private storage requirement is
equal to the number of distinct time periods.

In [32], a key assignment scheme for arbitrary posets was
introduced, offering KI-security based on the computational
hardness of factoring. The storage needed for private data
is determined by the poset with w. Since key derivation
requires roughly ℓ.h modular squaring, especially when h is
large, the derivation process is inefficient. In [34] Freire et al.
proposed two different constructions that provide S-KI-
security based on pseudorandom function (PRF) and forward
secure pseudorandom generator (FS-PRG), respectively.
In both constructions, the public storage requirements are
zero, and the private storage requirements are determined by
the poset with w. The key derivation process in both schemes
is inefficient because it requires roughly h multiplications,
where h is the length of the directed path between classes (or
the number of levels between classes).

In [35], Tang et al. proposed a directed HKA scheme based
on linear geometry and provides S-KI-security with respect to
PRF security assumption. Their scheme requires lightweight
computation over a finite field and provides dynamic update
processes. The presented scheme, although effective, has the
downside of requiring more public storage space compared
to other HKA schemes. According to [35], their scheme has a
well-optimized balance between computational requirements
and storage space utilization. The costs of key derivation for
the class itself and its descendants are 2M +A and 4M + 2A,
respectively, which is effective.

In [36], Castiglione et al. proposed two constructions,
called shared encryption based construction (SEBC), and
threshold broadcast encryption based construction (TBEBC),
respectively. While both constructions utilize one private key
for each class in the hierarchy, the public storage requirement
of the second method is lower than that of the first method.
In [37], only one symmetric decryption is required to derive
the key, which is more efficient than the constructions
mentioned above in [36]. Reference [37] requires one key for
private storage, public storage is bounded by |ETL |.
In [39], Celiktas et al. proposed a hierarchical key man-

agement protocol based on threshold (approval/confirmation)
for key access in cloud computing. This scheme uses
secret-splitting, shamir’s(t, m) threshold algorithm for its
cryptographic construction and provides KI-security under
the TSBITS security assumption. In their protocol, a user can
access the secret key on both internal and external networks
after receiving approval. That is, a user can only access
cloud data with sufficient approvals. The scheme uses the
topological ordering of a directed graph including self-loop.
That is, there can only be one group (class) at each security
level, in other words, the scheme does not support horizontal
scaling, which is the most important shortcoming of the
scheme. Additionally, vertical scaling (security level) can be
costly.

In [41], Celiktas et al. presented a hierarchical key
assignment scheme based on inner product spaces. They
utilized orthogonal projection (OP) as a mathematical tool.
Their scheme is the first work to adapt the orthogo-
nal projection method to HKA schemes and provides
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TABLE 1. Comparison with other schemes.
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S-KI-security under the LICV security assumption. The
public storage requirement is only one, and the maximum
private storage requirement per class is b. Typically, the cost
of key derivation increases with the length of the basis set (as
well as with the properties of the inner product space).

Reference [41] employs a left-right, top-down approach in
which all vectors used in the hierarchy are included in the
basis set defined for the root class. In other words, the basis
sets for high security level classes are longer. The key deriva-
tion for classes at higher levels in the hierarchy is less efficient
and takes more time compared to classes at lower security
levels. Additionally, defining different basis sets for classes
naturally increases the basis set lengths of higher classes.

Our proposal introduces a direct key assignment scheme,
which is supported by rigorous mathematical definitions
and algorithmic syntax. Our scheme provides S-KI-security
under the CVP-IPS security assumption. The public storage
required for the entire scheme is two, while the private storage
required for each user increases directly proportional to
(n + α). The complexity of the key derivation is O(n2) and
depends strongly on the Gram-Schmidt orthogonalization
algorithm (see ([Algorithm 3].GramSchmidt procedure).
Since the length of the basis set defined for each class in the
hierarchy is the same, the key derivation cost will be equal for
each user in the access hierarchy. In our scheme, unlike [41]
andmany other schemes, theremay bemore than one directed
path between a class at the higher level and a class at the lower
level. With these and other features, the scheme we propose
fully meets all dynamic processes (see Algorithm 4).

Unlike many schemes proposed in the literature, some
abstractions have beenmade in the schemewe propose. These
are how the private key components will be distributed, where
they will be stored and, accordingly, how the key revocation
process will be carried out. For our proposed scheme to
be adaptable, we assume that private key components will
be stored by users of the hierarchy. In practice, different
distribution/storage and key revocation scenarios can be
applied for users belonging to a class in the upper or lower
security level. For example, any protocol implementing our
scheme can employ a key distribution center (KDC) in the
hierarchy under the control of the data owner. In this case,
the private key components are not distributed to the users,
but are stored in the KDC by the data owner. Users in the
hierarchy can securely access the KDC and obtain private key
components.

VI. CONCLUSION
This study introduces an innovative direct hierarchical key
assignment scheme (HKAS), utilizing CVP-IPS as its core
mathematical tool. The scheme is notable for its scalability,
flexibility, cost-effectiveness, and high performance. One
key advantage is that the lengths of the basis sets are the
same across all classes, ensuring identical key derivation
costs for users of any class. It also boasts a robust
mathematical framework, which is particularly efficient
in handling dynamic update operations. Departing from

traditional top-down structures, this HKAS achieves both
vertical and horizontal scalability and is distinguished by its
strong key indistinguishability security (S-KI-security).
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