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ABSTRACT Images captured in hazy scenes exhibit severe degradation. Various dehazing methods
have been proposed recently. However, most of them have the drawback of color cast in the dehazing
results. To solve this problem, we proposed an image dehazing algorithm called IDACC that avoids color
cast by using a novel atmospheric scattering model (NASM). The NASM is obtained by introducing a
scattering compensation coefficient into the atmospheric light term of the traditional atmospheric scattering
model (ASM). The scattering compensation coefficient effectively suppresses the color cast caused by the
atmospheric light term. Moreover, we designed a global information search (GIS) strategy based on the
minimum value channel to facilitate the calculation of the transmission map. Extensive experiments show
that IDACC achieves image dehazing and effectively avoids color cast. Note that the IDACC algorithm
does not require to consume time in dataset collection and model training. Furthermore, IDACC needs to
only input a hazy image and can directly output a haze-free image. Besides, our method shows excellent
performance both quantitatively and qualitatively compared with state-of-the-art (SOTA) methods.

INDEX TERMS Image dehazing, color cast, scattering compensation coefficient, atmospheric scattering
model.

I. INTRODUCTION
Haze is a natural phenomenon caused by suspended particles
scattering and absorbing light, such as atmospheric dust,
smoke, and other solid particles. Haze results in images with
a color cast, low contrast, and low clarity. The color cast
phenomenon makes the image colors not match the colors
of the real scene. This phenomenon has serious impacts on
computer vision systems that rely on clear images [1], such as
object detection [2], [3], [4], image classification [5], image
understanding [6], [7] and segmentation [8]. Therefore,
designing effective image dehazing methods that eliminate
color casts is urgently required.

Traditional image dehazing methods use the traditional
atmospheric scattering model (ASM) [9] to remove haze.
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However, there are two main difficulties in image dehazing
using the ASM, which include the estimation of atmospheric
light A and transmission map t . Recently, various methods,
such as prior-based methods [10], [11], [12], [13], [14], have
been proposed to resolve the aforementioned difficulties.
Although these methods for image dehazing all achieved sig-
nificant visual improvements, there are still some restrictive
weaknesses existing. A conspicuous limitation is that the
quality of the dehazed image depends on whether the real
scene is in agreement with the prior knowledge. In other
words, it will produce undesirable results when the real
scene is not in agreement with the prior knowledge, such
as color cast in dehazing results. For example, although
the dark channel prior [12] has been proposed based on
numerous observations, it failed to accurately obtain A
and t of the traditional ASM, resulting in dehazed images
with a color cast, darkness, and halo. Non-local prior [14]
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relies on the assumption that the color of haze-free images
comprises several hundred different color approximations.
This method achieves favorable dehazing results; however,
it is not effective for outdoor dehazing and introduces color
cast because it involves postprocessing operations to improve
contrast.

Thus, various methods have been proposed to further
address these drawbacks and reduce the dependence on
prior knowledge [15], [16], [17], [18], [19]. Although
they achieved remarkable results, color casts still exist
in dehazing results. To completely mitigate the problems
caused by prior knowledge, deep learning techniques have
been introduced for image dehazing [20], [21], [22], [23],
[24]. While learning-based methods have good dehazing
performance, they consume a considerable amount of time in
collecting dataset and training the network and can introduce
color casts in dehazing results. For example, Qu et al.
[25] and Chen et al. [26] adopted a hazy-to-clear image
translation strategy, which does not depend on ASM. These
methods achieve good visual results, but the dehazing results
have color casts and low brightness. The present methods
indeed produce satisfactory visual outputs. Nonetheless, the
dehazing techniques introduce color imbalances and reduced
brightness levels into the dehazed images. Such deviations
have negative implications on the efficacy of subsequent
tasks that inherently demand pristine image data, including
applications in aerial imaging and environmental monitoring.
These inherent drawbacks compromise the precision with
which computational algorithms can effectively identify and
analyze the intricate details contained within the dehazed
images.

In this study, we propose a novel atmospheric scattering
model (NASM), which introduces a scattering compensation
coefficient into the atmospheric light term of the traditional
ASM. The scattering compensation coefficient effectively
suppresses the color cast (see section III for specific details).
Furthermore, we designed an IDACC algorithm using the
NASM. Next, we designed a global information search (GIS)
strategy based on the minimum value channel to facilitate the
calculation of the transmission map (see section IV for spe-
cific details). Moreover, extensive experiments have shown
that the proposed method achieves excellent performance in
both quantitative and qualitative comparisons (see section V
for analysis and discussion). Our IDACC algorithm achieved
the best results in synthetic datasets and real-world scene
images compared with state-of-the-art (SOTA) dehazing
methods because NASM better describes the imaging process
of hazy images.

Unlike learning-based and prior-based dehazing meth-
ods, our method efficiently avoids color cast. Moreover,
the IDACC algorithm neither requires prior knowledge
and nor does it consume time in dataset collection or
model training. Additionally, it avoids color over-saturation
and halo in recovered images. In brief, IDACC can
achieve image dehazing and effectively avoid color
cast.

Our major contributions are as follows:
• An novel atmospheric scattering model (NASM) is
designed, which showcases its effectiveness in overcom-
ing color cast issues within images after the dehazing
process. Here, the NASMwas obtained by introducing a
scattering compensation coefficient into the atmospheric
light term of the traditional ASM.

• The IDACC algorithm is developed for image dehazing
and to avoid color cast. Additionally, GIS was designed
based on the minimum value channel to estimate the
transmission map.

• We experimentally validated the proposed method on
comprehensive hazy datasets. The results demonstrate
the notable improvement regarding color cast and
dehazing performance.

II. RELATED WORK
We briefly introduce some typical image dehazing methods,
including prior-based and learning-based methods.

A. PRIOR-BASED IMAGE DEHAZING METHODS
Prior-based methods use prior knowledge to estimate two
unknown parameters, the transmissionmap t and atmospheric
light A. Then, ASM is used to remove haze. The difference
between these prior-based methods is that they employ
different methods to estimate both unknown parameters. For
example, the dehazing method for maximizing an image’s
local contrast [11] is based on two observations and solves
the limitation associated with previous methods that several
images of one scene are required. Similarly, He et al.
[12] proposed the dark channel prior based on numerous
observations. However, their method fails in white or bright
scenes. Zhu et al. [13] estimated t by restoring scene depth
information using color attenuation prior. Berman et al. [14]
assumed that the color of haze-free images comprises several
hundred different color approximations and proposed a new
non-local prior algorithm. Although these methods have
made great progress in image dehazing, the results of dehazed
images still contain color cast and haze residue because prior
knowledge is not universally applicable.

B. LEARNING-BASED IMAGE DEHAZING METHODS
Recently, neural networks have been introduced into image
dehazing. For example, previous works [20], [21], [22]
focused on using deep learning methods to directly estimate
both unknown parameters A and t for image dehazing.
Although these methods solved the problem of relying on
prior knowledge, they posed some problems due to incorrect
estimation, such as color cast, detail loss, and artifact.
The end-to-end methods [25], [26] adopted a haze-to-clear
image translation strategy, which uses learning methods to
identify potential connections between images and achieve
haze removal without using ASM. Wu et al. [24] proposed
a contrastive learning method for image dehazing, which
leverages information from negative and positive images.
Although these methods achieved satisfactory dehazing
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FIGURE 1. The first row indicates the dehazing results of different methods. The second row represents the histogram corresponding to the
dehazing results. (a) Hazy image; (b) DCP; (c) IDE; (d) Proposed method; (e) Ground-truth.

results, they require considerable time to collect datasets
and train models. Li et al. [23] proposed an unsupervised
dehazing method called ZID, which does not require time for
model training. However, ZID requires time to transform a
haze image into a haze-free one and has a color cast in some
dehazing results. Xiao et al. [27] proposed a self-supervised
zero-shot dehazing network based on dark channel prior,
which needs many iterations to obtain the dehazed image.
Despite the learning-based methods improving the quality of
the recovered image, they posed some problems, such as color
cast, incomplete or excessive dehazing, loss of details, and so
on.

In this study, we employ the NASM to design an IDACC
algorithm that achieves hazy image dehazing and effectively
avoids the occurrence of color cast. It is noted that the IDACC
algorithm does not require hazy and clean image pairs for
training compared to learning-based methods. Consequently,
it eliminates the tedious work of dataset collection and does
not require extensive time for model training. Moreover, our
method only needs a hazy image input and it can directly
output a high-quality haze-free image.

III. NOVEL ATMOSPHERIC SCATTERING MODEL
The formation process of the haze image can be described
using the traditional ASM. From [9], [15], [16], and [28],
we can obtain the mathematical expression of the traditional
ASM as follows

Zc(x) = Nc(x) · t(x) + Ac · (1 − t(x)), (1)

where c ∈ {r, g, b} is a color channel index, Zc(x) is a hazy
image captured in the hazy scene, Nc(x) is a haze-free image,
Ac and t(x) denote the atmospheric light and transmission
map, respectively.

Furthermore, from [29], the traditional ASM can also be
expressed as another mathematical expression

Zc(x) = Ac(x) · ρ(x) · t(x) + Ac · (1 − t(x)), (2)

Obviously, Ac(x) · ρ(x) = Nc(x), ρ(x) is the scene albedo.
The first term in Eq. (2) is called the direct attenuation

term, representing the scene radiation and its attenuation in
the medium. The second term is called the atmospheric light

term, representing the scattering of the ambient light through
the atmospheric particles, and this term causes the color cast
of the image. When the solid particles suspended in space are
homogeneously distributed, the transmission map is defined
by the mathematical expression as follows

t(x) = e−β·d(x), (3)

where β is the attenuation coefficient of the atmosphere and
d(x) is the scene depth at pixel x.
As previously described, prior-based dehazing methods

can cause some problems. For example, non-local image
dehazing [14] can cause color cast due to the use of the
postprocessing operation for enhancing the contrast. The
dehazing results of the dark channel prior [12] are dark and
easily fail in white or bright scenes, leading to color cast and
halo in the sky area. To address the dark problem of dehazing
results, IDE [19] introduced the light absorption coefficient
into the traditional ASM for image dehazing. Although this
method effectively solves the low bright problem, image
dehazing results are over bright and have color casts.

An analysis of previous descriptions revealed that the
reason for the color cast is because of ignoring the scattering
phenomenon of ambient light caused by the atmospheric
light term in ASM. In the presence of haze, the proportion
of light transmitted through the atmosphere decreases,
leading to an overall decrease in image brightness. This
phenomenon adversely affects both the contrast and color
balance of the image. Therefore, we introduced a new
scattering compensation coefficient s(x) ∈ (0, 1] into the
atmospheric light term of the traditional ASM to obtain
NASM. This adjustment mitigates the the detrimental effects
of atmospheric light, alleviating the issue of over-brightness
in the dehazed images. It contributes to the preservation of
overall image contrast and reduces the perception of color
cast. The mathematical representation of NASM is different
from the traditional ASM and NASM can be mathematically
expressed as follows

Zc(x) = Nc(x) · t(x) + s(x) · Ac · (1 − t(x)), (4)

Furthermore, we can obtain the following

Zc(x) = Ac · ρ(x) · t(x) + s(x) · Ac · (1 − t(x)), (5)
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With increased scene depth, the atmospheric light term
Ac · (1 − t(x)) of the ASM leads to various degrees of
color cast in dehazed images [30]. To eliminate color cast,
we introduced a scattering compensation coefficient s(x) ∈

(0, 1], where the atmospheric light term becomes s(x) ·

Ac · (1 − t(x)), thus weakening the scattering phenomenon
of the atmospheric light term. Fig. 1 shows that from the
macroscopic view and histogram distribution, introducing the
scattering compensation coefficient suppresses the color cast
phenomenon in image dehazing (specific experimental proofs
are provided in section V).

Various scene depths will influence dehazed images
differently [30]. As scene depth increases, the probability of
encountering problems like color distortion and decreased
brightness in dehazed images also rises. To alleviate these
issues, drawing from experimental knowledge, themathemat-
ical expression for the scattering compensation coefficient is
presented as follows

s(x) =
d(x)

max(d)
, (6)

Using Eq. (3), we can calculate

d(x) = −
ln(t(x))

β
, (7)

max(d) = −
ln (tmin)

β
, (8)

Combining Eqs. (6), (7), and (8), we know that

s(x) =
ln(t(x))
ln (tmin)

, (9)

Similarly, combining Eqs. (5) and (9), we obtain NASM as
follows

Zc(x) = Ac · ρ(x) · t(x) +
ln(t(x))
ln (tmin)

· Ac · (1 − t(x)), (10)

NASM plays an essential role in image dehazing.
We designed an IDACC algorithm usingNASM in section IV.
NASM guarantee that IDACC algorithm achieves hazy image
dehazing and efficiently avoids color cast.

IV. THE PROPOSED IDACC USING NASM
We proposed an IDACC algorithm in which image dehaz-
ing and avoiding color cast using NASM. Furthermore,
we designed a GIS strategy based on the minimum value
channel to estimate the transmission map. Our method
is divided into three steps. The flowchart of the IDACC
algorithm can be seen in Fig. 2. First, from the methods
in [16] and [17], we estimated the atmospheric light A.
Second, we obtained theminimumvalue channel of the image
and found the coarse transmission map using GIS based on
the minimum value channel. Then, we obtained the refined
transmission map t by guided filtering. Third, the derived A
and t are introduced into the NASM for hazy image dehazing.
Here, we mainly introduced these last two steps.

FIGURE 2. Flowchart of the proposed method.

A. ESTIMATION OF THE TRANSMISSION MAP
We divided the inputted hazy image into multiple local
patches and considered each local patch as a small scene,
denoted as follows

Zc(x) = Am · ρ(x) · t̄(x) +
ln(t̄(x))
ln (tmin)

· Am · (1 − t̄(x)), (11)

Eq. (11) contains four unknown parameters Am, ρ(x), t̄(x),
and tmin. Am is the average of the three atmospheric light
channels. t̄(x) is the transmission map of the local patch.
To find t̄(x), the remaining three parameters must first be
identified, where Ac can be easily found using the quad-tree
method [16], [17], after which we can obtain Am. According
to previous studies [15], [19], and [31], we approximated
ρ(x) =

1
2 . Now, combining Eqs. (11), we obtain the following

Zc(x) =
1
2

· Am · t̄(x) +
ln(t̄(x))
ln (tmin)

· Am · (1 − t̄(x)), (12)

Eq. (12) contains a logarithmic function, which is more
difficult to solve. Thus, we applied the fitting operation
to simplify the calculation process. Therefore, from [19],
we know that

ln(t̄(x)) ≈ g(t̄(x)) =
n1

n2 + t̄(x)
, (13)
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where n1 = -0.397, n2 = 0.07747 the logarithmic and rational
functions have the best fit [19]. By substituting Eq. (13) into
Eq. (12), we obtain the following

Zc(x) =
n1 · Am · (1 − t̄(x))(
n2 + t̄(x)

)
· ln (tmin)

+
Am
2

· t̄(x), (14)

Furthermore, by simplification, we get[
Zc(x) · ln (tmin) −

Am
2

· n2 · ln (tmin) + Am · n1

]
· t̄(x)

−
Am
2

· ln (tmin) · (t̄(x))2 + Zc(x) · n2 · ln (tmin)

− Am · n1 = 0, (15)

Note that Eq. (15) is a quadratic equation, which can be
expressed as follows for more visualization

α1 · (t̄(x))2 + α2 · t̄(x) + α3 = 0, (16)

where
α1 = −

Am
2

· ln (tmin)

α2 = Zc(x) · ln (tmin) −
Am
2

· n2 · ln (tmin) + Am · n1

α3 = Zc(x) · n2 · ln (tmin) − Am · n1,

(17)

By solving quadratic equations (in the process of solving,
we take positive values and ignore negative ones [19]), we can
identify the unrefined transmission map. The expression for
the solution is as follows

t̄(x) =
−α2 ±

√
(α2)

2
− 4 · α1 · α3

2 · α1
, (18)

In the preceding description, we found Ac and ρ(x). In Eq.
(15), there are only two unknown parameters tmin and t̄(x).
To find t̄(x), first, we find tmin. For finding tmin, we need to
find the minimum value channel [12] of the input hazy image,
which is given by

Ndark (x) = min
y∈P(x)

(
min

c∈{r,g,b}
Nc(y)

)
, (19)

where P(x) is a local patch. After obtaining the minimum
value channel Ndark (x), from Eq. (12), we use GIS [19] based
on Ndark (x) to find tmin. Mathematically, this search strategy
can be expressed as follows

tmin = GIS
{
Ac,Am,Zc(x),Nc(x),Ndark (x), ρ(x),

n1, n2,H ,W
}
, (20)

where H and W denote the image size. We use the golden
section method in this search strategy to find tmin; then, t̄(x)
can be easily obtained.

Furthermore, we use guided filtering [32] to refine and
obtain the refined transmission map. This makes the image
smoothly transition while maintaining edge information of
the image.

B. HAZE REMOVAL
Combining Eqs. (4), (9), and (13), we obtain the following

Zc(x) = Nc(x) · t(x) +
n1 · Ac · (1 − t(x))(
n2 + t̄(x)

)
· ln (tmin)

, (21)

Furthermore, we obtain that

Nc(x) =

{
Zc(x) −

Ac · n1 · [1 − t(x)]
[n2 + t(x)] · ln (tmin)

}
·

1
t(x)

, (22)

As Ac, t(x) has been obtained, and n1, n2 are known, then
we can use Eq. (22) for image dehazing. The experiments
will demonstrate that the dehazed images closely resemble
real-world scenes as perceived by the human eye, and
the resulting recovery effectively eliminates color cast.
To enhance clarity, this paper delineates the step-by-step
process of the proposed IDACC method in Algorithm 1.

Algorithm 1 Proposed IDACC
Input: Hazy image Zc(x)
Output: Dehazed image Nc(x)
Procedure:

1. Estimate the atmospheric light A using methods from
[16,17].

2. Obtain the minimum value channel map Ndark (x) from
Zc(x).

3. For each local patch in Zc(x):
3.1 Compute Am, the average of A’s RGB channels.
3.2 Set ρ(x) =

1
2 based on literature [15], [19], and [31].

3.3 Use the minimum value channel map Ndark (x) and
GIS to find the coarse transmission map t̄(x).

4. Apply guided filtering to refine t̄(x) into the final
transmission map t(x).
5. Compute dehazed image Nc(x) using Eq. (13) and (22).

Return Nc(x).

V. EXPERIMENTS
We employed the IDACC algorithm based on NASM to
achieve a perfect haze removal. Furthermore, we com-
pared IDACC with eight existing methods. These methods
encompass ASM-based approaches, such as DCP(2010) [12],
IDE(2021) [19], DDAP(2021) [33] and SLP(2023) [34], and
learning-based methods, including DehazeNet(2016) [21],
AOD-Net(2017) [20], EPDN(2019) [25], TCN(2021) [35]
and USID-Net(2022) [36]. All methods were implemented
using HP laptops with an Intel(R) Core (TM) i5-6300 HQ
CPU@ 2.30 GHz 8.00 GB RAM. The proposed IDACC,
IDE [19], DDAP [33], SLP [34] and DehazeNet [21] were
implemented in MATLAB2016B, while DCP [12], AOD-
Net [20], EPDN [25], TCN [35], and USID-Net [36] were
implemented in Python 3.6.

A. EXPERIMENTAL SETTINGS
1) DATASETS
In our experiments, we used the SOTS and HSTS,
sourced from RESIDE [37] as the synthetic dataset.
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FIGURE 3. Comparison with SOTA on histogram similarity. In the red box, the column chart shows the mean of the histogram similarity
in the SOTS dataset. The yellow box shows the comparison of our results with SOTA on M1 dehazing, where Im1 is a hazy image from
the SOTS dataset.

FIGURE 4. Qualitative comparison on SOTS. (a) Hazy-Image; (b) DCP [12]; (c) IDE [19]; (d) DDAP [33] (e) SLP [34](f) AOD-Net [20];
(g) DehazeNet [21]; (h) EPDN [25]; (i) TCN [35]; (j) USID-Net [36]; (k) Proposed method; (l) Ground-truth.

The SOTS dataset contains 1000 images, from which
150 images were randomly selected for the experiment.
The HSTS dataset contains synthetic and real-world images.
Moreover, we used I-HAZE [38] (35 hazy images) and
O-HAZE [39] (45 hazy images) as the real-world datasets.
Furthermore, we collected some hazy images from the
Internet.

2) EVALUATION METRICS
We used peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM) to evaluate image quality. The higher
the score of both metrics, the better the recovered image
quality.

B. PROOF OF EFFECTIVENESS IN AVOIDING COLOR CAST
Histograms can describe the global distribution of colors
in an image. To prove that our method effectively avoids
color cast, we calculated the histogram similarity between
the haze-free images obtained from different dehazing
methods and the ground-truth images using the following
mathematical equation

Cj =
1
N

N∑
i=0

(
1 −

|gi − si|
Max (gi, si)

)
Cm =

1
Z

Z∑
j=1

Cj,

(23)
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FIGURE 5. Qualitative comparison on HSTS. (a) Hazy-Image; (b) DCP [12]; (c) IDE [19]; (d) DDAP [33] (e) SLP [34](f) AOD-Net [20];
(g) DehazeNet [21]; (h) EPDN [25]; (i) TCN [35]; (j) USID-Net [36]; (k) Proposed method; (l) Ground-truth.

FIGURE 6. Qualitative comparison on I-HAZE. (a) Hazy-Image; (b) DCP [12]; (c) IDE [19]; (d) DDAP [33] (e) SLP [34](f) AOD-Net [20];
(g) DehazeNet [21]; (h) EPDN [25]; (i) TCN [35]; (j) USID-Net [36]; (k) Proposed method; (l) Ground-truth.

where,Cm is the average similarity of the three channels.Cj is
the average similarity of a single channel, where j ∈ {1, 2, 3}
represents the R, G and B channel. gi, si denotes the total
number whose pixel value is i in the ground-truth image and
the dehazed image, respectively. N is the number of pixel
values (0-255) and Z is 3.

A hundred images were randomly selected from the SOTS
dataset, and Eq. (23) was applied to calculate their average
histogram similarity, as shown in Fig. 3. The red box shows
that our results achieved the highest score of 0.7710, which
is 0.1389 higher than the second ranked GCANet [26].
Additionally, the proposed dehazing method produces better
visual effects. It has thus been empirically demonstrated
that introducing the scattering compensation coefficient into
the atmospheric light term of the classical ASM effectively
prevents color cast artifacts.

C. QUALITATIVE COMPARISON ON SYNTHETIC DATASETS
We compared IDACC with other SOTA methods on the
RESIDE [37] dataset. Although most methods achieve good
visual results, as shown in Figs. 4 and 5, there still exist
prevalent challenges within the dehazing outcomes, which
include color cast, haze residue, low brightness, and loss
of details. The dehazing results of DCP [12], IDE [19],
AOD-Net [20], DehazeNet [21], EPDN [25], TCN [35] and
DDAP [33] exist with different degrees of color cast (see
Im1-Im4 and Im6 in Fig. 4(b) and (g); Im1-Im3 in Fig. 4(d);
and Im1 in Fig. 5(b), (e), (f) and (g)). Moreover, the dehazed
images of DCP, AOD-Net, DDAP and EPDN are generally
low brightness. Furthermore, the dehazing results of IDE
and AOD-Net achieved good visual results; however, their
recovered results are too bright and a have haze residue,
respectively (see Im1 in Fig. 5(d)). Although DehazeNet
and USID-Net show better visual results compared with
other methods, they involve loss of detail and color cast,
respectively (see Im2 in Fig. 4(e); and Im8 in 4 (h)). Com-
pared with SOTA methods, experimental results demonstrate
that our dehazing results achieved the best visual result,
avoiding color cast, low brightness, haze residue, and loss of
details (see Figs. 4(i) and 5(i)). Moreover, these experimental

findings demonstrate that our results are the best because
the dehazing images are the closest to ground-truth images,
which agree with the hazy-free images in the real scenes that
people see. Conclusively, our method achieved the best visual
results because we altered the atmospheric light term of the
traditional ASM by introducing the scattering compensation
coefficient, which suppressed the occurrence of color cast.
Benefiting from NASM, we also avoided haze residue, low
brightness, and loss of details.

D. QUALITATIVE COMPARISON ON REAL-WORLD
DATASETS
To comprehensively evaluate and prove the superiority of
our method, the I-HAZE [38] and O-HAZE [39] datasets
that had relatively dense haze were used in our experiments.
Fig. 6 shows that DCP [12], IDE [19], AOD-Net [20],
DehazeNet [21], EPDN [25], and DDAP [33] are more
effective in processing indoor hazy images, but thesemethods
recovered results that had color cast, low brightness, too
bright, and haze residue. In Fig. 7, DCP, IDE, AOD-Net,
DehazeNet, and DDAP methods have limited ability to
remove haze for scenes with dense haze. Moreover, the
results had a large amount of haze residue and different
degrees of color cast. Although EPDN and USID-Net [36]
have a stronger ability to remove dense haze, the dehazed
results have color cast and low brightness. We conducted
experiments on hazy images from the Internet. As Fig. 8
shows DCP, AOD-Net, DehazeNet, EPDN, TCN and DDAP
were low brightness. Although IDE and USID-Net solve
the problem of dullness, its recovered results contain color
cast and contrast reduction. This is similar to DCP, AOD-
Net, DehazeNet, EPDN and DDAP (see Im2 in Fig. 8(b)
and Figs. 8 ((d)-(h))). In comparison, as we can see in
Figs. 6(i), 7(i), and 8(j), the proposed method achieved the
best visual results on real-world hazy images. This is due to
two reasons. First, we used IDACC for image dehazing, and
our method required no prior knowledge, thus avoiding the
uncertainty caused by applying prior knowledge to all real
scenes. Second, our IDACC is different from the learning-
based methods, which optimize parameters from the training
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FIGURE 7. Qualitative comparison on O-HAZE. (a) Hazy-Image; (b) DCP [12]; (c) IDE [19]; (d) DDAP [33] (e) SLP [34](f) AOD-Net [20];
(g) DehazeNet [21]; (h) EPDN [25]; (i) TCN [35]; (j) USID-Net [36]; (k) Proposed method; (l) Ground-truth.

FIGURE 8. Qualitative comparison on real-world. (a) Hazy-Image; (b) DCP [12]; (c) IDE [19]; (d) DDAP [33] (e) SLP [34](f) AOD-Net [20];
(g) DehazeNet [21]; (h) EPDN [25]; (i) TCN [35]; (j) USID-Net [36]; (k) Proposed method.

TABLE 1. Quantitative comparison on SOTS dataset. The recovered images shown in Fig. 4. The best, and second best performances are shown by red and
blue, respectively.

TABLE 2. Quantitative comparison on SOTS dataset. The best, and second best performances are shown by red and blue, respectively.

datasets during training; however, these learned parameters
do not apply to all real-world hazy images. This causes the
performance of the learning-based methods to degrade when
processing real-world hazy images. Compared with SOTA

methods, IDACC needs to only input a hazy image and can
directly output a high-quality haze-free image, improving
the efficiency of image dehazing. The experimental results
demonstrate that IDACC achieves the best visual results and
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TABLE 3. Quantitative comparison on Hsts dataset. The best, and second best performances are shown by red and blue, respectively.

TABLE 4. Quantitative comparison on I-haze dataset. The best, and second best performances are shown by red and blue, respectively.

TABLE 5. Quantitative comparison on O-haze dataset. The recovered
images shown in Fig. 7. The best, and second best performances are
shown by red and blue, respectively.

the dehazed results are the closest to real images, avoiding
color cast, low brightness, haze residue, and loss of details.

E. QUANTITATIVE COMPARISON WITH SOTA METHODS
Tables 1 and 2 show scores of different dehazing methods
on the SOTS dataset, and Table 1 shows the scores of the
recovered images of different dehazing methods in Fig. 4.
From Table 1, our method achieved the highest scores in
PSNR and SSIM, indicating that our dehazed images are
closest to ground-truth images (see Fig. 4(i)). Table 2 shows
the average values of PSNR and SSIM scores for different
dehazing methods on the SOTS dataset. Here, our method
achieved the highest PSNR and SSIM scores of 27.5852 dB
and 0.9143, respectively. Additionally, PSNR scores are
3.9289 dB higher than USID-Net [36], which is ranked
second, and our SSIM scores are 0.0266 higher than AOD-
Net [20], which is ranked second. According to Table 3, the
results on the HSTS dataset are closer to the best method
than other ASM-based methods. We also experimented on
I-HAZE [38] and O-HAZE [39] datasets to comprehensively
evaluate the dehazing performance of our method, as shown
in Table 4 and Table 5, respectively. Our method obtained the
third best PSNR and SSIM scores in Table 4 and the dehazing

results in Fig. 6. Although it is not the highest PSNR and
SSIM in Im1 of Fig. 7, the color of our dehazed result is
closest to ground-truth images in real scenes. In general, the
visual result of our method is better in Fig. 7.

From the aforementioned results, we can conclude the fol-
lowing. First, our method does not rely on prior knowledge,
which is significantly superior to existing prior-based meth-
ods. Second, ourmethod is more efficient than learning-based
methods in image dehazing because it does not consume time
for dataset collection and model training. Third, although
some PSNR and SSIM scores of the dehazing results from
our method are not the highest, they also perform well in
image dehazing, avoiding color cast, detail preservation, and
producing restored images closest to the ground-truth images.
Fourth, our method, however, is not without some limitations.
Compared with indoor image dehazing, our method works
better in outdoor situations.

VI. CONCLUSION
In conclusion, we obtained the NASM by introducing a
scattering compensation coefficient into the atmospheric light
term of the traditional ASM. NASM major advantage is
that it avoids color cast in dehazed images. Furthermore,
we proposed the IDACC algorithm that uses NASM for
image dehazing. Moreover, to facilitate the calculation of
the transmission map, we designed a GIS based on the
minimum value channel. Note that the proposed method
needs no training process, thereby ensuring the efficiency of
the algorithm. Extensive experiments show that the IDACC
algorithm effectively implements hazy image dehazing and
avoids color cast. Qualitative and quantitative experiments
demonstrate that IDACC outperforms other SOTA dehazing
methods.

Regarding future work, we will further refine the approx-
imation parameters in the proposed IDACC. Moreover, the
proposed NASM should be extended to combine with deep
learning to develop better defogging methods.
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